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The Capacity Region of the L-User Gaussian
Inverse Compute-and-Forward Problem

Yanying Chen, Yiwei Song, and Natasha Devroye

Abstract— We consider an L-user multiple access channel
where transmitter m has access to the linear equation um =
⊕L

l=1 fml wl of independent messages wl ∈ F
kl
p with fml ∈ F p,

and the destination wishes to recover all L messages. This
problem may be motivated as the last hop in a network
where relay nodes employ the compute-and-forward strategy and
decode linear equations of messages; we seek to do the reverse
and extract messages from sums over a multiple access channel.
In particular, we exploit the particular form of dependencies
between the equations at the different relays to improve the
reliable communication rates beyond those achievable by simply
forwarding all equations to the destination independently. The
presented achievable rate region for the discrete memoryless
channel model is shown to be capacity for the additive white
Gaussian noise channel.

Index Terms— Channel capacity, multiple access channel,
compute-and-forward, correlated sources, joint source-channel
coding, multiuser channels.

I. INTRODUCTION

THE recently proposed Compute-and-Forward (CF) frame-
work [3] enables the decoding of linear combinations

of messages at relays over Gaussian channels. The decoding
of integer combinations of lattice codewords corresponds to
decoding integer combinations of the underlying messages
w which are vectors of length k of elements over a finite field
of size p, Fp , or w ∈ F

k
p . When decoding sums of messages

suffices, this may sometimes be done at higher rates using the
CF rates than decoding individual messages.

In the CF model, individual messages are transmitted
over a multiple access channel (MAC), and linear combina-
tions of messages are decoded1; in the inverse compute-and-
forward (ICF) channel model studied here the reverse is done,
i.e. a destination node seeks to decode individual messages
over a MAC from relays which possess linear combinations of
messages. In a larger network one may envision source nodes
having messages, destination nodes wanting to decode these
messages, and intermediate relay nodes decoding individual or
linear equations of messages according to the CF framework.
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1The CF framework may handle more general cases when combinations of

messages are transmitted as well, but our statement was made for the sake of
argument/intuitive definition of the ICF model.

We determine the rates at which we may extract individual
messages from linear message equations known at relays over
a MAC. This may be combined with CF rates in deriving
overall achievable rates in larger networks. We provide some
examples for doing so, but this is not the main focus of this
paper. For more works on multi-source, multi-relay setups,
please refer to [4] and [5] and references therein.

We focus on the general L-user ICF problem where each
relay node possesses a linear combination of L messages
assumed to have been obtained using the CF framework. These
relays transmit over a MAC to a single destination which
seeks to decode the L individual messages. In order for the
problem to be feasible, the matrix relating the messages to
the equations must be invertible. The coefficient matrix is
assumed to be non-singular throughout the paper, and several
additional invertibility constraints, for succinctness, will also
be imposed. One might consider sending these L equations to
the destination using independent codebooks as in a MAC, and
having the destination invert the message equations to obtain
the original messages. However, we show that the relays may
extract dependencies from the linear equations when message
rates are unequal, which allows one to achieve a larger rate
region. In particular, we show that when message rates are
unequal, 1) a common message may be extracted, 2) knowing
some equations limits the number of values other equations
may take on, and 3) there is a special pairwise (conditionally)
independent structure in the equations.

A. Past Work

The problem statement and motivation builds upon the
compute-and-forward (CF) framework [3]: it is assumed that
message equations have been previously decoded at the relays,
and that messages are length k vectors of elements over a
finite field Fp , as in the CF framework. There are many
other applications of CF, but they all differ from the ICF
problem. For example, in [6], an integer-forcing linear receiver
framework is developed for a MIMO system and is shown
to outperform conventional linear receivers. Papers [7], [8]
study a distributed antenna system (DAS) where antenna
terminals, which serve user terminals, are connected to a
central processor (CP) via digital error-free links of finite
capacity. Both the up- and down-link can be facilitated by CF;
we note that the “Reverse Compute and Forward” precoding
strategy proposed in [8], should not be confused with the ICF
problem proposed here. In these examples, linear equations
are known at a single node (for the MIMO scenario) or can
be gathered to a central node by some error-free links (in the
DAS system). In contrast, the ICF problem studies how to
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directly extract the original messages over the air from the
equations known to distributed nodes.

The ICF problem was first considered for the two-user case
in [1], where an achievable rate region was presented. Though
not formally presented in [1], one may show, as done here,
that the two-user ICF problem may be mapped to sending
one common message and two private messages over a MAC.
This corresponds to the Slepian-Wolf MAC, whose capacity is
known for both the discrete and Gaussian channels [9]–[11].

The capacity of an extension of the Slepian-Wolf MAC
of [9] to an arbitrary number of users, each of which has
access to a subset of independent messages is solved in [12]
and simplified in [13].

We note that when going beyond two-users, our L-user
ICF problem cannot be mapped into the framework in [12],
as in the latter, the users either have common message(s) or
completely independent ones, but do not have for example,
the pairwise (but not mutual) independence correlation pattern.
We are not aware of any other related problems which explic-
itly capture the pairwise independent structure. One might
attempt to cast this problem into the framework considered
by [14], as the transmission of arbitrarily correlated sources
over a MAC channel via joint source-channel coding. We first
remark that for the two-user case their achievable rate region
results in the capacity region of the Slepian-Wolf MAC [9],2

which also corresponds to the region obtained here for two
users. More generally, in [14] only uncomputable multi-letter
capacity expressions are presented for L arbitrarily correlated
i.i.d. sources. In this work we strengthen the initial results
of [1] considerably by obtaining the single-letter and fully-
characterized capacity region for the general Gaussian L-user
ICF problem rather than an achievable rate region for the two-
user problem.

B. Contribution and Outline

Our main contribution is the derivation of the capacity
region for decoding L independent messages over a Gaussian
multiple access channel when each of L transmitters has
a linear combination of these messages, subject to invert-
ibility conditions. We first present the necessary definitions
and formally state the general ICF problem in Section II.
Before demonstrating the most general results for arbitrary L,
in Section III the L = 2 user case is used to build intuition.
We provide plots of numerical evaluations of the ICF capacity
region compared to other possible regions for this model,
and an example of how to combine this rate region with a
CF rate region to obtain an overall rate region for a relay
network. In Section IV, the L = 3 user case is also outlined
to build additional intuition for the new ingredient in moving
beyond two users – pairwise independent but not mutually
independent components at the transmitters. In Section V,
an achievable rate region for the general L-user ICF problem is
first derived. Our first main contribution, besides the formula-
tion of the problem, is the design of a decoder which exploits

2As shown in the special case d) in [9], a channel-coding problem may
be seen as a special case of the related joint source-channel coding problem,
where messages are extended into information sources with the equivalent
entropy rate while the channel model stays the same.

Fig. 1. L-user ICF problem in which L relays each have a linear combination
um = ⊕L

l=1 fmlwl of L messages and wish to convey these messages to a
single destination.

the dependencies inherent in the equations available at the
transmitters. Achievability is then followed by the derivation
of the capacity region for the Gaussian MAC channel model,
the paper’s second main contribution. The converse follows
along similar lines to those in [10] and [11], but differs in
an interesting way due to the special pairwise independent
component of the message equations. In essence, for Gaussian
channels, only pairwise dependency between equations is of
concern and any correlations of order higher than 2 cannot be
exploited to improve the rate regions.

Notation: Row vectors and matrices are written in bold
font in lower and upper case, respectively. Length-n, n ∈ N,
vector codewords are represented by Xn . Define C(x) as
1
2 log2(1 + x), E[·] as the expectation operator, and Pr[A]
the probability of event A. Let A ⊗ B denote the Cartesian
product of the sets A and B , and ‖A‖ denote the cardinality
of set A. ‖Xn‖ also denotes the Euclidean norm of vector Xn .
For p prime, let F

k
p

∼= {0, 1, · · · , p − 1}k (“∼=” indicates
“is isomorphic to”) denote the field of length k vectors
of elements in the field Fp ∼= {0, 1, · · · , p − 1}, under
element-wise addition/multiplication modulo p. Let var(X)
denote the variance of X , Rmin = min{R1, · · · , RL}, and
Rmax = max{R1, · · · , RL }. Let X A denote the set {Xa, a ∈ A}
which contains all Xa with index a from a given set A.
Similar notation is used to defined wA (the set of messages
with indices in the set A) and uA (the set of equations
with indices in the set A). We use the following indexing
convention: l is used for sources (w), m for relays (u), and
c for equation/message sections.

II. PROBLEM STATEMENT: DEFINITIONS

AND CHANNEL MODELS

As shown in Fig. 1, L source nodes indexed by
l (l = 1, · · · , L) would like to communicate with one
destination node via L intermediate relay nodes indexed
by m (m = 1, · · · , L). The relays have successfully decoded
the “message equations” um = ⊕L

l=1 fmlwl (to be made
precise below). The ICF problem seeks to determine at what
rates these message equations may be transmitted over a MAC
channel in order to decode the individual messages at a single
destination. We make this more precise below, where we
note that while definitions such as messages and equations
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follow the definitions in [3], new definitions of message
sections and equation sections are needed to rigorously and
compactly define the particular dependency structure between
the equations, which impacts the description of the capacity
region.

Definition 1 (Messages, Message Rate): Source-l has mes-
sage wl (l = 1, 2, · · · , L) which is uniformly drawn from
F

kl
p

∼= {0, 1, · · · , p − 1}kl , and viewed as a row vector of
elements in Fp of length kl . The messages of the different
sources are independent. Without loss of generality, k1 ≥
k2 ≥ · · · ≥ kL; all messages are zero-padded at the head
to a common length k = maxl kl . For block length n, the
message rate Rl of message wl at source-l is defined as
Rl := 1

n log2(pkl ). Let W denote the L × k matrix whose
l-th row is the message wl . Note that R1 ≥ R2 ≥ · · · ≥ RL.

Definition 2 (Equations Decoded at Relays): Relay m,
m = 1, · · · , L, is assumed to have recovered a linear
combination of the messages (as in the Compute-and-Forward
framework [3]): um = ⊕L

l=1 fmlwl in F
k
p, for some given

fml ∈ Fp. In matrix form,
⎛

⎜
⎝

u1
...

uL

⎞

⎟
⎠ =

⎛

⎜
⎝

f11 f12 · · · f1L
...

...
fL1 fL2 · · · fL L

⎞

⎟
⎠ ·
⎛

⎜
⎝

w1
...

wL

⎞

⎟
⎠,

or

U = F · W,

where fm = ( fm1, · · · , fmL), UT = (
uT

1 , · · · , uT
L

)
, FT =

(
fT
1 , · · · , fT

L

)
, and WT = (wT

1 , · · · , wT
L

)
. We note that each

equation can take on 2nRmax := 2n max{R1,··· ,RL } possible
values.

Remark 3: Unless otherwise noted, we assume that F and
all c by c sub-matrices from its first c columns are of full
rank, c = 1, · · · , L. This assumption is made to simplify
notation and the derivation of the general L-user achievable
rate region considerably. In particular, to recover all messages
at the destination, all we need is for F to be full rank; requiring
specific sub-matrices to be full rank as well is not necessary to
derive an achievable rate region. However, as will be outlined
in examples in subsection V-E, when some of the sub-matrices
are not full rank one must carefully consider which equation
sections (formally defined later) are linearly dependent. This in
turn will affect the number and form of error events and hence
rate region. While the derivation of achievable rate regions for
individual cases is relatively straightforward, we have thus far
not been able to come up with a compact, non-enumerative
rate region for general F. The current conditions on F come
from the proof of Lemma 27 in Appendix A, which enumerates
the number of equation sections with different properties and
is used in the error analysis.

Definition 4 (Memoryless MAC Channel): The last hop of
the network is a memoryless multiple access channel (MAC)
defined by the conditional probability mass functions
p(y|x1, · · · , xL) which are identical at each channel use and
relate the channel inputs Xn

1 , Xn
2 , · · · , Xn

L in alphabets X
n
m

(m = 1, 2, · · · , L) and the channel output Y n in alphabet
Y

n seen at the destination node. For the memoryless additive

white Gaussian noise (AWGN) channel, all input and output
alphabets are the real line, and this input/output relationship,
over n channel uses, may be expressed as

Y n =
L∑

m=1

Xn
m + Zn, (1)

where Zn is i.i.d. Gaussian noise, Zn ∼ N (0n×1, In×n),
subject to power constraints E

[‖Xn
m‖2
] ≤ n Pm.

Definition 5 (Encoding at Relays): Each relay is equipped
with an encoder, εm : F

k
p → X

n
m, that maps the decoded equa-

tion um, a length-k vector, to a length-n codeword, i.e, Xn
m =

εm(um) ∈ X
n
m. For the Gaussian noise channel the encoders

are further subject to power constraints E
[‖Xn

m‖2
] ≤ n Pm.

Definition 6 (Decoding and Probability of Error): The des-
tination wishes to recover the messages in W. The decoder
D1 at the destination node estimates the set of equations
transmitted by the relays from the received signal, i.e.,
{û1, · · · , ûL} = D1(Y n). We say that the equation set
{u1, · · · , uL} are decoded with average probability of error
ε if Pr

[⋃L
m=1

{
ûm 
= um

}]
< ε.

Definition 7 (Achievable, ICF Achievable Rate Region):
A rate tuple (R1, · · · , RL) is achievable if for any ε > 0 and
n large enough, there exist a sequence of encoders ε1, · · · , εL

and a decoder D1 such that the probability of error is bounded
by ε. An ICF achievable rate region RI C F (R1, · · · , RL) is a
set of achievable rate tuples for the ICF channel model.

Definition 8 (ICF Capacity Region): The capacity region
for the ICF problem C I C F (R1, · · · , RL) is the closure of the
set of all achievable rate tuples.

Remark 9: Let the computation rate region
RCF(R1, · · · , RL) defined in [3] capture the constraints
on message rates imposed by the communication from
source nodes to the last layer of relays. Then the
intersection of RCF(R1, · · · , RL) and the ICF rate region
RI C F (R1, · · · , RL) yields an achievable rate region for a
larger network in which there is a single destination node
desiring multiple messages. For succinctness, we omit the
superscript I C F in most of the following as we will only be
interested in the ICF problem (rather than this intersection
with CF rates).

We now break up the messages and equations into sections,
which will allow us to succinctly describe the dependency
structure between the equations at different nodes.

Definition 10 (Message Sections, Matrix of Message
Sections): Message wl ∈ F

kl
p is, after zero-padding at the head,

a length-k row vector and may be partitioned into L segments
wl,c (the cth message section of message wl ), c = 1, · · · , L
(from head to tail) of lengths sc and rates ρc where

sc := kc − kc+1,

ρc := 1

n
log2 psc = Rc − Rc+1, (2)

with kL+1 = 0 and RL+1 = 0. Notice that
∑L

c=1 sc = k and
∑L

c=1 ρc = Rmax.
The matrix of the c-th message section is a matrix of

dimension L × sc, denoted by W̃∗c. The l-th row of matrix
W̃∗c is the c-th message section of message wl , i.e., wl,c.
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Fig. 2. Two-user ICF problem with Gaussian-MAC channel. Power
constraints P1, P2, P3, P4, respectively.

Fig. 3. Two-user ICF message/equation structure. Grey indicates that
equation sections u1,1 and u2,1 are fully correlated, while different solid
colors indicate that two equation sections u1,2 and u2,2 are independent.
All message sections wi, j are mutually independent; i, j = 1, 2.

Define the upper triangular matrix

W̃L×L

:= [W̃∗1, W̃∗2, · · · , W̃∗L ]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1,1 w1,2 · · · w1,c−1 w1,c · · · w1,L−1 w1,L

0 w2,2 · · · w2,c−1 w2,c · · · w2,L−1 w2,L
...

...
0 0 · · · 0 wl,c · · · wl,L−1 wl,L
...

...
0 0 · · · 0 0 · · · 0 wL ,L

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3)
Definition 11 (Equation Sections, Matrix of Equation

Sections): Similarly, um,c denotes the c-th section of equa-
tion um, i.e., um,c := fm · W̃∗c. The matrix of c-th equa-
tion section Ũ∗c has um,c as its m-th row, i.e. ŨT∗c :=
(uT

1,c, uT
2,c, · · · , uT

L ,c). We have

ŨL×L := [Ũ∗1, Ũ∗2, · · · , Ũ∗L] = F · [W̃∗1, W̃∗2, · · · , W̃∗L ] .
Definition 12 (Section Rates): We denote as ρc the rate of

section wl,c or um,c. Recall that ρc := 1
n log2 psc = Rc − Rc+1

with sc := kc − kc+1, kL+1 = 0 and RL+1 = 0.
Remark 13: The notation tilde ˜ is adopted for depicting the

segmented representation of message and equation matrices.
Notation W̃L×L and WL×k both refer to the same underlying
message matrix and only differ in the indexing of its columns.
Similar notation is used for ŨL×L and UL×k .

III. TWO-USER CASE

Before demonstrating the general L-use result, we consider
the L = 2 user case with message/equation structure shown
in Fig. 3. Recall that the matrix F is assumed to be non-
singular and the first column should not have zeros, i.e.,
f11, f21 
= 0. In Fig. 2 the first hop corresponds to the CF
hop, and in the Gaussian case, at each channel use, Y3 =
g13X1 + g23X2 + Z3 and Y4 = g14 X1 + g24 X2 + Z4.

In subsection III-A, we briefly walk through three achiev-
ability schemes to show how dependency patterns may be

created by the presence of interference at the relays, and
how these may be exploited by different schemes in the
ICF hop. In subsection III-B, we numerically evaluate these
three achievable rate regions for the Gaussian-MAC channel.
An illustrative example of how CF and ICF rate regions may
be combined – an interesting problem in itself but not the
focus here – is provided in subsection III-B.2. The takeaways
are that 1) linear equations of messages create dependencies at
the relays that may be exploited, and 2) in combining CF and
ICF in a larger network, interference is not necessarily harmful
and allows for the creation of such dependencies.

A. Three Achievable Rate Regions for the Two-User
Discrete Memoryless ICF Channel

1) Scheme 1 (A Non-Coherent Scheme Without Cardinality
Bounding): Ignoring the dependencies between the two equa-
tions and communicating the two equation indices (of rates
Rmax = max{R1, R2} each) to the destination as if they were
independent messages yields the rate region:

RNaive(R1, R2)

=
{
(R1, R2) :
Rmax ≤ min{I (X1; Y |X2), I (X2; Y |X1)}
Rmax + Rmax ≤ I (X1, X2; Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)
}
. (4)

This region may be improved upon by properly accounting for
the correlations between the two equations.

2) Scheme 2 (A Non-Coherent Scheme With Cardinality
Bounding): Assuming R1 ≥ R2, each equation may take
on R1 values. However, as U = F · W and F is full rank,
(u1, u2) and (w1, w2) are in one-to-one correspondence, and
there are only R1 + R2 ≤ 2R1 possibilities. Hence, sending
the two equation indices independently is redundant whenever
R1 
= R2.

To exploit this, note that when one equation is fixed,
the other may not take on all possible values in F

k1
p ; this

observation led to the “cardinality based approach” of [1],
which resulted in the rate region:

RCB(R1, R2)

=
{
(R1, R2) :
Rmin ≤ min{I (X1; Y |X2), I (X2; Y |X1)}
R1 + R2 ≤ I (X1, X2; Y )

for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)
}
. (5)

The region RCB(R1, R2) improves over RNaive(R1, R2) as
the error events are more carefully bounded (i.e. if one
equation is correct, this limits the number of choices of the
other equation). Inspection of RCB(R1, R2) reveals that the
codewords are still independently generated which does not
exploit the common messages present in the problem, and is
generally not capacity achieving.

3) Scheme 3 (A Capacity-Achieving Coherent Coding
Scheme With Cardinality Bounding): The relays, which have
u1 and u2, actually share a common message – the message
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section w1,1 of the rate ρ1 message w1, in addition to each
having a private, independent message of rate ρ2 (u1,2 =
f11w1,2 + f12w2,2 or u2,2 = f21w1,2 + f22w2,2). We may
map the two-user ICF problem into the Slepian-Wolf MAC
problem [9] (which in turn may be seen as Special case d) of
joint-source-channel coding over a MAC as studied in [14])
of a two-user MAC with a common message and two private
messages. This idea is first expressed in [1], but was not fully
explored, and yields the region:

RICF(R1, R2)

=
{
(R1, R2) :
Rmin ≤ min

{
I (X1; Y |X2, Q), I (X2; Y |X1, Q),

1

2
I (X1, X2; Y |Q)

}

R1 + R2 ≤ I (X1, X2; Y )

for p(q, x1, x2, y) = p(q)p(x1|q)p(x2|q)p(y|x1, x2)
}
.

(6)

The cardinality of the alphabet of Q may be bounded as
||Q|| ≤ min

{||X1|| · ||X2|| + 2, ||Y|| + 3
}
.

Remark 14: Any rate pair achieved by Scheme 2 can
be achieved by the capacity-achieving Scheme 3 by setting
Q = ∅. Comparing these two regions, the left hand sides
of the inequalities are identical, but the right hand sides
have increased due to the possible correlation of the code-
words created through Q, i.e. I (X1, X2; Y ) maximized over
{p(q)p(x1|q)p(x2|q)p(y|x1, x2)} is generally larger than the
maximum evaluated over {p(x1)p(x2)p(y|x1, x2)}.

B. Numerical Comparison

Consider the AWGN channel model in Fig. 2 with g13 =
g23 = g24 = 1, g14 = −1 in the first hop, and symmetrize
the powers as Ps = P1 = P2. Note that one can easily obtain
regions for general gi j and power constraints, but that this is
not the focus of this work.

1) Numerical Comparison of Three Two-User ICF Only
Rate Regions: We now numerically evaluate the three achiev-
able rate regions of Schemes 1, 2, and 3 for the ICF hop
only of an additive Gaussian noise channel as shown in
Fig. 2, where we recall that all noises are i.i.d. unit variance
Gaussians, i.e. Zn

i ∼ N (0n×1, In×n), i = 3, 4, 5. Scheme 1
and 2 lead to the regions RG

Naive(R1, R2) and RG
CB(R1, R2),

which correspond to those in (4) and (5) for Gaussian inputs:

RG
Naive(R1, R2)

=
{
(R1, R2) : Rmax ≤ min{C(P3), C(P4),

1

2
· C(P3+ P4)}

}
,

(7)

RG
CB(R1, R2)

=
{

(R1, R2) : Rmin ≤ min{C(P3), C(P4)}
R1 + R2 ≤ C(P3 + P4)

}

. (8)

Scheme 3 has been shown to be exhausted by
jointly Gaussian inputs [10], yielding the region⋃

b1,b2∈[0,1] RG
ICF(R1, R2 | b1, b2), where for each pair of

Fig. 4. Numerical evaluation for two-user Gaussian-MAC ICF problem.
In (a) P3 = P4 = 20, and in (b) P3 = 4, P4 = 36. Only the R1 ≥ R2
scenario is plotted.

constants b1, b2 ∈ [0, 1] we define

RG
ICF(R1, R2 | b1, b2)

=
{
(R1, R2) : Rmin ≤ min

{
C((1 − b1)P3), C((1 − b2)P4),

1

2
C((1 − b1)P3 + (1 − b2)P4)

}

R1 + R2 ≤ C(P3 + P4 + 2
√

b1b2

√
P3 P4)

}
. (9)

Fig. 4(a) demonstrates the relative rate regions of the three
schemes for equal relay power P3 = P4 = 20, while
Fig. 4(b) demonstrates the regions for asymmetric powers
P3 = 4, P4 = 36. From the figure, we see how Scheme 3
improves upon Scheme 2 (coherent gains), that in turn
improves upon Scheme 1 (proper accounting of dependencies
in error events). Coherent gains are most useful for unequal
R1 and R2; when R1 = R2, all regions degrade to the same
line segment depicted using thick black dots. This is intuitive:
at equal rates there are no common messages and the two
linear equations known to the relays are independent and no
dependencies may be extracted or exploited. One may also
observe that when the powers at the relays (nodes 3,4) are
asymmetric but sum to the same value, the gains of Scheme
2 over Scheme 1 increase while the gains of Scheme 3 over
Scheme 2 decrease. The region of Scheme 1 decreases as the
powers become more asymmetric as the regular MAC channel
region is constrained by the minimum of the powers at the
relays. The region of Scheme 3 also decreases with increasing
asymmetry in powers: the coherent gain manifests itself in the
sum-rate as an additional term

√
P3 P4. For fixed sum P3 + P4

this is maximized when they are equal.
2) An Example: Combining CF and ICF in a Network:

We now illustrate how ICF may be combined with the CF
rate region to provide an overall achievable rate region in an
AWGN relay network.
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Fig. 5. An example: combining CF and ICF in a network. Powers at the
source nodes are Ps = P1 = P2 = 30; Powers at the relay nodes are P3 = 4,
P4 = 36; I.id noises are with variance N = 1. In (a), the union of the two
orderings R1 ≥ R2 and R2 ≥ R1 (each convex) is plotted rather than their
convex hull, as elaborated on in Remark 19. (a) also contains the first CF hop
explained in equation (10). In (b), we show the convex hull of the intersection
of each scheme with the CF rate region. We use the convention: thin dotted
lines for the first hop, thin solid lines for the second hop, thick solid lines
for the rate regions for the whole network and thick dotted lines to depict the
line R2 = R1.

In the first hop, or the CF stage, since the channel gain to
receiver 3 is Y3 = X1 + X2 + Z3 and that to receiver 4 is
Y4 = X1 − X2 + Z4, the relay nodes 3 and 4 may decode
equations u1 = w1 ⊕ w2 and u2 = w1 � w2 (which intuitively
match the channel gains) using the CF framework at rates [3].
Next, in the ICF stage, destination node 5 recovers (w1, w2)
from (u1, u2) at rates:

First hop:

{
R1 ≤ 1

2 log
( 1

2 + Ps
)

R2 ≤ 1
2 log

( 1
2 + Ps

)
,

Second hop: region (9). (10)

To obtain an achievable rate region for the entire network,
first intersect the CF and ICF rate regions in (10) and then
take the convex hull of the resulting regions. As we can
see in Fig. 5(b), the achievable rate region for the whole
network when using CF + ICF Scheme 3, improves upon
Scheme 2, that in turns improves upon Scheme 1. Note that
when looking at only the ICF rate region, at equal rates
Scheme 3 does not outperform the other schemes. However,
when combined with the CF region in a larger network, using
CF + ICF (scheme 3) outperforms the other schemes. This
is because source nodes 1,2 may transmit at unequal rates

(which maximizes the benefits of Scheme 3’s coherent gains
in the ICF phase), and then use time sharing between this and
the reverse unequal rates to achieve the larger rate region.

3) Comparison With the Scheme of Decode and Forward
and Full Cooperation (DF+FCo): One alternative approach
for the two-hop network is to have both relays in the first hop
decode and forward (DF) the two messages w1 and w2. This
allows them to fully cooperate (FCo) in the second hop. This
leads to the following achievable rate regions, which again
must be intersected and then convex-hulled:

First hop:

⎧
⎪⎨

⎪⎩

R1 ≤ 1
2 log (1 + Ps)

R2 ≤ 1
2 log (1 + Ps)

R1 + R2 ≤ 1
2 log (1 + 2Ps)

Second hop: R1 + R2 ≤ 1

2
log
(

1 + P3 + P4 + 2
√

P3 P4

)
.

(11)

As we can see from the expressions in equation (10)
and (11), the extra sum rate constraint, which is due to
treating the first hop as two MAC channels in the DF stage,
could potentially3 render DF+FCo inferior to CF+ICF. This is
confirmed by the simulations shown in Fig. 6. One misleading
thought is that the superiority of CF+ICF comes solely from
the CF stage and that ICF is immaterial here. To clarify the
role of ICF scheme, we also plot the overall network rate
region by adopting CF and the naive ICF (ICF Scheme 1) in
green in Fig. 6, where we see that ignoring the correlations
between the equations (ICF Scheme 1) could reduce the gains
significantly. Thus, a proper ICF scheme is needed for the
overall superior performance of the CF+ICF scheme. We also
note that in some extreme scenarios, as shown in Fig. 6(b),
the gain of CF+ICF over DF+FCo can be substantial.

Remark 15: We do not claim that CF+ICF generally leads
to larger rates than DF+FCo. For example, when the powers
at the source nodes are abundant while those at the relay nodes
are scarce, the overall rate region will be dominated by the
rate constraints of the second hop. In this scenario, CF+ICF
and DF+FCo will have exactly the same performance. Also,
our simulations assume that the channel coefficients are
integers (with absolute value 1), which is well suited to the
Compute-and-Forward scheme. When the channel coefficients
are not as assumed here, one needs to carefully choose the
equation to decode, which is outside of the scope of this paper.

IV. THREE-USER CASE

We now move to the three-user ICF problem to build
additional intuition. Recall the following assumptions placed
on coefficient matrix F: (1) full rank; (2) any 2 by 2 submatrix
from its first two columns is non-singular; and (3) all entries
in its first column are non-zero.

As shown in Fig. 7, recall that wl,c denotes a message
section of length sc := kc − kc+1 (for k4 := 0) which cor-
responds to the c-th segment of message wl for c ∈ {1, 2, 3}.
Let W̃∗c be the matrix of dimension 3 × sc whose l-th row

3This is true when the powers at the relay nodes are not too much smaller
than those at the source nodes; otherwise, the second hop rate constraints will
dominate.
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Fig. 6. Examples of CF+ICF outperforming DF+FCo.

Fig. 7. Three user ICF message/equation structure. The grey color indicates
that these equation sections (u∗,1) are fully correlated; shading indicates that
these three equation sections (u∗,2) are pairwise independent, while different
solid colors indicate that these three equation sections (u∗,3) are mutually
independent. All message sections wi, j are mutually independent.

is wl,c. Following the notation of Section II:
[
Ũ∗1 Ũ∗2 Ũ∗3

] =(
F
) · [W̃∗1 W̃∗2 W̃∗3

]
, or, breaking this into message sections

and equation sections, as shown in Fig. 7.
It can be checked that:

(I) Ũ∗1, or u1,1, u2,1, u3,1 are completely correlated, and
may be used to reconstruct w1,1, a common message
known to all relays.

(II) u1,2, u2,2, u3,2 are pairwise independent and have the
property that the third is a deterministic function of the
other two. These three are not mutually independent.

(III) u1,3, u2,3, u3,3 are mutually independent.

In moving to three users one interesting new aspect arises:
in addition to extracting a common message and two inde-
pendent messages from the equations as in the two-user
case, in the three-user case we also extract three pairwise
independent messages. One may wonder if/how this kind
of dependency may be exploited. We show that for the
Gaussian MAC channel model, no coherent power gains may

be obtained from such pairwise independent correlation. This
is at least partially due to the linearity and second moment
constraints of the AWGN channel where Gaussians maximize
entropy, and the second moment of a linear sum of random
variables depends only on the pairwise correlation between
its elements. We conjecture that, for fixed source/message
dependencies, coherent encoding is possible or valuable only
when these dependencies are not destroyed by the channel.

Remark 16: Our problem cannot be mapped into the frame-
work in [12], which considered an extension of the two-
user Slepian-Wolf MAC to an L-user MAC in which each
transmitter has access to an arbitrary subset of messages
from a set of independent messages. In [12], the users either
have common message(s) or completely independent ones,
but do not have the pairwise (but not mutual) independence
property seen here. We are not aware of any other related
problems which explicitly capture the pairwise independent
structure, but do note that the generality of Cover’s problem
formulation for the MAC with arbitrarily correlated sources
[14] can capture the special dependence structure seen here.
However, while [14] finds a multi-letter expression for the
capacity region for sending arbitrarily correlated sources
(S1, S2, S3) ∼ ∏n

i=1 p(s1i , s2i , s3i ) over a MAC channel,
a computable expression is currently unknown. We will next
show a simple achievability scheme for our specific problem,
which turns out to be the explicitly computable capacity region
in the Gaussian case.

Theorem 17 (Memoryless Three-User ICF Achievability):
Assume that F and all c by c submatrices from its first
c columns are of full rank, c = 1, · · · , L. The messages
(w1, w2, w3) at rates (R1 ≥ R2 ≥ R3) may be recovered
from (u1, u2, u3) sent over a MAC if the rates lie in

RI N :=
⋃

p(q)p(x1|q)p(x2|q)p(x3|q)

R (12)

for ‖Q‖ ≤ min{‖X1‖ · ‖X2‖ · ‖X3‖+ 3, ‖Y‖+ 4}, where R is
the set of (R1, R2, R3) with (R1 ≥ R2 ≥ R3) :

R1 + R2 + R3 ≤ I (X1, X2, X3; Y ) (13a)

2R2 + R3 ≤ I (X1, X2, X3; Y |Q) (13b)

R2 + R3 ≤ min{I (X1, X2; Y |X3, Q), (13c)

I (X1, X3; Y |X2, Q), (13d)

I (X2, X3; Y |X1, Q)} (13e)

R3 ≤ min{I (X1; Y |X2, X3, Q), (13f)

I (X2; Y |X1, X3, Q), (13g)

I (X3; Y |X1, X2, Q)}. (13h)
Remark 18: To understand the form, consider for

example (13b). This results from the error event that all
message sections except the common message (w1,1 or
Ũ∗1) are incorrect. The rate of these incorrect message
sections is 2(R2 − R3) + 3(R3) = 2R2 + R3. Similarly, (13e)
corresponds to when the common message portion and one
of the codewords is correct and thus the rates of the incorrect
message portions is 1(R2 − R3) + 2(R3) = R2 + R3. Finally,
(13h) corresponds to when the common message and two
entire codewords are correct: only the independent message
section of rate R3 is wrong.
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An alternative interpretation is the following: (13a) corre-
sponds to the overall sum rate constraint and (13b) corresponds
to the sum constraint apart from the cooperative or common
message of rate R1 − R2 (see Fig. 7). Any single link cannot
help the destination distinguish between more than 2nR1 pos-
sibilities for the equations (or messages), because knowing
one u, say u1, can at most resolve 2nR1 uncertainties. Hence,
the other two links must help the destination to distinguish
between at least 2n(R2+R3) values so that overall, it may
distinguish between the 2n(R1+R2+R3) possible equation or
message values. This explains (13e). Analogously, any two
links cannot help the destination distinguish between more
than 2n(R1+R2) values; the third link distinguishes between
the remaining 2nR3 choices. For the Gaussian channel, the
above achievable rate region is the capacity region, given in
Theorem 21 for general L.

Remark 19: The above theorem holds for R1 ≥ R2 ≥ R3;
other relative orderings may be obtained similarly. We do
not claim the convex hull of the rate regions for different
orderings to be achievable as the relative values of R1, R2, R3
are fixed as part of the ICF problem setting. When deriving
an achievable rate region for a larger network, one takes the
convex hull after intersecting the CF and ICF rate regions.

V. MAIN RESULT: L-USER ICF ACHIEVABLE

RATE REGION

We now present the main technical contributions:
1) an achievable rate region for the general L-user ICF
problem of extracting L independent messages from linear
equations of these messages over a multiple access channel,
and 2) the capacity region for the L-user Gaussian ICF
channel. Both regions are enlarged with respect to a MAC
with independent messages as the relays extract and exploit a
special form of dependency from the linear equations they
possess. The extraction of a common message allows for
coherent gains, while knowing some equations limits the
values other equations may take on and hence reduces the
number of error events.

The main theorem is stated in terms of message rates Rl ,
while its proof in the Appendix VI-A is argued via section
rates ρc (Definition 12, Section II). The use of section rates
not only facilitates the error analysis but also helps to reveal
the effect of dependency patterns among the equations at the
relays. There is a one-to-one mapping between ρ1, · · · , ρL

and R1, · · · , RL given by ρc = Rc − Rc+1, RL+1 = 0.

A. An ICF Achievable Rate Region for
the Memoryless ICF Channel

Our main achievability result for the L-user ICF channel
model follows.

Theorem 20 (Achievable Rate Region for Memoryless ICF
Channels): Assume that F and all c by c sub-matrices
from its first c columns are of full rank, c = 1, · · · , L.
The messages (w1, · · · , wL) may be recovered from the
equations u1, · · · , uL over the memoryless MAC channel

p(y|x1, · · · , xL) if:

L∑

l=1

Rl ≤ I (X1, · · · , X L ; Y ) (14a)

2R2 +
L∑

l=3

Rl ≤ I (X1, · · · , X L ; Y |Q) (14b)

L∑

l=ν+1

Rl ≤ I (X AC ; Y |X A, Q) for ν = 1, 2, · · · , L − 1

(14c)

for all A ⊂ {1, 2, · · · , L}, ‖A‖ = ν, taken over p(q)· p(x1|q)·
· · · · p(xL|q) · p(y|x1, · · · , xL).

First, it may be verified that the two-user region in (6) and
the three-user achievability scheme in Theorem 17 may be
obtained as special cases of this theorem by selecting L = 2
and L = 3 respectively. Note that there are 2L inequalities in
total in (14), compared to the 2L − 1 in a classical MAC.

We may interpret (14c) as follows. Take for example L = 5,
ν = 2, A = {2, 3} and AC = {1, 4, 5}. Then (14c) works out
to

(0)R1 + (0)R2 + (1)R3 + (1)R4 + (1)R5

≤ I (X1, X4, X5; Y |X2, X3, Q).

In this case, the correctly decoded codewords Xn
2 and

Xn
3 can at most help the destination distinguish between

2n(R1+R2) possible values of the messages w1, · · · , w5. Hence,
the remaining codewords must help distinguish at least
2n(R3+R4+R5) of the remaining message tuples, and these may
be communicated at a rate up to I (X1, X4, X5; Y |X2, X3, Q)
if Xn

2 and Xn
3 are correct (and hence also the common message

encoded into Q is correct). Alternatively, from a linear algebra
perspective, given the correct estimation of codewords Xn

2 and
Xn

3 , i.e., u2 and u3, we may completely remove variables w1
and w2 from the set of remaining equations, i.e., u1, u4, u5.
Thus, we have a new equation set U′ = F · W′, which
relates (u1, u4, u5) to (w3, w4, w5), with at most 2n(R3+R4+R5)

different solutions.
The proof is provided in Appendix VI-A. The achievabil-

ity scheme generates a common codebook for the common
message w1,1 (or equivalently equation section matrix Ũ∗1)
and conditionally independent (conditioned on this common
part) codebooks at each transmitter for the remaining equation
sections. We index everything by the equation sections and use
a joint typicality decoder to estimate these directly.

B. The ICF Capacity Region for the Linear
Gaussian-MAC Model

We now turn our attention to AWGN channels. In moving
towards capacity, the difficulty lies not in deriving rate bounds
which match our general achievable rate region but rather
in showing that restriction to input distributions of the form
p(q)p(x1|q) · · · p(xL |q) and Gaussian is without loss of gen-
erality. In general, given the message equations, it may appear
that all relay node inputs could be arbitrarily correlated and
hence outer bounds would need to be evaluated over all joint
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p(x1, x2, · · · , xL). However, for the AWGN channel we show
that the form of the equations dictates a particular dependency
structure. This structure, for Gaussian channels, results in an
achievable outer bound exhausted by Gaussian inputs.

Theorem 21 (The ICF Capacity Region for Linear
Gaussian MAC): Assume that F and all c by c submatrices
from its first c columns are of full rank, c = 1, · · · , L. One
can fully recover messages w1, · · · , wL from the equations
u1, · · · , uL transmitted by the relays via a linear Gaussian
MAC channel in (1) if and only if the message rates Rl satisfy:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑L
l=1 Rl ≤ 1

2 log2

(
1 +∑L

j=0 d2
j

)

2R2 +∑L
l=3 Rl ≤ 1

2 log2

(
1 +∑L

j=1 d2
j

)

∑L
l=ν+1 Rl ≤ 1

2 log2

(
1 +∑ j∈AC d2

j

)
(15)

for ν = 1, · · · , L − 1, RL+1 := 0, and all A such that ‖A‖ =
ν, A ⊂ {1, 2, · · · , L}, with some {d0, · · · , dL} such that d0 =√

b1 + √
b2 + · · · + √

bL , d j = √Pj − b j , and 0 ≤ b j ≤ Pj ,
for j = 1, · · · , L.

Proof: Achievability: Achievability follows directly from
Theorem 20 by selecting input distributions p(q), and every
p(xm |q) to be Gaussian as follows:

Let Q, Q1, Q2, · · · , QL ∼ N (0, 1), and all independent,
be used to generate i.i.d. length n sequences Qn , Qn

1, · · · , Qn
L .

Relay m sends Gaussian codewords:

Xn
m(um) = √

bm Qn(um,1) +√Pm − bm Qn
m(um,2, · · · , um,L),

0 ≤ bm ≤ Pm .

Then, at each channel use,

Y = X1 + · · · + X L + Z

= √
b1 Q +√P1 − b1 Q1 + · · · +√bL Q

+√PL − bL QL + Z

:= d0 Q + d1 Q1 + · · · + dL QL + Z

where d0 = √
b1 + · · · + √

bL and dm = √
Pm − bm ,

m = 1, 2, · · · , L as in the Theorem statement. Evaluating the
bounds of Theorem 20, we obtain the achievable rate region
specified by inequalities (15).

Converse: The converse uses Lemmas 22, 23 and 24 to
upper bound the capacity region as follows

C Lemma 22⊆ Rout
Lemma 23⊆

⋃
R′ Lemma 24⊆

⋃
R′′.

We first state the lemmas, explain the intuition and show how
they are used to establish the converse. We defer the proofs
of Lemmas 22 and 23 to the following subsections, while the
proof of Lemma 24 is inline.

First, Lemma 22 provides an outer bound Rout valid for any
memoryless channel. Define

P := {p(q, x1, · · · , xL) : Xm → Q → Xm′ ,

∀m 
= m′, m, m′ ∈ {1, 2, · · · , L}} (16)

Lemma 22: C ⊆ Rout, where Rout is defined as

Rout :=
⋃

p(q,x1,··· ,xL )∈P
R(Q, X1, · · · , X L), (17)

where R(Q, X1, · · · , X L) denotes the set of rate tuples
(R1, · · · , RL) that satisfy inequalities (14).

Lemma 23 further loosens the outer bound Rout in
Lemma 22 for the Gaussian-MAC model Y = X1 + · · · +
X L + Z and shows Rout ⊆ ⋃R′. The essence of its proof
in Section V-D is to note that for Gaussian channels subject
to power constraints, only second moment constraints are of
interest and the variance of a linear sum of random variables
does not depend on correlations of order higher than 2.

Lemma 23: For the Gaussian-MAC model, Y = X1 +
· · · + X L + Z, for any given p(q, x1, · · · , xL) ∈ P , region
R(Q, X1, · · · , X L) can be outer bounded by region R′, where
R′ consists of the rate tuples:
⎧
⎪⎨

⎪⎩

∑L
l=1 Rl ≤ C(

∑L
m=1 E[X2

m] +∑m 
=m′ E[Xm Xm′ ])
2R2 +∑L

l=3 Rl ≤ C(
∑L

m=1 var[Xm |Q])
∑L

l=ν+1(l − ν)(Rl − Rl+1) ≤ C(
∑

m∈AC var[Xm |Q])
(18)

for ν = 1, 2, · · · , L − 1, RL+1 := 0, and all possible A
such that A ⊂ {1, 2, · · · , L} and ‖A‖ = ν.

We outer bound the outer bound R′ one more time in
Lemma 24. This lemma is based on the power constraints
and the Markov chains Xm → Q → Xm′ , ∀m 
=
m′, m, m′ ∈ {1, 2, · · · , L}. To show Lemma 24, note that
it follows from [10, Lemma B.3] that E[Xm Xm′ ] ≤
√

E[X2
m] − var(Xm |Q)

√
E[X2

m′ ] − var(Xm′ |Q). This,

together with tm = E[X2
m ]−var(Xm |Q)

E[X2
m ] ∈ [0, 1], m = 1, · · · , L

immediately lead to the following Lemma.
Lemma 24: The region R′ ⊆ R′′, where R′′ consists of the

rate tuples that satisfy
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑L
l=1 Rl ≤ C(

∑L
m=1 E[X2

m]
+ ∑

m 
=m′
√

tmtm′
√

E[X2
m]E[X2

m′ ])
2R2 +∑L

l=3 Rl ≤ C(
∑L

m=1(1 − tm)E[X2
m])

∑L
l=ν+1 Rl ≤ C(

∑
m∈AC (1 − tm)E[X2

m ])

(19)

for ν = 1, 2, · · · , L − 1, and all possible A such that A ⊂
{1, 2, · · · , L} and ‖A‖ = ν.

Combining Lemma 22, Lemma 23 and Lemma 24, we have

C ⊆ Rout

⊆
⋃

p(q,x1,··· ,xL )∈P
R′|Y=X1+···+X L+Z , p(q,x1,··· ,xL )∈P

⊆
⋃

t1,t2,··· ,tL∈[0,1]
R′′|t1,··· ,tL

where the last region may be verified to be that stated in
Theorem 21 with b j replaced by t j Pj – i.e. may be achieved
by jointly Gaussian inputs which are conditionally independent
given Gaussian p(q).

C. Proof of Lemma 22

Proof: We have the Markov chain W → U →
(X1, · · · , X L ) → Y → Û. Recall that Ũ∗c stands for the
cth column of the equation matrix ŨL×L , which is equivalent



6962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 12, DECEMBER 2016

to UL×k , and that ρc := Rc − Rc+1:

n(

L∑

l=1

Rl) = n
L∑

c=1

cρc

(a1)= H (U)
(b)≤ I (U; Y n) + nεn

≤
n∑

i=1

I (U; Yi ) + nεn

(c)=
n∑

i=1

I (U, X1i , · · · , X Li ; Yi ) + nεn

(c)=
n∑

i=1

I (X1i , · · · , X Li ; Yi ) + nεn

(e)≤ nI (X1, · · · , X L ; Y ) + nεn (20)

n(2R2 +
L∑

l=3

Rl)

= n
L∑

c=2

cρc

(a2)= H ([Ũ∗2, Ũ∗3, · · · , Ũ∗L ]) (a3)= H (U|Ũ∗1)

= I (U; Y n |Ũ∗1) + H (U|Y n, Ũ∗1)

(b)≤ I (U; Y n |Ũ∗1) + nεn

≤
n∑

i=1

I (U; Yi |Ũ∗1) + nεn

(c)=
n∑

i=1

I (U, X1i , · · · , X Li ; Yi |Ũ∗1) + nεn

(c)=
n∑

i=1

I (X1i , · · · , X Li ; Yi |Ũ∗1) + nεn

(d)=
n∑

i=1

I (X1i , · · · , X Li ; Yi |Qi )

+ nεn (Qi := Ũ∗1)

(e)≤ nI (X1, · · · , X L ; Y |Q) + nεn (21)

n(

L∑

l=ν+1

Rl) = n(

L∑

l=ν+1

(l − ν)(Rl − Rl+1))

= n
L∑

c=ν+1

(c − ν)ρc

(a4)= H (U|uA)
(a5)= H (uAC |Ũ∗1, uA)

= I (uAC ; Y n|Ũ∗1, uA) + H (uAC |Y n, Ũ∗1, uA)
(b)≤ I (uAC ; Y n|Ũ∗1, uA) + nεn

≤
n∑

i=1

I (uAC ; Yi |Ũ∗1, uA) + nεn

(c)=
n∑

i=1

I (uAC , X AC i ; Yi |U,1, uA, X Ai ) + nεn

(c)=
n∑

i=1

I (X AC i ; Yi |Ũ∗1, X Ai ) + nεn

(d)=
n∑

i=1

I (X AC i ; Yi |Qi , X Ai )

+ nεn (Qi := Ũ∗1)
(e)≤ nI (X AC ; Y |Q, X A) + nεn (22)

The equalities in (a) all follow by definitions and the linear
algebraic arguments in Lemma 27 in the Appendix. Equal-
ities (a4), (a5) follow from H (U|uA) = H (uA, uAC |uA) =
H (uAC |uA) = H (uAC |Ũ∗1, uA). This is where we use that
F and all c by c sub-matrices from its first c columns are of
full rank – if not the relationships between rates and entropies
would change. Inequalities (b) follow from Fano’s Inequality,
where εn → 0 as n → ∞. Steps (c) follow from the
encoding functions, the Markov chain at the start of this proof,
and the memoryless channel properties. In steps (d), we set
Qi := Ũ∗1. In steps (e), by further time-sharing arguments and
Jensen’s inequality we obtain the form in (14) as n → ∞.

Notice that since the um are conditionally pairwise indepen-
dent given Ũ∗1 and since Xn

m is a function of um , then Xn
m

(and hence also Xm ) are conditionally pairwise independent
given Q.

D. Proof of Lemma 23

Proof: The key is to first apply the Max-Entropy therorem
conditioned on Q = q . The proof of I (X AC ; Y |X A, Q) ≤
C
(∑

m∈AC var[Xm |Q]) is shown as an example.

I (X AC ; Y |X A, Q)

= EQ[I (X AC ; Y |X A, Q = q)]
(a)= EQ[h(

∑

m∈AC

Xm + Z |Q = q) − h(Z)]

(b)≤ EQ

[
1

2
log

(
var(
∑

m∈AC Xm + Z |Q = q)

var(Z)

)]

(c)= EQ

⎡

⎣1

2
log

⎛

⎝1 +
∑

m∈AC

var(Xm |Q = q)

⎞

⎠

⎤

⎦

(d)≤ 1

2
log

⎛

⎝1 +
∑

m∈AC

var(Xm |Q)

⎞

⎠, (23)

where (a) follows by definition of Y and the linearity of the
AWGN channel model, (b) follows by the fact that Gaus-
sians maximize entropy subject to second moment constraints
(c) is the critical step and follows from 1) the linearity of
the AWGN channel model, 2) the variance of a linear sum
of random variables is defined by the pairwise relationships
between these random variables, and does not depend on any
higher order correlations such as for example E[X1 X2 X3|Q =
q], and 3) the fact that Xi ’s are conditionally independent
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conditioned on Q. Since this is the crucial step, note that

var(
∑

m∈AC

Xm + Z |Q = q)

=
∑

m∈AC

var(Xm |Q = q)

+ 2
∑

i, j∈AC ,i 
= j

cov(Xi , X j |Q = q) + var(Z)

=
∑

m∈AC

var(Xm |Q = q)+var(Z),

where ‘cov’ denotes the covariance between two random
variables. Note that since Xi , X j are conditionally independent
given Q = q , cov(Xi , X j |Q = q) = 0. Step (d) follows from
Jensen’s inequality.

E. On the Assumptions Placed on F

As commented in Remark 3, the assumption that F and all
c by c sub-matrices from its first c columns, c = 1, 2, · · · , L,
are of full rank is made for the succinctness of presentation.
Without the requirements on sub-matrices, one could further
exploit the specific dependencies between the equations um

for each specific coefficient matrix F. We provide examples
of how to proceed in this direction for L = 2 and 3 next.
We note that F must always be full rank in order for the ICF
problem to be feasible. However, no further requirements need
to be imposed on sub-matrices to do so.

1) Two-User Example: Recall that we require F to be full
rank and its first column entries f11 and f21 to be non-
zero. However, there are four types of 2 by 2 matrices (upto
scalings on rows) that yield invertible F (feasible) but violate
the assumptions on sub-matrices:

F =
[

0 1
1 1

]

, F =
[

1 1
0 1

]

, F =
[

0 1
1 0

]

, F =
[

1 0
0 1

]

.

Consider

F =
[

0 1
1 1

]

, and hence

{
u1 = 0 · w1 ⊕ 1 · w2

u2 = 1 · w1 ⊕ 1 · w2.

In this case, the two equations u1 and u2 are actually
independent. Although F is still full rank and may be inverted
to recover the original messages W, knowing u1, for example,
can only resolve w2 and the number of possible choices of u2
is 2nR1 . Thus, the cardinality bounding arguments in Scheme
2 in Section III fails. The achievable rate region shrinks to
⎧
⎪⎪⎨

⎪⎪⎩
(R1, R2) :

Rmax ≤ I (X2; Y |X1)
Rmin ≤ I (X1; Y |X2)
R1 + R2 ≤ I (X1, X2; Y )
for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)

⎫
⎪⎪⎬

⎪⎪⎭
.

When F =
[

1 0
0 1

]

, following similar arguments, one can check

that the region (5) should be modified to
⎧
⎪⎪⎨

⎪⎪⎩
(R1, R2) :

Rmin ≤ I (X2; Y |X1)
Rmax ≤ I (X1; Y |X2)
R1 + R2 ≤ I (X1, X2; Y )
for p(x1, x2, y) = p(x1)p(x2)p(y|x1, x2)

⎫
⎪⎪⎬

⎪⎪⎭
.

We omit the other cases for brevity. This is an example of how,
in contrast to [2], we do not require all square sub-matrices of
F to be full rank. Nevertheless, the format of the rate region
varies.

2) Three-User Example: Recall that we require F to be
full rank and further assume that (1) its first column entries
f11, f21 and f31 are all non-zero; (2) any 2 by 2 submatrix
from its first two columns is nonsingular. There are many (but
finite) realizations of F such that it satisfies the feasibility
constraint (full rank) but violates the assumptions on sub-
matrices. We consider one example to show that the derivation
of achievable rate region for each individual case is a relatively
straightforward extension of the work presented in Appendix
VI-A, but the format of corresponding rate region differs from
case to case. Let

F =
⎡

⎣
1 1 1
1 1 3
1 2 3

⎤

⎦ and hence

⎧
⎪⎨

⎪⎩

u1 = 1 · w1 ⊕ 1 · w2 ⊕ 1 · w3

u2 = 1 · w1 ⊕ 1 · w2 ⊕ 3 · w3

u3 = 1 · w1 ⊕ 2 · w2 ⊕ 3 · w3.

It may be checked that:

1) coefficient matrix F is invertible but sub-matrix

[
1 1
1 1

]

is singular4;
2) equation sections u1,1, u2,1 and u3,1 share the same

information;
3) equation sections u1,2 and u2,2 are exactly the same

instead of being (pairwise) independent;
4) equation sections u1,3, u2,3 and u3,3 are mutually inde-

pendent.

We now ask whether the derived achievable rate region in
the Appendix VI-A for the discrete memoryless MAC still
holds in this case. The analyses of error events related to
E0, E1, E2,0 remain valid while the analysis of for example
E2,A for the set A = {1, 2} must be altered. In particular, when
A = {1, 2}, Lemma 27 would yield ||U2,A|| ≤ 2nR3 rather than
what it should be, which is ||U2,A|| ≤ 2nR2 . When all 2 by 2
submatrices from the first two columns are nonsingular, given
two equation values, there will be no uncertainty about the
second message sections, i.e. w1,2 and w2,2 (note that w3,2

is null.) But because of the singularity of sub-matrix

[
1 1
1 1

]

,

knowing u1 and u2 does not fully resolve the second message
sections but leaves one degree of freedom. Note that there
is always one degree of freedom among the third message
sections, so we have ||U2,A|| = 2nρ2 · 2nρ3 = 2nR2 instead of
2nρ3 = 2nR3 . In summary, the achievable rate region for this
particular choice of F would lead to the same region as in (13)
except for the third term in inequality (13h) which becomes
the new R2 ≤ I (X3; Y |X1, X2, Q).

Remark 25: Note that if two rows are exchanged in
matrix F, say the 2nd and 3rd rows, then inequality R3 ≤
I (X2; Y |X1, X3, Q) in region (13) will be replaced by R2 ≤
I (X2; Y |X1, X3, Q). Thus, we note that the assumption that
all c × c sub-matrices of the first c columns of F be

4Note that is submatrix

[
1 3
1 3

]

is also singular but it does not violate our

sub-matrix assumption.
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non-singular is not necessary for our coding scheme, but
makes a succinct and consistent presentation of rate regions
possible.

While achievable rate regions could be naturally extended
using the above techniques, we note that for the Gaussian
model, the converse as currently written would not naturally
follow. The Markov inequalities (pairwise independent condi-
tioned on the common message) no longer naturally follow and
the current argument that mutually independent (conditioned
on Q) Gaussians maximize the outer bound would fail.

F. On the Generalization of Our Result

The ICF problem and particular message structure is moti-
vated by relay networks in which CF is used at relay nodes.
An abstract generalization of our capacity result holds for the
following channel model.

1) Abstract Gaussian ICF Model: Consider again an L-user
Gaussian channel model as in (1). Consider a set of 1 + 2 +
3+· · ·+ L independent messages and a set of L × L functions
satisfying:

1) One message W1,1 is of rate ρ1, two messages
W1,2, W2,2 of rate ρ2, three messages W1,3, W2,3, W3,3
of rate ρ3, · · · , L messages W1,L , · · · , WL ,L of rate ρL .

2) All users know message W1,1 (or a one-to-one function
Ti,1 thereof).

3) Each user i = 1, 2, · · · , L, for each l = 2, 3, · · · , L
knows a function say Ti,l of the messages W1,l , · · · , Wl,l

such that given any l of L functions Ti,l , i =
1, 2, · · · , L, it is possible to reconstruct the original l
messages.

4) For l = 2, 3, · · · , L, any two Ti,l for different i are
independent.

Constraints 2) and 3) allow us to relate message rates to
the entropy (or conditional entropy) of some sets of equations,
needed in Lemma 22 in Subsection V-C. Furthermore, since
all messages are independent, together with constraint 4) in
particular, the set of Markov chains Xm → Q → Xm′ , ∀m 
=
m′, m, m′ ∈ {1, 2, · · · , L}, presented in Lemma 22 are
ensured. Thus, Lemma 23 and Lemma 24 may be derived,
and the converse for the Gaussian channel follows.

The remainder of the necessary definitions follow by exten-
sion of those in Section II. Then the next Corollary is easy to
obtain from the proof of Theorem 21.

Corollary 26: The capacity region of Theorem 21 is
the capacity region for the Abstract Gaussian ICF model
described above, with the convention that ρc = Rc − Rc+1
and RL+1 = 0.

VI. CONCLUSION

We consider an L-user multiple access channel where trans-
mitter m has access to the linear equation um = ⊕L

l=1 fmlwl

of independent messages wl ∈ F
kl
p with fml ∈ Fp , and the

destination wishes to recover all L messages. The depen-
dency patterns among these given equations are explored
and exploited to enlarge the achievable rate region relative
to sending these equations independently as in a classical
MAC channel. In the discrete memoryless MAC channel

model, a tighter achievable rate region than [1] is obtained
by adopting a coherent encoding scheme which exploits the
fact that given equations at unequal message rates, common
messages are in fact shared by the transmitters. In the Gaussian
MAC channel, the general L-user capacity region is derived.
All derived results assume invertibility constraints on the
coefficient matrix of the decoded message equations, which
is discussed. The outer bound relies heavily on the the lin-
earity and second moment constraints of the AWGN channel,
in addition to careful accounting of the dependency structure
between the equations. In essence, only pairwise dependency
between equations is of concern in Gaussian channels. This
ICF capacity region may be used as a building block for
the “last hop” in relay networks where CF is employed at
relay nodes, besides being of independent interest. As such,
capacity is also obtained for a generalized abstraction of our
model. Whether the achievable rate region presented for a
general, non-Gaussian memoryless channel is capacity remains
an interesting open question; we are currently not able to
find an example of a channel where this type of message
dependency would enlarge the achievable rate region.

APPENDIX

Recall that notation W̃L×L and WL×k both refer to the same
underlying message matrix and only differ in the indexing of
its columns; similarly for the notation ŨL×L and UL×k .

A. Proof of Theorem 20

Proof: Fix p(q) · p(x1|q) · · · · · p(xL |q) · p(y|x1, · · · , xL).
Codebook generation:

1) Generate 2nρ1 sequences qn i.i.d. ∼ p(q), indexed by
u1,1 or equivalently by um,1, m = 2, · · · , L.

2) At each relay m, m = 1, · · · , L, for each
sequence qn, generate 2n(ρ2+···+ρL ) sequences
Xn

m(um) := Xn
m(um,2, · · · , um,L |um,1) i.i.d. according

to Pr(Xn
m(um)) =

n∏

t=1
p(xmt |qt(um,1)), where xmt

denotes the t-th position in the row vector/sequence xn
m ,

and qt denotes the t-th position in the sequence qn .

Notice that we index codebooks by the message equations;
this differs somewhat from more standard codebooks indexed
by a message ∈ {1, 2, · · · , 2nR} for coding rate R. Codebooks
Qn(u1,1) and Xn

m(um), m = 1, · · · , L are revealed to the
relays and destination. Codebook Qn can be equivalently
indexed by u1,1, u2,1, · · · , uL ,1 as needed or even Ũ∗1, i.e.
this common portion is available to all relays.

Encoder: Relay m sends signal Xn
m(um).

Decoder: The destination node wants to decode the under-
lying set of messages, i.e. WL×k , and can do so by decoding
and inverting the corresponding set of message equations, i.e.
UL×k or ŨL×L , because the coefficient matrix F and all c by
c submatrices from its first c columns are of full rank.

For a given coefficient matrix F,5 each set of messages
{w1, w2, · · · wL} uniquely define a set of message equations

5Recall that in the ICF problem the coefficient matrix F is revealed to the
destination node before the communication starts.
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{u1, u2, · · · uL}. When the message rates R1, · · · , RL or equiv-
alently the equation rates ρ1, · · · , ρL are fixed, there are only
2n·(R1+···+RL ) possible sets of message equations. Let U be the
collection of sets of message equations that satisfy U = F ·W.

The decoder enumerates all possible sets of message
equations in U6 and looks for a unique equation set
(u1, · · · , uL) such that (Y n, Qn(Ũ∗1), Xn

1 (u1), · · · , Xn
L(uL))

are ε-jointly typical according to p(q, x1, · · · , xL, y), or lie
in A(n)

ε (Q, X1, · · · , X L , Y ). If none, or more than one set
of equation sections are jointly typical with the given Y n , the

decoder sets the estimated ˆ̃UL×L to null and declares an error.
Error analysis: For a given codebook C, we are interested

in the averaged probability of error P̄n
e (C) when this particular

codebook is adopted:

P̄(n)
e (C)

:= 1

2n·(R1+···+RL )

∑

{u1,u2,···uL }∈U

× Pr
( ˆ̃UL×L 
= ŨL×L | ŨL×L is sent, codebook = C

)

(24)

where ŨL×L is the segmented message equation matrix rep-
resentation of the transmitted set of equations.

Similar to Shannon’s random coding argument in the point-
to-point channel, we are not directly computing the averaged
probability of error for a particular codebook. We compute the
expected probability of error P(n)

e with respect to all possible
codebooks generated through the mechanism described earlier:

P(n)
e :=

∑

codebook C ∈
{codebooks generated through the codebook

generation mechanism

}

× Pr [codebook = C] · P̄(n)
e (C). (25)

If P(n)
e can be made arbitrarily small then there must exist

at least one codebook whose averaged probability of error
P̄(n)

e (C) goes to zero when the number of channel uses goes
to infinity.

Combining equations (24) and (25) and noting the symmet-
ric role of all possible equation sets in the communication
scheme, it follows that

P(n)
e = 1

2n·(R1+···+RL )

∑

{u1,u2,···uL }∈U

× Pr
( ˆ̃UL×L 
= ŨL×L | ŨL×L is sent

)

= Pr
( ˆ̃UL×L 
= Ũ0

L×L | Ũ0
L×L is sent

)
, (26)

where without loss of generality, given the symmetry, a par-
ticular set of message equations

Ũ0
L×L = [u0

1, u0
2, · · · u0

L ]T := [Ũ0∗1, Ũ0∗2, · · · , Ũ0∗L ]
= F · [W̃0∗1, W̃0∗2, · · · , W̃0∗L ] (27)

may be assumed to have been sent. Let Xn
m(u0

m) :=
(xm,1(u0

m), xm,2(u0
m), · · · , xm,n(u0

m)) be the codeword

6We note that in conference versions of this work [1], [2] the error analysis
assumed the decoder produced elements in U without enforcing this condition
in the decoder; this is now fixed in the current decoder.

sent by relay m (m = 1, 2, · · · L) according to
our encoder for this particular set of equations
Ũ0

L×L . The receiver receives output Y n randomly
generated according to the channel p(yn|xn

1 , · · · xn
L) =∏n

i=1 p(yi |x1,i(u0
1), x2,i (u0

2), · · · xL ,i(u0
L)).

The decoder outputs either a null value or a valid estimate
ŨL×L , which may or may not be the true one sent. Define the
random event E

(
ŨL×L

)
indexed by a message equation set

as:

E
(

ŨL×L

)
:=
{(

Qn(Ũ∗1), Xn
1 (u1), · · · , Xn

L(uL), Y n
)

∈ A(n)
ε | Ũ0

L×L sent
}
, where ŨL×L ∈ U .

Further define the event

Ec
(

ŨL×L

)
:=
{(

Qn(Ũ∗1), Xn
1 (u1), · · · , Xn

L(uL), Y n
)

/∈ A(n)
ε | Ũ0

L×L sent
}
, where ŨL×L ∈ U .

Notice that both definitions include conditioning on the mes-
sage equations Ũ0

L×L being sent. A precise account of the
possible erroneous scenarios that are disjoint would be as
follows, where we remind the reader that here the E and Ec

notation is meant to denote an event rather than an expectation:

1) None of the events E
(

ŨL×L

)
happen, i.e.

[
∩ŨL×L∈U Ec(ŨL×L)

]
.

2) More than one event of the type E
(

ŨL×L

)
happens.

3) Only one event happens, but it is not E
(

Ũ0
L×L

)
. That

is
[

E(ŨL×L) ∩
(⋂

Ũ
′
L×L 
=ŨL×L

Ec(Ũ
′
L×L)

)]
, for any

ŨL×L 
= Ũ0
L×L .

However, to simplify, it can be checked that the
union of these three scenarios is a subset of the event[

Ec(Ũ0
L×L) ∪

(⋃
ŨL×L 
=Ũ0

L×L
E(ŨL×L)

)]
, i.e. either the true

event does not happen or one or more of the false events
happens. Thus, equation (26) can be upper bounded by:

P(n)
e = Pr

( ˆ̃UL×L 
= Ũ0
L×L | Ũ0

L×L is sent
)

≤ Pr

⎛

⎜
⎝Ec(Ũ0

L×L) ∪
⎡

⎢
⎣

⋃

ŨL×L 
=Ũ0
L×L

E(ŨL×L)

⎤

⎥
⎦

⎞

⎟
⎠

≤ Pr
(

Ec(Ũ0
L×L)

)
+ Pr

⎛

⎜
⎝

⋃

ŨL×L 
=Ũ0
L×L

E(ŨL×L)

⎞

⎟
⎠ (28)

where the second inequality comes from the union bound.
The first term in (28) corresponds to the probability that the

true transmitted equation set does not pass the decoding test,
which vanishes by properties of the jointly typical set A(n)

ε

using standard arguments.
The core of the achievability proof lies in properly bounding

the second term: it has to be carried out in the ICF context,
i.e. taking into account the given pairwise independent but not
mutually independent structure of the equations known at the
different transmitters, which is more involved than in a MAC
channel with independent messages.
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We now further subdivide the set {ŨL×L : ŨL×L 
= Ũ0
L×L}

into orthogonal parts: U1, U2,0 and U2,A as indicated below.
Such subdivisions allow for a simple bounding of their cardi-
nalities and error event probabilities, as shown in Lemma 27
and Lemma 28.

Define

U1 := {ŨL×L ∈ U : Ũ∗1 
= Ũ0∗1}
= {ŨL×L ∈ U : wrong 1st equation section

(common equation section)} (29)

U2,0 := {ŨL×L ∈ U : Ũ∗1 = Ũ0∗1, ui 
= u0
i ,

∀i ∈ {1, 2, · · · L}}
= {ŨL×L ∈ U : correct 1st equation section,

but wrong overall equations for all relays} (30)

For some A ⊂ {1, 2, · · · L}, 0 < ||A|| < L,

U2,A := {ŨL×L ∈ U : Ũ∗1 = Ũ0∗1, ua = u0
a,∀a ∈ A}

= {ŨL×L ∈ U : correct 1st equation section

and ||A|| right equations, indexed by set A} (31)

Then

{ŨL×L : ŨL×L 
= Ũ0
L×L}

= U1 ∪ U2,0 ∪
⎛

⎝
⋃

A⊂{1,2,···L},0<||A||<L

U2,A

⎞

⎠,

and hence

Pr

⎛

⎜
⎝

⋃

ŨL×L 
=Ũ0
L×L

E(ŨL×L)

⎞

⎟
⎠

≤ Pr

⎛

⎝
⋃

ŨL×L∈U1

E(ŨL×L)

⎞

⎠+ Pr

⎛

⎜
⎝

⋃

ŨL×L∈U2,0

E(ŨL×L)

⎞

⎟
⎠

+
∑

A⊂{1,2,···L},0<||A||<L

Pr

⎛

⎜
⎝

⋃

ŨL×L∈U2,A

E(ŨL×L).

⎞

⎟
⎠ (32)

Further define the following events, for A ⊂
{1, 2, · · · L}, 0 < ||A|| < L,

E0 := E(Ũ0
L×L), Ec

0 = Ec(Ũ0
L×L) (33)

E1 :=
{

ŨL×L ∈ U1 ∩ E(ŨL×L)
}

(34)

E2,0 :=
{

ŨL×L ∈ U2,0 ∩ E(ŨL×L)
}

(35)

E2,A :=
{

ŨL×L ∈ U2,A ∩ E(ŨL×L)
}

. (36)

Then,

P(n)
e ≤ Pr

(Ec
0

)+ ||U1|| · Pr (E1) + ||U2,0|| · Pr
(E2,0

)

+
∑

A⊂{1,2,···L},0<||A||<L

||U2,A|| · Pr
(E2,A

)
(37)

In Lemma 27, we upper bound the cardinalities of sets U1,
U2,0 and U2,A. In Lemma 28, we upper bound the probability

items Pr (E1), Pr
(E2,0

)
and Pr

(E2,A
)
. We prove these in the

next two sections.
Lemma 27 (Cardinality Lemma for Error Events): Assume

the matrix F and all c by c sub-matrices from its first
c columns are of full rank, for every c = 1, 2, · · · L.
The cardinalities of the different sets U1, U2,0, U2,A for
A ⊂ {1, 2, · · · L}, 0 < ||A|| < L may be upper bounded by:

||U1|| ≤ 2n
∑L

c=1 cρc = 2n
∑L

l=1 Rl (38)

||U2,0|| ≤ 2n
∑L

c=2 cρc = 2n(2R2+∑L
l=3 Rl ) (39)

||U2,A|| ≤ 2n(
∑L

c=||A||+1 (c−||A||)ρc) = 2n(
∑L

l=||A||+1 Rl ), (40)

where we recall that ρc = 1
n log2 psc is the rate of equation

section um,c, m ∈ {1, 2, · · · , L}.
Lemma 28 (Probability Bounding Lemma for Error Events):

Pr (E1) ≤ 2−n·(I (X1,··· ,X L ;Y )−ε) (41)

Pr
(E2,0

) ≤ 2−n·(I (X1,··· ,X L ;Y |Q)−ε) (42)

Pr
(E2,A

) ≤ 2−n·(I (X AC ;Y |X A,Q)−ε
)

. (43)
To complete the proof of Theorem 20, note that Pr

(Ec
0

)

vanishes by properties of the jointly typical set A(n)
ε . Combin-

ing Lemma 27 and Lemma 28, substituting ρc = Rc − Rc+1
(RL+1 = 0) and requiring all exponential terms in expression
(37) to have a negative exponent yields Theorem 20.

B. Proof of Lemma 27

Proof: First, recall the relationship ρc = Rc − Rc+1
(RL+1 = 0), which yields the equalities in the Lemma. We
will proceed using the ρc notation.

Next, recall that notation ŨL×L and UL×k both refer to the
same equation matrix and only differ in the indexing of its
columns; similarly for the notation W̃L×L and WL×k .

Finally, recall that messages wl ’s (l = 1, 2, · · · , L) are
independently and uniformly drawn from F

kl
p

∼= {0, 1, · · · , p−
1}kl , and should be viewed as a row vectors of elements in
Fp of length kl . They are zero-padded at the head to be of
equal length k. Thus, all columns are independent and so are
the message sections. When bounding the cardinalities of sets
U1, U2,0, U2,A, we will handle one equation section at a time,
say for U∗c with c = 1, · · · , L.

The proof of this lemma hinges on linear algebra and care-
fully keeping track of the dependencies between the different
equations. I.e., when some of the L equations are known to
be correct, it affects the number of possible values for the
remaining equations.

Take the c-th equation sections for example, where c ∈
{1, · · · L}. We have

Ũ∗c = F · W̃∗c = F ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1,c
...

wc,c

0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= F[1,··· ,L]×[1,··· ,c] ·
⎛

⎜
⎝

w1,c
...

wc,c

⎞

⎟
⎠
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Note that sub-matrix F[1,··· ,L]×[1,··· ,c] contains the first c
columns of matrix F. Also note that by the problem
assumption (in Theorem 20), any square sub-matrix of
F[1,··· ,L]×[1,··· ,c] is guaranteed to be of full rank. This implies
that:

• the number of values the equation sections Ũ∗c may
take on is equal to the cardinality of the corresponding
message sections:

||{Ũ∗c}|| = ||{[wT
1,c, · · · , wT

c,c]T }||
= 2nρc · 2nρc · · · 2nρc = 2n(cρc); (44)

• given any c rows of Ũ∗c, we can solve for
{w1,c, · · · , wc,c}, i.e., W̃∗c, and all the remaining L − c
rows of Ũ∗c as well. Thus, when c or more rows of Ũ∗c

are known, ||{Ũ∗c}|| = 1, i.e. all rows are fixed;
• when ν rows where ν < c, are known, (c − ν)

rows of Ũ∗c remain free to take any values. Thus,
||{Ũ∗c}|| ≤ 2n(c−ν)ρc .

Proof of ||U1|| ≤ 2n
∑L

c=1 cρc = 2n
∑L

l=1 Rl : All elements in
this set have Ũ∗1 
= Ũ0∗1 (common message is incorrect, hence
one possibility must be removed from this column’s possible
values) but the remaining sections Ũ∗c for c = 2, · · · L may
take on any value. Hence, by (44) and the independence of
the different sections we see that

||U1|| = ||{Ũ∗1}|| · ||{Ũ∗2}|| · · · ||{Ũ∗L}|| (45)

≤ (2nρ1 − 1) · 2n2ρ2 · · · 2nLρL (46)

≤ 2n
∑L

c=1 cρc = 2n
∑L

l=1 Rl . (47)

Proof of ||U2,0|| ≤ 2n
∑L

c=2 cρc = 2n(2R2+∑L
l=3 Rl ): All

elements in this set have Ũ∗1 = Ũ0∗1 (common message is
correct, hence this section may take on only one possible
value) but the remaining sections Ũ∗c for c = 2, · · · L may
take on any value except the correct ones. Hence, by (44) we
may upper bound (we do not subtract the correct values as
these do not change the asymptotic rates) this cardinality as
follows

||U2,0|| = ||{Ũ∗1}|| · ||{Ũ∗2}|| · · · ||{Ũ∗L}|| (48)

< 1 · 2n2ρ2 · · · 2nLρL (49)

= 2n
∑L

c=2 cρc = 2n(2R2+∑L
l=3 Rl ). (50)

Proof of ||U2,A|| ≤ 2n(
∑L

c=||A||+1(c−||A||)ρc) = 2n(
∑L

l=||A||+1 Rl ):
All elements in this set have Ũ∗1 = Ũ0∗1 (common message
is correct, hence this column may take on only one possible
value) and ||A|| out of L equations, indexed by the set A, are
also correct. Consider the first ||A|| equation sections, say Ũ∗c

where c = 1, · · · , ||A||. Clearly, there are ||A|| known rows
in each of these Ũ∗c’s. Noting ||A|| ≥ c for such equation
sections, we know that all the remaining rows in each of these
equation sections are known. As shown in Figure 8, the first
||A|| message equation sections are fixed and only have 1
possible value.

Consider the remaining L − ||A|| equation sections,
say Ũ∗c where c = ||A|| + 1, · · · , L. We know that

Fig. 8. Illustration of the different sets of equations U1,U2,0,U2,A for
A ⊂ {1, 2, · · · L}, 0 < |A| < L . The number of possibilities (# possibilities)
below each column indicates an upper bound on the number of different values
this column may take. This is useful for counting the number of elements in
each set, as given in Lemma 27 and used in the probability of error analysis
of Theorem 20.

||{Ũ∗c}|| ≤ 2n(c−||A||)ρc . Thus,

||U2,A|| = ||{Ũ∗1}|| × ||{Ũ∗2}|| × · · · × ||{Ũ∗L}|| (51)

≤ 1 × · · · × 1 × 2n(||A||+1−||A||)ρ||A||+1 (52)

× 2n(||A||+2−||A||)ρ||A||+2 × · · · ×2n(L−||A||)ρL (53)

= 2n(
∑L

c=||A||+1(c−||A||)ρc) = 2n(
∑L

l=||A||+1 Rl ). (54)

C. Proof of Lemma 28

Proof of Lemma 9: These probability items can be upper
bounded depending on the relationship between the observed
sequence Y n and the sequence tuple (qn, xn

1 , · · · , xn
L).

1) Consider Pr (E1). ŨL×L here has the property that U∗1 
=
U0∗1 (common message is incorrect). Note that U∗1
serves as the index for sequence qn(U∗1), on which
codewords Xn

m(um) are conditioned. Thus the incorrect-
ness of first equation section implies that the observed
yn is independent of the true (qn, xn

1 , · · · , xn
L). Thus,

Pr (E1) ≤ 2−n·(I (Q,X1,··· ,X L ;Y )−ε)

(a)≤ 2−n·(I (X1,··· ,X L ;Y )−ε).

where (a) follows by the Markov chain Q →
(X1, · · · , X L ) → Y .

2) Consider Pr
(E2,0

)
. ŨL×L here has the property that

U∗1 = U0∗1 (common equation section is correct) but
the remaining equation sections are all wrong. This
correct first equation section serves as the index for
sequence qn(U∗1), on which codewords Xn

m(um) are
conditioned. Thus the correctness of the first section,
and incorrectness of the overall equations um which



6968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 12, DECEMBER 2016

determine codewords Xn
m(um) (for all m = 1, 2, · · · L)

imply that the observed Y n is independent of the true
(xn

1 , · · · , xn
L) given the correct qn . Thus,

Pr
(E2,0

) ≤ 2−n·(I (X1,··· ,X L ;Y |Q)−ε).

3) Consider Pr
(E2,A

)
for a given subset A. Set A here is

one such that A ⊂ {1, 2, · · · L}, 0 < ||A|| < L. ŨL×L

here has the property that: 1) its first equation section
which determines qn(U∗1) is correct; 2) for a ∈ A, ua

are correct, thus Y n is indeed dependent on Xn
a (ua) for

a ∈ A; 3) the remaining ua′ for a′ ∈ AC are incorrect,
meaning the observed sequence Y n is independent of
Xn

a′(ua′) for a′ ∈ AC . Thus,

Pr
(E2,A

) ≤ 2−n·(I (X AC ;Y |X A,Q)−ε
)

.
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