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Abstract—While it is known that feedback does not increase the
small-error capacity of a discrete memoryless channel, noiseless
feedback can increase the zero-error capacity from zero (without
feedback) all the way to the small-error capacity. This result
depends on the availability of noiseless output feedback, which
gives the transmitter access to the exact output seen at the
destination, as well as the use of variable-length codes. In this
work, we consider two more realistic setups: 1) a noiseless
feedback link of finite rate (which may not permit transmission
of the outputs in their entirety), and 2) a noisy feedback link.
We derive rates which may be achieved with zero error. Our
results show that the achievable zero-error rate can vary between
the zero-undetected-error capacity and the small-error capacity
depending on the available feedback link rate and quality.

I. INTRODUCTION

Shannon showed that for fixed block-length coding
schemes, noiseless feedback does not increase either the
small-error or zero-error capacity. However, for variable-length
coding schemes, noiseless feedback can increase the zero-
error capacity [1], [2]. As shown by Burnashev [2], it is
possible to communicate with zero-error at rates equal to
the Shannon small-error capacity over a discrete memoryless
channel (DMC) with noiseless feedback if, and only if, there
exists at least one channel output (a “disprover”) that is
reachable from some but not all the channel inputs, if one
allows for variable-length codes.

The variable-length coding scheme used repeatedly sends
a message until the transmitter determines, through perfect
output feedback, and subsequently informs the destination that
the message has been correctly received at the destination. This
variable-length coding scheme relies heavily on the transmitter
being able to see exactly what the receiver does. This is for
example possible if the zero-error capacity of the noiseless
feedback channel is at least log2 |Y|, where Y is the set
of outputs of the forward DMC. In this case, the outputs
can be sent back to the transmitter perfectly. Alternatively,
the destination could output its decision, in which case the
zero-error feedback link rate would need to be at least the
forward link’s small-error capacity. In this paper, we present
a lower bound on the zero-error capacity when the feedback

is noiseless but rate-limited. This is particularly interesting
when the feedback rate is below the small-error capacity of
the forward channel.

Variable-length noiseless feedback communication schemes
have been considered in [2], [3], [4]. Although not targeting
zero-error explicitly, these schemes can guarantee zero-error
under certain conditions. In our previous work [5], we focused
on the zero-error capacity of a DMC when the channel
feedback is noisy. We showed that the variable-length zero-
error capacity with noisy feedback is lower bounded by the
forward channel’s zero-undetected-error capacity , and showed
that under certain conditions this is tight. We also outlined con-
ditions under which the zero-error capacity without feedback,
with perfect feedback, and with noisy feedback, are positive.

In this paper we first carefully define variable-length zero-
error communication with perfect, but rate limited feedback.
Next, we compare known variable-length noiseless feedback
communication schemes in terms of the required feedback
rate and their overall achievable rate. We then propose a
communication scheme achieving zero-error even for low
rate noiseless feedback, as well as noisy feedback links with
positive zero-error capacity.

II. DEFINITIONS

Let xji := (xi, xi+1, . . . , xj) when i ≤ j and |xji | = j−i+1

denote its size. Let γn = o(n), and γn →∞ as n→∞ (e.g.
γn = log(n)). Let M be the message set.

Channels. A channel (X ,Y,W ) is used to denote a DMC
with finite input alphabet X , finite output alphabet Y , and
transition probability W (y|x). Let rf ∈ R+ denote the
available error-free rate of the link between the destination
/ decoder and the transmitter / encoder (Figure 1).

Small error fixed-length capacity C without feedback. A
C(M, n) fixed-length code for DMC (X ,Y,W ) with message
set M without feedback, consists of:

1) a message set M of size 2nR, for R the rate and block-
length n;

2) an encoding function Fn :M→ Xn;
3) a decoding function and Gn : Yn →M.



Let c(n)(m) denote a codeword corresponding to message
m ∈M, i.e. c(n)(m) = Fn(m) and let

λ(n)m = Pr(Gn(yn) 6= m|Xn = c(n)(m)).

The maximum and average, respectively, probabilities of error
for a C(M, n) are defined as

λ(n) = max
m∈M

λ(n)m , P (n)
e =

1

|M|
∑
m∈M

λ(n)m .

The small error capacity C for channel (X ,Y,W ) is defined
as the largest number R such that there exists a sequence of
C(M, n) codes such that λ(n) tends to 0 as n→∞.

Zero-error fixed-length capacity C0 without feedback.
In his 1956 paper, Shannon defined the zero-error capacity C0

as the largest number for which there exists a sequence of
C(M, n) fixed-length codes such that P (n)

e = λ(n) = 0.
Zero-undetected-error fixed-length capacity C0u [6]. A

zero-undetected-error code of block-length n, denoted by
C0u(M, n) consists of:

1) a message set M of size 2nR, for R the rate and block-
length n

2) an encoding function F0u,n : M → Xn, that encodes
messages m to c(n)ou (m),

3) a decoding function G0u,n : Yn → M∪ {0} described
as follows. Let M(yn) denote the set of possible messages
corresponding to a received output yn

M(yn) = {m ∈M : Wn(yn|c(n)ou (m)) > 0}. (1)

The decoder declares an erasure, denoted by 0, if there exist
more than one message that could have yielded output yn, i.e.
|M(yn)| > 1. A zero-undetected-error decoding function is
then defined as

G0u,n(yn) =

{
M(yn) if |M(yn)| = 1

0 if |M(yn)| > 1.

4) A zero-error guarantee: a zero-undetected-error code must
have no undetected errors, hence the maximal error probability
is given only by the probability of erasures as

λ(n)m = Pr(G0u,n(yn) = 0|Xn = c
(n)
0u (m)).

The zero-undetected-error capacity C0u for channel W is
defined as the largest rate R such that there exist a sequence
of C0u(M, n) codes that maxm∈M λ

(n)
m tends to 0 as n→∞.

All previous definitions involve fixed-length codes, hence
our usage of the “fixed-length” in the definitions. This implies
that the codeword length is fixed to n for all messages and
channel instances, and decoding is performed after n channel
uses. We next define variable-length codes for the zero-error
regime for rate limited noiseless feedback.

Zero-error variable-length capacity with rate limited
noiseless feedback, CV L−PF0 (rf ).

m ∈ M Feedback Assisted
Encoder

Xn
W (Y |X)

Y n Feedback Assisted
Decoder

m̂ ∈ M

Zn
rf

Fig. 1. A DMC (X ,Y,W ) with rate limited perfect feedback of rate rf .

A variable-length zero-error rate-limited feedback code
CV L−PF0 (M, n, rf ) for DMC (X ,Y,W ) consists of:

1) a message set M, where messages are equi-probable;
2) a sequence of encoding functions Fi : M× Zi−1 →

X , where Zi is the received sequence through rate limited
feedback which generate the inputs

Xi = Fi(M,Zi−1), 1 ≤ i ≤ l;

3) a sequence of encoding function Hi : Yi−1 → Z , which
generate the feedback

Zi = Hi(Y i−1), |Zn| ≤ 2nrf 1 ≤ i ≤ n;

for n to be defined in 5).
4) a sequence of decoding functions Gi : Yi → M∪ {0}

yielding the best estimate of the message m ∈ M at time i
or declaring erasure (denoted by 0);

5) a non-negative integer-valued stopping time N (random
variable) defined as the first k that the decoder does not declare
an erasure, i.e.

N = k if ∀i < k,Gi(yi) = 0 and Gk(yk) 6= 0

which satisfies E[N ] ≤ n;
6) a zero-error guarantee: decoding is performed at time

instant N (the stopping time), yielding the message estimate
M̂ = GN (Y N ) and must satisfy λ(N)

m = λ(N) = 0.
The average-rate R̄(rf ) is called achievable if there ex-

ists a sequence of variable-length zero-error feedback codes
CV L−PF0 (M, n, rf ), where M may be a function of n and
rf , for which

R̄(rf ) ≤ lim
n→∞

log2 |M|
E[N ]

.

The largest average rate R̄(rf ) achievable by any zero-error
variable-length code CV L−PF0 (rf ) is called the zero-error
variable-length capacity with noiseless rate-limited feedback,
CV L−PF0 (rf ).

III. KNOWN VARIABLE-LENGTH ZERO-ERROR PERFECT

FEEDBACK COMMUNICATION SCHEMES

In this section, we compare three zero-error achievability
schemes in terms of their required error-free feedback rate
and corresponding (zero-error) achievable rates. These will
be combined in the next section in a hybrid communication
scheme when the perfect feedback rate is limited to rf .



A. Burnashev’s scheme (observation feedback)

Burnashev [2] showed that the error exponent (maximal ex-
ponential decay rate of the probability of error with increasing
block-length) when variable-length codes are permitted is

Eburn(R̄) =
C1

C
(C − R̄), 0 ≤ R̄ ≤ C (2)

where C1 is the maximal relative entropy between output
distributions,

C1 = max
xi,xj

∑
y

W (y|xi) log
W (y|xi)
W (y|xj)

.

Note that when the channel contains at least one disprover,
C1 = ∞, and zero-error communication is possible. In
this case, it can be shown that the variable-length zero-error
capacity coincides with the small error fixed-length capacity
C without feedback, i.e. CV L−PF0 (rf ) = C.

To achieve this, take any capacity achieving code C(M, n)

for the DMC W whose maximal probability of error λ(n)

tends to zero and whose rate approaches the Shannon capacity
C as block-length n → ∞. Note that the output block yn is
available in real time at the transmitter due to the presence
of perfect feedback if rf ≥ log2 |Y|. The transmitter can thus
determine whether the receiver obtained the correct message.
The transmitter informs the receiver of whether the decoded
message is correct or whether the receiver should expect a
repetition of the same message in the next block-length using
the disprover (ensuring zero-error). Figure 2 shows an example
of this scheme when three repetitions are needed to send the
message with zero error. The converse follows as the zero-error
capacity is always upper bounded by the small-error capacity.

Remark 1: The rate of the feedback link needed for this
(unaltered) scheme is at least rf ≥ log2 |Y|, as the entire
received sequence is needed at the encoder.

B. Yammamo-Itoh’s scheme (tentative decision feedback)

Rather than forwarding the entire received sequence, the
receiver sends back its estimated or decoded message. Ya-
mamoto and Itoh demonstrated that the same reliability func-
tion as in (2) is achievable with this reduced feedback rate
of rf ≥ R [4]. Thus, zero-error is guaranteed as long as the
forward channel contains a disprover, and rf ≥ R, using the
Yamamoto-Itoh scheme.

C. Forney’s scheme (erasure feedback)

Forney’s scheme reduces the amount of feedback further,
to the extreme case where only one bit of perfect feedback
is needed per information block (hence feedback of zero
rate). This appears to come at the expense of the overall
zero-error rate achieved, which drops from the small error
capacity to the zero-undetected-error capacity. This is done by
sending an “erasure” indicator on the feedback link. That is,

TABLE I
COMPARISON OF ZERO-ERROR VARIABLE-LENGTH SCHEMES FOR

CHANNEL WITH PERFECT FEEDBACK

Burnashev Yamamoto-Itoh Forney

CVL−PF
0 (rf ) C × 1(C0u 6= 0) C × 1(C0u 6= 0) C0u

rf ≥ log |Y| ≥ C only one bit
(rf = 0)

Feedback type passive active active
Final decision encoder encoder-decoder decoder

this scheme achieves C0u by taking a zero-undetected-error
capacity achieving code C0u(M, n) for channel W whose
maximal erasure probability tends to zero and whose rate
approaches C0u. To transmit message m ∈ M, codeword
c
(n)
0u (m) is sent through W . Upon receiving yn ∈ Yn, the

zero-undetected-error decoder is used to obtain an estimate of
the message. Since the probability of undetected-error is equal
to zero, the only type of error that might occur is an erasure
(|M(yn)| > 1, see (1)). The receiver informs the transmitter
of an erasure by sending one bit through the perfect feedback
channel. If the transmitter does not see the confirmation of
successful decoding, it again transmits c

(n)
0u (m). Figure 3

shows an example of Forney’s scheme for a channel with
perfect feedback in which the message is transmitted in 2
iterations. Table I compares all the variable-length described
schemes when the perfect feedback is available.

A similar transmission scheme can achieve C0u > 0 with
zero error even in the noisy feedback regime [5] as follows.
Since C0u > 0 implies the existence of at least one disprover,
this disprover can be used to synchronize the receiver and
transmitter during the message transmission by assigning the
first message bit b1 out of the bit stream of length k, bk1
(that is encoded) to carry the transmitter’s state variable st.
A message is re-transmitted until the codeword is not erased
and the receiver and transmitter are synchronized, i.e. st = sr
(recalling that the first bit b1 carries the state st and not the
message).

IV. HYBRID SCHEME FOR rf < C

As seen in Table I, differing amounts of feedback may lead
to different zero-error achievable rates. In particular, to achieve
the small error capacity C, using Yamamoto-Itoh’s scheme
one needs rf ≥ C to guarantee zero-error communication.
Forney’s scheme only needs one bit of feedback for any
block-length n to guarantee zero-error communication with
CV L−PF0 (rf ) = C0u. If C0u = C, then Forney’s scheme is
clearly more efficient than the other two schemes in terms of
feedback usage. Note that in general C0u ≤ C. Here we are
interested in the case that C0u < C. Our main result is the
following:

Theorem 1: Let β :=
rf
C < 1. If C0u > 0, then

CV L−PF0 (rf ) ≥ βC + (1− β)C0u. (3)



c1, c2...cn [xe]
γn c1, c2...cn [xc]

γn c1, c2...cn [xc]
γn

Transmission Verification

1-st round 2-nd round last round

Transmitter side

y1, y2...yn yγn y1, y2...yn yγn y1, y2...yn yγn

Gn(yn)=0 @yc Gn(y
n)>0 @yc Gn(y

n)>0 ∃yc

1-st round 2-nd round last round

Receiver side

Fig. 2. Variable-length communication scheme with perfect feedback (rf ≥ log |Y|), the shaded intervals are used by the transmitter to notify the receiver
about the decoding result using disprovers (γn = o(n)). The transmission is completed without error in 3 stages in this example.

c1, c2...cn c1, c2...cn

Transmission Idle

(Forward)

z = 0 z = 1

1-st round 2-nd round

(Feedbak)

st = 0 st = 1

Transmitter side

y1, y2...yn y1, y2...yn

Gn(yn)=0 Gn(yn)>0

Receiver side

z = 0 z = 1

1-st round 2-nd round

sr = 0 sr = 1

Fig. 3. Forney’s communication scheme which provide zero-error with perfect synchronization.

Proof To show the achievability of the rate in (3), we
combine Forney’s and Yamamoto-Itoh’s schemes as follows:

Let In = {1, 2, · · · , dlog ne} be the index set (hence
|In| = dlog ne). Let Ln = β · n

dlogne where β ≤ 1

is a constant. Consider a set of capacity achieving codes
C1 = {C1i(M1i, Ln), i ∈ In} for the DMC W whose maximal
probability of error λ(Ln) tends to zero and whose rate
approaches the Shannon capacity C as block-length Ln →∞.
Let n1 = Ln × |In| = β · n and n2 = n − n1 = (1 − β) · n.
Also, consider a zero-undetected-error capacity achieving code
C2 = C0u(M2, n2) for channel W whose maximal erasure
probability tends to zero and whose rate approaches C0u.
Then, given the message set M = (

∏
i∈InM1i) ×M2 let

a code C′(M, n) be the concatenation of all C1i’s and C2. Let
c
(Ln)
1 (m1i) and c

(n2)
2 (m2) be the corresponding codewords

for messages m1i ∈ M1i, i ∈ In and m2 ∈ M2. Figure
4 shows our hybrid scheme which consists of the following
transmission and confirmation phases. Note that the hybrid
scheme repeats the transmission and confirmation phases until
all the messages m1i, i ∈ In and m2 are received without
error (e.g. 4 times repetition in Figure. 4).

Transmission Phase, (green and blue in Figure 4): The
transmitter sends code C ′(n)(m) which is a concatenation
of |In| = log n codewords C

(Ln)
1 (m1i), i ∈ In and one

zero-undetected-error codeword c
(n2)
2 (m2). Upon receiving

the outputs corresponding to the i-th codeword c
(Ln)
1i (m1i),

i.e. yi·Ln(i−1)·Ln+1, the receiver decodes m̂1i and sends a lossless,
one-to-one function of its decoded message H(m̂1i) through
the rate-limited noiseless feedback link in Ln·C

rf
channel uses

(the transmitter must be able to retrieve m̂1i from H(m̂1i)

without error for any i ∈ In). Note that the receiver does
not use the first Ln channel uses of feedback link. After
receiving ynn1+1, the receiver uses a list (or erasure) decoder
to check whether it is able to decode the second message m̂2

or whether it declares erasure, and sends, using one bit of
noiseless feedback, whether the decoding of m2 resulted in
an erasure or not.

Confirmation phase (red in Figure 4): In this case, the
transmitter notifies the receiver about the decoding results of
all messages m1i, i ∈ In (it has estimates of these from the
feedback in the transmission phase). Similar to Burnashev’s
scheme, the transmitter sends a repetition code of length γn
for each message m1i, i ∈ In. In this phase, the receiver,
after receiving each sequence of length γn for each of the In
messages, notifies the transmitter using one bit per message
about whether it received a disprover or not. This allows the
transmitter and receiver to remain synchronized as follows: if
the transmitter receives a bit for for i-th message m1i, i ∈ In
that a disprover was seen, then the transmitter and receiver are
synchronized to send a new message in the next interval. If the
transmitter receives a bit indicating that a disprover was not
received, then in the next stage of transmission, the transmitter
and receiver are synchronized to repeat the previous message
(again send codeword c

(Ln)
1i (m1i)). Regarding the message

m2, when the transmitter receives the 1-bit confirmation,
showing that the erasure did not happen, the transmitter sends
a new message m′2 at the next stage; otherwise, it sends the
same code c(n2)

2 (m2). Thus, using the above hybrid scheme,
the sender and receiver can be synchronized using |In| × γn
channel uses in each stage (combination of one transmission
and one confirmation phase).

The main reason the hybrid scheme interleaves |In| message
sets M1i, i ∈ In is to improve the efficiency of transmission
by reducing the amount of time the feedback link is idle. If
|In| = 1, the length of idle feedback link is n1. Using the
hybrid scheme, the idle length become Ln = o(n).

For ease of analysis, we assume that all messages are re-
transmitted as long as one of the messages has not been
correctly received (i.e. the receiver did not see a disprover for
that message). To analyze the achievable rate using the hybrid
scheme, note that the number of channel uses to transmit
H(m̂1i) for each i ∈ In is Ln·C

rf
. Thus, as shown in Figure 4,

in order to efficiently transmit the messages the total number of
feedback channel uses during the transmission phases should



n

n1 n2

c
(Ln)
11 (m11) c

(Ln)
12 (m12) · · · c

(Ln)
1in

(m1in
) c

(n2)
2 (m2)

small-errorC1 C2

ConfirmCodewordC′(M, n)

γn × |In|

(Forward)

Idle H(m̂11) H(m̂12) · · · H(m̂1in
)

1-bit

(Feedbak)
Ln

LnC
rf

Fig. 4. In the hybrid scheme, the communication is repeated until all the messages are decoded with zero-error. The feedback is mainly used to transmit
the tentative message of m̂1i, i ∈ In. Message m2 needs only one-bit of feedback per stage. A repetition code of length γn is used for each message
m1i, i ∈ In.

0 0

X YP (Y |X)

1 1

1− ε

1− ε

1− ε

ε

ε

ε

2 2

Fig. 5. The DMC whose directed channel graph is the cyclic triangle.

hold the following relationship:

n ≥ |In|
Ln · C
rf

+ Ln ≈ |In|
Ln · C
rf

,

where the Ln on right side of summation is for the idle period.
Thus,

|M| = (2Ln·C)|In| × 2n2·C0u .

For sake of simplicity, let λ(n) be the maximal probability
of error for code C′(M, n) (λ(n) → 0 as n→∞). Let N be
the stopping time at which the receiver is able to decode all
the messages correctly. Similar to the analysis of Burnashev’s
scheme, the number of repetitions of the two phases follows
the geometric distribution with mean 1

1−λ(n) ≈ 1. Since the
probability of error of all codes can be made sufficiently small
as n→∞ by definition of both capacity achieving codes, we
may approximate E[N ] ≈ n+ |In| × γn. Thus,

R̄ = lim
n→∞

log2(2n1·C) + log2(2n2·C0u)

E[N ]
= βC + (1− β)C0u.

�
Example 1: Figure 5 shows a DMC with a triangular di-

rected channel graph. In [7] it was shown that when ε is
sufficiently small, C0u = log 2 while C = log 3. Figure
6 shows the achievable zero-error rate using our proposed
scheme.

A. Extensions to noisy feedback

In our previous work [5], we presented a lower-bound for
the zero-error capacity of a DMC with noisy feedback, shown

CV L−PF0 (rf )

rf

C0u

C

C

Fig. 6. An achievable rate for the triangle channel in Example 1 as a function
of the error-free feedback link rate rf .

m ∈ M Feedback Assisted
Encoder

Xn(f)
W(f)(Y|X )

Y n(f) Feedback Assisted
Decoder

m̂ ∈ M

W(b)(Y|X )
Y n(b) Xn(b)

Fig. 7. Communication Scheme for a DMC with active noisy feedback

in Figure 7. We showed that in the presence of noisy feedback
with disprovers on both the forward (W (f)) and backward
(W (b)) channels, we can achieve the zero-undetected-error
capacity of the forward channel C(f)

0u with zero-error, even
if the fixed-length zero-error capacity for both the forward
channel (C

(f)
0 ) and backward channel (C

(b)
0 ) are zero. If

the zero-error capacity of the backward channel is positive
(C

(b)
0 > 0), then using Theorem 3, we can extend our previous

result for noisy feedback [5] as follows:
Proposition 1: Let β =

C
(b)
0

C(f) . The variable-length zero-
error capacity of a DMC W (f) with noisy feedback W (b),
denoted by CV L−NF0 [5], satisfies

CV L−NF0 ≥


C

(f)
0u if C(b)

0u > 0 and C(b)
0 = 0

βC + (1− β)C
(f)
0u if 0 < C

(b)
0 < C(f)

C if C(b)
0 ≥ C(f)

,

(4)
where C(f)

0u and C(b)
0u denote the zero-undetected-error capac-

ities of the forward and backward links.
Proof In [5] we proposed a scheme that achieves
CV L−NF0 ≥ C

(f)
0u if C

(b)
0u > 0 and C

(b)
0 = 0. Also, if

C
(b)
0 ≥ C(f), then Yamamoto-Itoh’s scheme can achieve



X YP (Y |X)
0 0

1 1

2 2

3 3

4 4

Fig. 8. Pentagon channel with crossover probability ε > 0.

CV L−NF0 ≥ C. The proof is straightforward when 0 < C
(b)
0 <

C(f) using theorem 1.
Example 2: Here we consider a DMC with noisy feedback

in which both forward channel W (f) and feedback channel
W (b) are pentagon channels as shown in Figure 8. For a
pentagon channel with small but positive ε, it is known that the
small-error capacity C = log2 5 and the zero-error capacity
C0 = 1

2 log2 5 [8]. In the Appendix we show that for the
pentagon channel C0u ≥ 2. Thus, using Proposition 1 and
given that β = 1

2 the variable-length zero-error capacity
CV L−NF0 ≥ 2.161.

V. CONCLUSION

While it is known that feedback does not increase the
small-error capacity, it can increase the zero-error capacity of
channels. In the extreme case, availability of perfect noiseless
feedback can increase the zero-error capacity of a DMC
from zero (without feedback) all the way to the small-error
capacity. Here, we provide achievable rates when the amount
of noiseless feedback is limited or only noisy feedback is
available. Our results show that the achievable zero-error rate
can vary between the zero-undetectable capacity and the small-
error capacity depending on the rate of available feedback.

APPENDIX

To the best of our knowledge the zero-undetected-error
capacity of the pentagon channel W is not known. Note that
Pinsker and Sheverdyaev [9] proved that C0u equals C if the
bipartite channel graph is acyclic.1 However, for the pentagon
channel the bipartite graph is cyclic. A lower bound is obtained
by using random coding over codes with constant composition
[10]

C0u ≥ max
Q

min
V�W

QV=QW

I(Q,V ), (5)

where the maximization is over all distributions Q on X

and where the minimization is over all auxiliary channels
V such that V (y|x) = 0 whenever W (y|x) = 0 and such
that V induces the same output distribution under Q as the

1The bipartite graph of a channel is acyclic if there does not exist
l > 2, distinct inputs x1, · · · , xl and distinct outputs y1, · · · , yl such that
W (yj |xj) > 0,W (yj |xj+1) > 0 for j = 1, · · · , l and xl+1 = x1 [7].

true channel W (V � W ). Consider the following auxiliary
channel V

V =


1− ε ε 0 0 0

0 1− ε ε 0 0

0 0 1− ε ε 0

0 0 0 1− ε ε

0 0 0 0 1

 .
Note that V � W and for any distribution Q =

[q0, q1, q2, q3, 0] it is easy to verify that QV = QW . Let
R0u(W )|Q be the zero-undetected error achievable rate for the
pentagon channel restricted to the set of all input distributions
Q with (q4 = 0). Note that

C0u(W ) ≥ max
Q

R0u(W )|Q.

Given Q, it is easy to verify that R0u(W )|Q = R0u(V )|Q.
Given Q, the bipartite graph for channel V becomes acyclic
and thus

C(V )|Q = max
Q

R0u(V )|Q = log2 4.
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