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Abstract—The classical interference channel models the com-
munication limits of two independent, interfering streams of
one-way data. In this paper we extend the classical interference
channel model to a new channel model in which two streams
of two-way data interfere with each other. In the absence of
interference, this model would result in two parallel two-way
channels (a four node channel); in the presence of interference
it encompasses two-way, interference, and cooperation trade-
offs. The discrete memoryless “parallel two-way channel with
interference” is considered, in which each of the four nodes
is the source of one message, the receiver of another, and
experiences interference from yet another transmitter. The nodes
may adapt their transmissions to the past received signals in a
fully two-way fashion. We present an outer bound to the four
dimensional capacity region which utilizes four auxiliary random
variables to constrain the input distributions, and present a looser
outer bound with a single auxiliary random variable which is
computable as we place bounds on this variable’s alphabet size.

I. INTRODUCTION

The two-way channel in which two nodes exchange a
single two-way data stream (or two messages) over a common
channel sheds light on the ability of nodes to adapt their
transmissions to past received outputs. While the two-way
channel has been extended to two-way relay channels in
which a single two-way data stream is exchanged with the
help of a relay, little work has considered multiple two-way
data streams in a network setting. Two-way networks are
particularly interesting not only because they extend one-way
networks to allow for the more general class of two-way data,
but they also emphasize the relationship between interference,
two-way data – which amounts to nodes having additional
own-message side-information as well as being able to adapt
their transmissions to received data – and cooperation in a
network setting.

Towards this goal, we start off by considering the simplest
relay-free non-trivial network which contains multiple two-
way data streams that interfere. We consider two parallel two-
way channels in which each node’s transmission is heard by
its desired receiver as well as one undesired receiver.

A. Past Work

This channel model merges elements of the two-way, in-
terference, and causally cooperative (or forms of generalized
feedback) channel models, but has not been explicitly consid-
ered before. We consider the general class of discrete memo-
ryless two-way channels first introduced by Shannon [9] who
proposed inner and outer bounds of the same form/expression,

Fig. 1. Parallel Two-way Channel with Interference

but taken over independent and fully general input distri-
butions respectively. We will use outer-bounding techniques
similar to those used to improve Shannon’s outer bound, as
first done by [12] for the two-way channel, and later also
used in deriving outer bounds for a two-way multiple-access
broadcast-channel model considered in [3]. This last channel
is one of the few two-way networks considered in the literature
and is most related to the channel considered here. [3] derives
outer bounds on the capacity region of a three node network
where the two terminal nodes each have a message for the
base-station and the base-station has a common message for
the terminal nodes. The nodes are half-duplex and may adapt
their current transmissions to previously received signals, as
in general (non-restricted) two-way channels. This paper’s
channel model differs as it considers four full-duplex nodes
with four messages and captures interference effects (two
interference channels in the → and ← directions). Numerous
interference channel outer bounds have been derived, including
those for Gaussian channels [4], [7], discrete memoryless
channels [5] with strong interference conditions [8], with
feedback [10], and with generalized feedback [11].

B. Outline of Paper

We define the discrete memoryless, full-duplex, parallel
two-way channel with interference channel model in Section
II, derive two outer bounds for this channel in Section III – one
tighter but a function of four auxiliary random variables and
one looser but computable due to the cardinality bound on the
single auxiliary random variable, compare the tighter bound
to related models in Section IV, and conclude in Section V.



II. CHANNEL MODEL

We consider a multi-user network which we term the
parallel two-way channel with interference (PTW-IF), which is
shown in Fig.1. This network has four distributed transmitters
(encoders) and four distributed receivers (decoders), which
encode/decode four independent messages. Transmitter 1 and
3 send messages M12 and M34 to receiver 2 and 4 respectively.
Similarly, transmitter 2 and 4 send messages M21 and M43 to
receiver 1 and 3 respectively. Because of the two-way feature
with interference, the outputs of receiver 1 and 3 depend
(possibly in a noisy fashion) on the inputs at transmitter 1,2,4
and 2,3,4 respectively. Similarly, the outputs of receiver 2
and 4 depend on the inputs at transmitter 1,2,3 and 1,3,4
respectively. We note that a more general channel model would
allow for the output at each node to depend on all four inputs,
but that we consider this somewhat simplified model at first
given its already challenging nature, and expect to be able to
carefully generalize these results to the general parallel two-
way interference channel (rather than parallel two-way channel
with interference).

The channel input and output of user i ∈ {1, 2, 3, 4} at
discrete time k are Xi,k and Yi,k, which lie in the alphabets Xi

and Yi respectively. The channel is discrete and memoryless
and is thus fully described by the transition probability matrix
{p(y1, y2, y3, y4|x1, x2, x3, x4)} which we assume has the
property that:

Y1 = T1(X1, X2, X4)
Y2 = T2(X1, X2, X3)
Y3 = T3(X2, X3, X4)
Y4 = T4(X1, X3, X4),

where Tl (l ∈ {1, 2, 3, 4}) are discrete memoryless mappings
which may include an element of randomness (or noise). By
introducing the notation Aj

i = (Ai,1, Ai,2, ..., Ai,j), for any
given time j, we may describe the encoding functions which
yield the channel inputs at time j as follows:

X1,j = f1(M12, Y
j−1
1 )

X2,j = f2(M21, Y
j−1
2 )

X3,j = f3(M34, Y
j−1
3 )

X4,j = f4(M43, Y
j−1
4 ),

where fi (i ∈ {1, 2, 3, 4}) are deterministic functions. For a
given blocklength n, at time step 0 ≤ j ≤ n, the encoder
selects the next input Xi,j(Mik, Y

j−1
i ) out of the 2nRik

(Rik ≥ 0 is the rate of communication between sender i
and receiver k) codewords Xn

i (Mik, Y
n−1
i ). Receiver k uses

a decoding function gk : Yn
k → M̂ik to obtain an estimate

M̂ik of the transmitted message Mik. Standard definitions for
achievable rate regions and capacity regions for the rates Rik

are used [1]. We seek outer bounds to the four-dimensional
(R12, R21, R34, R43) capacity region.

III. OUTER BOUNDS REGION FOR PTW-IF

We now present an outer bound to the capacity of this
channel; remarks and interpretations of this bound are found
at the end of this section.

Theorem 1: The capacity region C of the parallel two-way
channel with interference is a subset of the region C∗:

C∗ ≡ {(R12, R21, R34, R43) :

R12 ≤ min{I(X1, Z1; Y2|X2, Z2, M34, M43, Q), H(X1|Z1, , Z2, X2, Q),

I(X2, X4; Y3|X3, Z3, Q) + I(X1; Y2|X2, X3, Z2, Z3, Q)}
(1)

R21 ≤ min{I(X2, Z2; Y1|X1, Z1, M34, M43, Q), H(X2|Z1, Z2, X1, Q),

I(X1, X3; Y4|X4, Z4, Q) + I(X2; Y1|X1, X4, Z1, Z4, Q)}
(2)

R34 ≤ min{I(X3, Z3; Y4|X4, Z4, M12, M21, Q), H(X3|Z3, Z4, X4, Q),

I(X2, X4; Y1|X1, Z1, Q) + I(X3; Y4|X4, X1, Z4, Z1, Q)}
(3)

R43 ≤ min{I(X4, Z4; Y3|X3, Z3, M12, M21, Q), H(X4|Z3, Z4, X3, Q),

I(X1, X3; Y2|X2, Z2, Q) + I(X4; Y3|X3, X2, Z3, Z2, Q)}
(4)

R12 + R34 ≤ I(X1, X3; Y2, Y4|X2, X4, Z2, Z4, Q) (5)
R12 + R43 ≤ I(X1, X4; Y2, Y3|X2, X3, Z2, Z3, Q) (6)
R21 + R34 ≤ I(X2, X3; Y1, Y4|X1, X4, Z1, Z4, Q) (7)
R21 + R43 ≤ I(X2, X4; Y1, Y3|X1, X3, Z1, Z3, Q) (8)
R12 + R21 + R34 ≤ I(X1, X2, X3; Y1, Y2, Y4|X4, Z4, Q) (9)
R12 + R21 + R43 ≤ I(X1, X2, X4; Y1, Y2, Y3|X3, Z3, Q) (10)
R12 + R43 + R34 ≤ I(X1, X4, X3; Y3, Y2, Y4|X2, Z2, Q) (11)
R21 + R43 + R34 ≤ I(X4, X2, X3; Y1, Y3, Y4|X1, Z1, Q)} (12)

where X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4, Q are
random variables subject to the following input distribution:

p(z1, z2, z3, z4|q)p(x1|z1, q)p(x2|z2, q)p(x3|z3, q)p(x4|z4, q).
(13)

Proof: By symmetry, we need only demonstrate bounds
(1), (5), (9). For simplicity, we omit the standard time-sharing
random variable arguments for Q and refer the reader to
standard arguments as in [1].

Proof of bound (1): We obtain three bounds on the single
message rates; the first two are in the spirit of [12] for the
two-way channel, while the third is reminiscent of the two-
way multiple-access / broadcast channel bounds of [3].

nR12 = H(M12|M21,M34,M43)
= H(M12|M21,M34,M43, Y2) + I(M12;Y2|M34,M43,M21)
(a)

≤ nε+ I(M12;Y2|M34,M43,M21)
= H(Y2|M34,M43,M21)−H(Y2|M12,M21,M34,M43) + nε

=
n∑

j=1

[H(Y2,j |M34,M43,M21, Y
j−1
2 )

−H(Y2,j |M12,M21,M34,M43, Y
j−1
2 )] + nε



(b)

≤
n∑

j=1

[H(Y2,j |M34,M43,M21, Y
j−1
2 , Xj

2)

−H(Y2,j |M12,M21,M34,M43,

Y j−1
2 , Xj

2 , Y
j−1
1 )] + nε

(c)
=

n∑
j=1

[H(Y2,j |M34,M43,M21, Y
j−1
2 , Xj

2 , Z2,j)

−H(Y2,j |M12,M21,M34,M43, Y
j−1
1

Y j−1
2 , Xj

2 , X
j
1 , Z1,j , Z2,j)] + nε

(d)

≤
n∑

j=1

[H(Y2,j |X2,j , Z2,j ,M34,M43)−H(Y2,j |M34,M43,

X2,j , X1,j , Z1,j , Z2,j)] + nε

=
n∑

j=1

I(X1,j , Z1,j ;Y2,j |X2,j , Z2,j ,M34,M43) + nε

where (a) follows from Fano’s inequality, (b) uses Xj
2 =

f2(M21, Y
j−1
2 ) and conditioning reduces entropy when a

“genie” provides Y j−1
1 in the negative term. We introduce new

random variables Zi,j = (Xj−1
i , Y j−1

i ) in (c), and also use
Xj

1 = f1(M12, Y
j−1
1 ). In (d), the first term follows as condi-

tioning reduces entropy; the second term, follows since given
M34,M43, X1,j , X2,j , Z1,j , Z2,j , the channel output Y2,j is
independent of the other terms. This is illustrated by the
Markov chain diagram in Fig. 2, where we see that due to the
dependence of Y2j on M34 and M43 (since neither X3,j nor
Y3,j are given) these terms may not be dropped. By introducing
a time sharing random variable Q and using arguments as
in [1], we obtain R12 ≤ I(X1, Z1;Y2|X2, Z2,M34,M43, Q).
One problem with this bound is the presence of the messages.
We now derive two other bounds on R12 in which this

Fig. 2. First example of the Markov chain used in Theorem 1.

dependence on the messages is removed. To do so, notice

I(M12;Y2|M34,M43,M21)
≤ I(M12;Y2, Y1, X1|M21,M34,M43)
= H(Y1, Y2, X1|M21,M34,M43)
−H(Y1, Y2, X1|M12,M21,M34,M43)

=
n∑

j=1

[H(Y1,j , Y2,j , X1,j |M21,M34,M43, X
j−1
1 , Y j−1

1 , Y j−1
2 )

−H(Y1,j , Y2,j , X1,j |M12,M21,M34,M43, X
j−1
1 , Y j−1

1 , Y j−1
2 )]

(a)
=

n∑
j=1

[H(X1,j |M21,M34,M43, X
j−1
1 , Y j−1

1 , Y j−1
2 , Xj

2)

Fig. 3. Second example of the Markov chain used in Theorem 1.

+H(Y1,j , Y2,j |X1,j ,M21,M34,M43, X
j−1
1 , Y j−1

1 , Y j−1
2 , Xj

2)

−H(X1,j |M12,M21,M34,M43, X
j−1
1 , Y j−1

1 , Y j−1
2 , Xj

2)

−H(Y1,j , Y2,j |X1,j ,M12,M21,M34,M43, X
j−1
1 , Y j−1

1 , Y j−1
2 , Xj

2)]
(b)

≤
n∑

j=1

[H(X1,j |Z1,j , Z2,j , X2,j)]

where (a) uses the chain rule and Xj
2 = f2(M21, Y

j−1
2 ),

and (b) follows from: 1) the third term in (a) is zero since
X1,j = f1(M12, Y

j−1
1 ). 2) The second term and the fourth

term in (a) cancel each other by the Markov chain given in
Fig. 3, where we see that given X1,j , X

j−1
1 , Xj

2 ,M34,M43,
the channel outputs Y1,j and Y2,j are independent of anything
else that is given. 3) For the first term in (a), we introduce a
new random variable Z1,j = (Xj−1

1 , Y j−1
1 ), and the inequality

follows as conditioning reduces entropy. Again, by introducing
a time sharing random variable Q and using arguments as in
[1], we obtain R12 ≤ H(X1|Z1, Z2, X2, Q).

In the previous bound, X1 and Y1 were provided as genie-
aided side-information at node 2. Now we derive another outer
bound on R12 by giving Y3 as genie-aided side-information at
node 2. That is,

I(M12;Y2|M34,M43,M21)
≤ I(M12;Y2, Y3|M34,M43,M21)
= I(M12;Y3|M34,M43,M21)

+ I(M12;Y2|M34,M43,M21, Y3) (14)

Now we upper bound the first term in (14) as follows:

I(M12;Y3|M34,M43,M21)
= H(Y3|M34,M43,M21)−H(Y3|M12,M21,M34,M43)

=
n∑

j=1

[H(Y3,j |M34,M43,M21, Y
j−1
3 )

−H(Y3,j |M12,M21,M34,M43, Y
j−1
3 )]

(a)

≤
n∑

j=1

[H(Y3,j |M34,M43,M21, Y
j−1
3 , Xj

3)

−H(Y3,j |M12,M21,M34,M43, Y
j−1
3 , Xj

3 , X
j
4 , X

j
2)]

(b)
=

n∑
j=1

[H(Y3,j |M34,M43,M21, Y
j−1
3 , Xj

3 , Z3,j)

−H(Y3,j |M12,M21,M34,M43, Y
j−1
3 , Xj

3 , Z3,j , X
j
4 , X

j
2)]



(c)

≤
n∑

j=1

[H(Y3,j |X3,j , Z3,j)−H(Y3,j |X2,j , X3,j , X4,j , Z3,j)]

=
n∑

j=1

I(X2,j , X4,j ;Y3,j |X3,j , Z3,j) (15)

where (a) uses Xj
3 = f3(M34, Y

j−1
3 ), and the inequality

holds as we added Xj
2 , X

j
4 in the negative term (thereby

reducing it). In (b) we introduce a new random variable
Z3,j = (Xj−1

3 , Y j−1
3 ). In (c), for the first term, conditioning

reduces entropy. For the second term, we again use the Markov
chain properties similar to those in Figs. 2 and 3 to see that
given X2,j , X3,j , X4,j , the channel output Y3,j is independent
of all other terms. Now we proceed to upper bound the second
term in (14):

I(M12;Y2|M34,M43,M21, Y3)
= H(Y2|M34,M43,M21, Y3)

−H(Y2|M12,M21,M34,M43, Y3)

=
n∑

j=1

[H(Y2,j |M34,M43,M21, Y
j−1
2 , Y3)

−H(Y2,j |M12,M21,M34,M43, Y
j−1
2 , Y3)]

(d)

≤
n∑

j=1

[H(Y2,j |M34,M43,M21, Y
j−1
2 , Xj

2 , Y
j−1
3 , Xj

3)

−H(Y2,j |M12,M21,M34,M43, Y
j−1
2 , Xj

2 , X
j
3 , X

j
1 , Y3)]

(e)
=

n∑
j=1

[H(Y2,j |M34,M43,M21, Y
j−1
2 , Xj

2 , Y
j−1
3 , Xj

3 ,

Z2,j , Z3,j)−H(Y2,j |M12,M21,M34,M43,

Y j−1
2 , Xj

2 , X
j
3 , X

j
1 , Y3, Z2,j , Z3,j)]

(f)

≤
n∑

j=1

[H(Y2,j |X2,j , X3,j , Z2,j , Z3,j)

−H(Y2,j |X3,j , X2,j , X1,j , Z3,j , Z2,j)]

=
n∑

j=1

I(X1,j ;Y2,j |X2,j , X3,j , Z2,j , Z3,j) (16)

where (d) uses Xj
2 = f2(M21, Y

j−1
2 ) and Xj

3 =
f3(M34, Y

j−1
3 ), and the addition of Xj

1 in the negative term
which leads to the inequality. In (e), we introduce new
random variables Zi,j = (Xj−1

i , Y j−1
i ). In (f), for the first

term, conditioning reduces entropy. For the second term,
we again use the iterated Markov chain as in Fig. 1 to
see that given X1,j , X2,j , X3,j , the channel output Y2,j is
independent of all other terms. By combining (15) and (16),
and introducing a time sharing random variable Q and using
arguments as in [1], we obtain R12 ≤ I(X2, X4;Y3|X3, Z3)+
I(X1;Y2|X2, X3, Z2, Z3).

Proof of bound (5):

n(R12 +R34) = H(M12,M34|M21,M43)
= H(M12,M34|M21,M43, Y2, Y4)

+ I(M12,M34;Y2, Y4|M43,M21)
(a)

≤ nε+ I(M12,M34;Y2, Y4|M43,M21)
= H(Y2, Y4|M43,M21)
−H(Y2, Y4|M12,M21,M34,M43) + nε

=
n∑

j=1

[H(Y2,j , Y4,j |M43,M21, Y
j−1
2 , Y j−1

4 )

−H(Y2,j , Y4,j |M12,M21,M34,M43, Y
j−1
2 , Y j−1

4 )] + nε

(b)

≤
n∑

j=1

[H(Y2,j , Y4,j |M43,M21, Y
j−1
2 , Y j−1

4 , Xj
2 , X

j
4)

−H(Y2,j , Y4,j |M12,M21,M34,M43, Y
j−1
2 , Y j−1

4 ,

Xj
2 , X

j
4 , X

j
1 , X

j
3)] + nε

(c)
=

n∑
j=1

[H(Y2,j , Y4,j |M43,M21, Y
j−1
2 , Y j−1

4 , Xj
2 , X

j
4 ,

Z2,j , Z4,j)−H(Y2,j , Y4,j |M12,M21,M34,M43,

Y j−1
2 , Y j−1

4 , Xj
2 , X

j
4 , X

j
1 , X

j
3 , Z2,j , Z4,j)] + nε

(d)

≤
n∑

j=1

[H(Y2,j , Y4,j |X2,j , X4,j , Z2,j , Z4,j)

−H(Y2,j , Y4,j |X2,j , X4,j , X1,j , X3,j , Z2,j , Z4,j)] + nε

=
n∑

j=1

I(X1,j , X3,j ;Y2,j , Y4,j |X2,j , X4,j , Z2,j , Z4,j) + nε

where (a) follows from Fano’s inequality, (b) uses Xj
2 =

f2(M21, Y
j−1
2 ) and Xj

4 = f4(M43, Y
j−1
4 ), and the inequal-

ity follows from giving the terms Xj
1 , X

j
3 as genie-aided

information in the negative term. We introduce new random
variables Zi,j = (Xj−1

i , Y j−1
i ) in (c). In (d), for the first term,

conditioning reduces entropy. For the second term, we use
Markov chain arguments similar to those in Figs. 2 and 3 to see
that given X1,j , X2,j , X3,j , X4,j , the channel outputs Y2,j , Y4,j

are independent of anything else that is given. By introducing a
time sharing random variable Q and using arguments as in [1],
we obtain R12 +R34 ≤ I(X1, X3;Y2, Y4|X2, X4, Z2, Z4, Q).

Proof of bound (9):

n(R12 +R21 +R34) = H(M12,M21,M34|M43)
= H(M12,M21,M34|M43, Y1, Y2, Y4)

+ I(M12,M21,M34;Y1, Y2, Y4|M43)
(a)

≤ nε+ I(M12,M21,M34;Y1, Y2, Y4|M43)
= H(Y1, Y2, Y4|M43)
−H(Y1, Y2, Y4|M12,M21,M34,M43) + nε



=
n∑

j=1

[H(Y1,j , Y2,j , Y4,j |M43, Y
j−1
1 , Y j−1

2 , Y j−1
4 )

−H(Y1,j , Y2,j , Y4,j |M12,M21,M34,M43,

Y j−1
1 , Y j−1

2 , Y j−1
4 )] + nε

(b)

≤
n∑

j=1

[H(Y1,j , Y2,j , Y4,j |M43, Y
j−1
1 , Y j−1

2 , Y j−1
4 , Xj

4)

−H(Y1,j , Y2,j , Y4,j |M12,M21,M34,M43,

Y j−1
1 , Y j−1

2 , Y j−1
4 , Xj

1 , X
j
2 , X

j
4 , X

j
3)] + nε

(c)
=

n∑
j=1

[H(Y1,j , Y2,j , Y4,j |M43, Y
j−1
1 , Y j−1

2 , Y j−1
4 , Xj

4 , Z4,j)

−H(Y1,j , Y2,j , Y4,j |M12,M21,M34,M43,

Y j−1
1 , Y j−1

2 , Y j−1
4 , Xj

1 , X
j
2 , X

j
4 , X

j
3 , Z4,j)] + nε

(d)

≤
n∑

j=1

[H(Y1,j , Y2,j , Y4,j |X4,j , Z4,j)

−H(Y1,j , Y2,j , Y4,j |X2,j , X4,j , X1,j , X3,j , Z4,j)] + nε

=
n∑

j=1

I(X1,j , X2,j , X3,j ;Y1,j , Y2,j , Y4,j |X4,j , Z4,j) + nε

where (a) follows from Fano’s inequality, (b) uses Xj
4 =

f4(M43, Y
j−1
4 ), Xj

1 = f1(M12, Y
j−1
1 ) and Xj

2 =
f2(M21, Y

j−1
2 ) to include Xj

4 , Xj
1 and Xj

2 for free. The
inequality follows by giving the genie-aided information Xj

3

in the negative term. We introduce a new random variable
Z4,j = (Xj−1

4 , Y j−1
4 ) in (c). In (d), for the first term,

conditioning reduces entropy. For the second term, we again
use a Markov chain argument similar to those in Figs. 2
and 3 to see that given X1,j , X2,j , X3,j , X4,j , the channel
outputs Y1,j , Y2,j , Y4,j are independent of anything else that is
given. By introducing a time sharing random variable Q and
using arguments as in [1], we obtain R12 + R21 + R34 ≤
I(X1, X2, X3;Y1, Y2, Y4|X4, Z4, Q).

That the channel input distribution splits according to (13)
is omitted due to space, but follows along the lines of [12].

Remark 2: The derivation of the bound closely follows the
ideas of [12] for the point-to-point two-way channel as well
as those of [3] for the two-way multiple-access and broadcast
channel with a common message. The main difference is the
structure of our channel, which contains interference but no
multiple-access or broadcast elements. In addition, our bounds
are derived in full-duplex scenario, which is different from
[3]’s half-duplex model.

Remark 3: The third term in bound (1) suggests interpreting
users 3 and 4 as relay nodes for the transmission from user 1
to receiver 2. Indeed, in the PTW-IF, the message M12 may
be transmitted from 1 → 2 directly, or may intuitively be
“routed” through 1 → 4 → 3 → 2, in a cooperative fashion.
This ability to cooperate is captured by the third bound in (1).

Remark 4: We note that the double and triple rate bounds
(5) – (12) are quite intuitive and follow in a relatively
straightforward manner; the key potential improvement over

other cut-set like outer bounds is the somewhat more restrained
input distribution due to the auxiliary Z random variables over
which this bound is taken.

We now give constraints on the sizes of the alphabets of the
auxiliary random variables Zi, i ∈ (1, 2, 3, 4) in the following
theorem, which presents a potentially weaker but computable
(bounded auxiliary random variable sizes) outer bound region.

Theorem 5: The capacity region C of the PTW-IF is a
subset of the region C∗∗:

C∗∗ := {(R12, R21, R34, R43) :

R12 ≤ min{H(X1|X2, X, Q), I(X2, X4; Y3|X3, Q)

+ I(X1; Y2|X2, X3, Q)} (17)
R21 ≤ min{H(X2|X1, X, Q), I(X1, X3; Y4|X4, Q)

+ I(X2; Y1|X1, X4, Q)} (18)
R34 ≤ min{H(X3|X4, X, Q), I(X2, X4; Y1|X1, Q)

+ I(X3; Y4|X1, X4, Q)} (19)
R43 ≤ min{H(X4|X3, X, Q), I(X3, X1; Y2|X2, Q)

+ I(X4; Y3|X2, X3, Q)} (20)
R12 + R34 ≤ I(X1, X3; Y2, Y4|X2, X4, Q) (21)
R12 + R43 ≤ I(X1, X4; Y2, Y3|X2, X3, Q) (22)
R21 + R34 ≤ I(X2, X3; Y1, Y4|X1, X4, Q) (23)
R21 + R43 ≤ I(X2, X4; Y1, Y3|X1, X3, Q) (24)
R12 + R21 + R34 ≤ I(X1, X2, X3; Y1, Y2, Y4|X4, Q) (25)
R12 + R21 + R43 ≤ I(X1, X2, X4; Y1, Y2, Y3|X3, Q) (26)
R12 + R43 + R34 ≤ I(X1, X4, X3; Y3, Y2, Y4|X2, Q) (27)
R21 + R43 + R34 ≤ I(X2, X3, X4; Y1, Y3, Y4|X1, Q) (28)

where X1, X2, X3, X4, Y1, Y2, Y3, Y4, X,Q are random vari-
ables subject to the following input distribution:

p(x|q)p(x1|x, q)p(x2|x, q)p(x3|x, q)p(x4|x, q),

subject to the cardinality bound |X | ≤ |X1||X2||X3||X4|+ 3.

Proof: In Theorem 1, let X = (Z1, Z2, Z3, Z4). Then
bound (1) in Theorem 1 may be relaxed to

R12 ≤ min{H(X1|X2, X,Q), H(Y3|X3, Q)−H(Y3|X2, X3,

X4, Q) +H(Y2|X2, X3, Q)−H(Y2|X1, X2, X3, Q)}
= min{H(X1|X2, X,Q), I(X2, X4;Y3|X3, Q)

+ I(X1;Y2|X2, X3, Q)}

which is bound (17) in Theorem 5. Note that
H(X1|X2, Z1, Z2) = H(X1|X2, Z1, Z2, Z3, Z4) due to
the form of the joint distribution in Theorem 1. All
other bounds in Theorem 5 may similarly be obtained
from Theorem 1. We note that we have further loosened
bounds by dropping all bounds which depended on the
messages. According to the support lemma of [2, p.310],
the cardinality bound may be proven as follows: We
can find a subset of X , say X ‘, with the constraint
|X ‘| ≤ |X1||X2||X3||X4|+ 3, and let p(x‘) be the distribution
corresponding to X ‘. Now, if the input distribution is of
the form p(x‘)p(x1|x)p(x2|x)p(x3|x)p(x4|x), then equating
{p(x1, x2, x3, x4) : x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, x4 ∈ X4},



and all the entropy terms (there are four) in the bounds
of Theorem 5 with the new x′ variables ensures that all
the mutual information terms also remain unchanged.
Therefore, we claim that the cardinality bound is
|X | ≤ (|X1||X2||X3||X4| − 1) + 4 = |X1||X2||X3||X4|+ 3.

IV. DISCUSSION

The PTW-IF is a fairly general channel model which com-
bines elements of two-way channels with those of interference
channels. As such, we expect an outer bound for this channel
to relate to outer bounds for similar channel models and briefly
discuss this next.

A. The cut-set outer bound for the PTW-IF

A readily available outer bound to this channel model (and
may be added to those of Theorem 1 to further potentially
tighten the outer bound) is the standard cut-set outer bound
[1], [6] , which, for the PTW-IF, is given by the region:

R12 ≤ I(X1;Y2, Y4|X2, X4) (29)
R21 ≤ I(X2;Y1, Y3|X1, X3) (30)
R34 ≤ I(X3;Y2, Y4|X2, X4) (31)
R43 ≤ I(X4;Y1, Y3|X1, X3) (32)
R12 +R34 ≤ I(X1, X3;Y2, Y4|X2, X4) (33)
R21 +R43 ≤ I(X2, X4;Y1, Y3|X1, X3) (34)
R12 +R43 ≤ I(X1, X4;Y2, Y3|X2, X3) (35)
R21 +R34 ≤ I(X2, X3;Y1, Y4|X1, X4) (36)

where X1, X2, X3, X4 follow the fully general input distribu-
tion of p(x1, x2, x3, x4). Although it is hard to compare the
single-rate bounds (29) – (32) with our bounds (1) – (4), our
sum-rate bounds (5) – (12) may intuitively potentially improve
upon the cut-set bounds (33) – (36) due to the presence of
auxiliary random variables Zi, i ∈ {1, 2, 3, 4} and the more
constrained input distributions, though this is in general an
open problem and the subject of ongoing work.

B. Comparison with Zhang and Berger’s [12] outer bound for
the two-way channel

Theorem 1 of [12] yields the following outer bound to
the capacity region R of the discrete memoryless two-way
channel:

R∗ ≡ {(R1, R2) :
R1 ≤ min[H(X1|Z1), I(X1;Y2|X2, Z2)],
R2 ≤ min[H(X2|Z2), I(X2;Y1|X1, Z1)]}

where Z1, Z2, X1, X2, Y1, Y2 are random vari-
ables whose joint distribution is of the form
p(z1, z2)p(x1|z1)p(x2|z2)p(y1, y2|x1, x2).

As the outer bounds of Theorem 1 are based on the
techniques of [12] it is natural to expect that they would
reduce to [12] for a single two-way channel. Indeed, our outer
bound region may be reduced to the above region by setting
X3, X4, Y3, Y4,M34,M43 = ∅. We note that the first term in

(1) and (2) is always larger than the third term (and thus the
third term dominates the min(·, ·, ·), and the third term corre-
sponds to the outer bound of [12]. We note that our bounds
R12 ≤ H(X1|Z1, Z2, X2) and R21 ≤ H(X2|Z1, Z2, X1) are
no looser than Zhang and Berger’s bounds R1 ≤ H(X1|Z1)
and R2 ≤ H(X2|Z2).

V. CONCLUSION

In this paper we proposed an outer bound region for the
discrete memoryless parallel two-way channel with interfer-
ence which utilizes auxiliary random variables to constrain
the input distribution. Besides the derivation of inner bounds
to the capacity region of the parallel two-way channel with
interference, a number of remaining outer bound questions
are the subject of ongoing work, including: if/when is this
bound tighter than the cut-set bound, and whether it may be
tightened for specific channel models including deterministic,
linear high-SNR deterministic, or Gaussian channels.
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