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Abstract—In two-way channels nodes are both sources and
destinations of messages, allowing them to “adapt” or “interact”
in the sense that their next channel input may be a function of
their past received signals. This “adaptation” and how to best
exploit it lies at the heart of two-way communication problems,
rendering them particularly complex and challenging. It would be
useful to know when adaptation is not beneficial from a capacity
perspective. Certain examples exist: it is known that for the point-
to-point two-way modulo 2 adder channel, and the point-to-point
Gaussian two-way channel, adaptation does not increase capacity.
In this work we show that the same is true for certain classes
of deterministic multi-user two-way channels. In particular, we
consider a class of multi-user two-way modulo 2 adder channels,
which include the two-way modulo 2 adder MAC/BC channel,
the two-way modulo 2 adder interference channel, and the two-
way modulo 2 adder Z channel. For all three channel models we
obtain the capacity region, which may be achieved using simple
time-sharing.

I. INTRODUCTION

Two-way communication refers to the exchange of two
messages between two users. What distinguishes two-way
communication from one-way communication is that nodes
are both sources and destinations of messages and may both
transmit and receive over the channel. This allows nodes to
adapt their current channel inputs to the past received signals.
Shannon first proposed and studied the point-to-point two-way
channel in 1961 [1], where he provided inner and outer bounds
which are not tight in general. While Shannon’s bounds have
been tightened [2]–[4], capacity of the two-way channel in
general remains open, with the two-way (deterministic) binary
multiplier channel being a notable example of a simple channel
for which capacity remains elusive.

However, capacity is known for several channel models in
which, essentially, the confusion between signals caused by
the two-way nature of the problem, may be resolved by each
receiver. For example, if we consider a two-way deterministic
modulo 2 adder channel (the channel outputs Y = Y1 = Y2

are all equal to the modulo 2 sum of the binary channel inputs,
X1⊕X2), we easily see that the capacity region is one bit per
channel use per user, resulting in two parallel noise-free point-
to-point channels. In essence, here one user’s own signal does
not affect reception of the other user’s signal and both the →
and the← “directions” may simultaneously carry information.
In this case, allowing for adaptation at the transmitters does not
effect the capacity. In a similar fashion, it was shown that the

capacity of a Gaussian two-way point-to-point channel is equal
to two parallel Gaussian channels, which may be achieved
without the use of adaptation at the nodes [5].

Contributions. In this paper, we are interested in deter-
mining whether similar statements can be made in multi-
user channels rather than point-to-point channels. To do so,
we consider several multi-user deterministic modulo 2 adder
channels – channels models which are of interest due to their
simplicity and also bear relationship to the DOF of the multi-
user channels [6]. All inputs and outputs are binary, there is
no noise, and the signals are added modulo 2. Specifically,
we consider the two-way deterministic binary adder Multiple
Access / Broadcast channel (MAC/BC with 4 messages), the
two-way deterministic modulo 2 adder interference channel
(4 messages), and the two-way deterministic modulo 2 adder
Z channel (6 messages). We ask whether adaptation may
increase the capacity regions of these deterministic multi-
user two-way modulo 2 adder channels. We will show that
it does not, and that capacity may actually be achieved by
simple time-sharing schemes between nodes transmitting in
the same “direction”, while nodes in opposite directions may
simultaneously transmit as in the point-to-point modulo 2
adder and Gaussian channel models. In deriving outer bounds
for these channel models, we use carefully chosen genies and
Markov chain structures.

Related Work. The first of our three channel models
is a deterministic modulo 2 adder MAC/BC channel. An
achievable rate region and an outer bound of a similar multi-
user (multiple-access and broadcast with a common message)
half-duplex two-way channel is derived in [7], [8] respectively.
The former [7] considers a Gaussian channel model, while
the latter [8] is derived for the general discrete memoryless
channel. This differs from our model in that we assume full-
duplex operation, have 2 broadcast messages rather than a
common one, and consider a modulo 2 adder channel model.
The second of our three channel models is a two-way modulo
2 adder interference channel. The capacity region of the one-
way modulo 2 adder interference channel is introduced in
[9]; the capacity region of more general class of deterministic
interference channels is known [10]. The two-way interference
channel is first considered in [11], where an outer bound region
for the general discrete memoryless model is proposed. The
two-way interference channel (IC) bears some similarities with
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Fig. 1. Three multi-user two-way deterministic modulo 2 adder channel models. Mjk denotes the message from node j to node k.

interference channels with feedback and generalized feedback
[12]–[14]. The third channel model we consider is the two-
way deterministic modulo 2 adder Z channel. The one-way Z
channel was first studied in [15], in which the capacity region
of a special class of degraded Z channels and an outer bound
for general Z channel are obtained. The capacity region of
the one-way deterministic Z channel is found in [16]. As we
see, little work has emerged on multi-user two-way channel
models, and as such we first consider simple modulo 2 adder
channel models. Since the submission of this work, we have
extended our results to the corresponding linear deterministic
channel models that model Gaussian channels at high SNR
[17], where we show that adaptation is useless in the MAC/BC
and Z channels, and partial adaptation (defined in [17]) is
useless for the two-way IC.

Outline of Paper. We define three multi-user two-way
modulo 2 adder channels in Section II and present the capacity
regions of these three channel models in Section III, IV and
V respectively. Section VI concludes the paper.

II. MODELS, DEFINITIONS AND NOTATIONS

We consider three multi-user two-way binary deterministic
adder channels (we drop the “deterministic” from now on)
which are shown in Fig. 1, where we see that all nodes act as
both transmitters (encoders) and receivers (decoders), and let
Mjk denote the message from node j to node k:
• the two-way modulo 2 adder MAC/BC channel: transmitter 1
and 3 send independent messages M12 and M32 to receiver 2,
respectively forming a Multiple Access Channel (MAC) in the
→ direction. Meanwhile, transmitter 2 sends two independent
messages M21 and M23 to receiver 1 and 3, respectively,
forming a Broadcast Channel (BC) in the ← direction.
• the two-way modulo 2 adder interference channel: trans-
mitter 1 and 3 send messages M12 and M34 to receiver 2
and 4, respectively, forming an interference channel in the →
direction. Similarly, transmitter 2 and 4 send messages M21

and M43 to receiver 1 and 3 respectively, forming another
interference channel in the ← direction.
• the two-way modulo 2 adder Z channel: transmitter 1
and 4 send messages M12 and M43 to receiver 2 and 3
respectively. Transmitter 2 and 3 send messages (M21,M23)
and (M32,M34) to receivers 1,3 and 2,4 respectively. We thus

have two Z channels in opposite directions. This channel
model contains interference, multiple-access, broadcast and
two-way features.

The binary channel inputs and outputs of user j ∈
{1, 2, 3, 4} at discrete time i are Xj,i and Yj,i, which lie
in the alphabets Xj ∈ {0, 1} and Yj ∈ {0, 1} respec-
tively. We use “⊕” to denote modulo 2 addition. Let Ai

j =
(Aj,1, Aj,2, ..., Aj,i), for any given time i, and say that a node
employs adaptation if its encoding function which yields the
channel inputs at time i is a function of the previously received
outputs, Xj,i = fj(Mjk, Y

i−1
j ), where fj (j ∈ {1, 2, 3, 4}) are

deterministic functions. If a node behaves in a non-adaptive
fashion then its inputs are functions of its messages only, i.e.
Xj,i = fj(Mjk). The messages Mjk are uniformly distributed
in {1, 2, · · · 2nRjk} for j, k in the appropriate sets depending
on the channel model, where Rjk denotes the rate of message
Mjk. At each time step 0 ≤ i ≤ n, encoder j selects the
next input Xj,i(Mjk, Y

i−1
j ) (which may also be a function of

2 messages in the Z channel). Receiver k uses a decoding
function gk : Yn

k → M̂jk to obtain an estimate M̂jk of
the transmitted message Mjk. The capacity region is the
supremum over all rate tuples which simultaneously drive the
probability that any of the estimated messages is not equal
to the true message, to zero as n → ∞. We now proceed to
define the channel model for each different channel and obtain
its capacity region.

III. THE CAPACITY REGION OF THE TWO-WAY MODULO 2
ADDER MAC/BC

The two-way modulo 2 adder MAC/BC is discrete and
memoryless and at each channel use is described by

Y1 = X1 ⊕X2

Y2 = X1 ⊕X2 ⊕X3

Y3 = X2 ⊕X3.

If all nodes employ adaptation, then at channel use i

X1,i = f1(M12, Y
i−1
1 )

X2,i = f2(M21,M23, Y
i−1
2 )

X3,i = f3(M32, Y
i−1
3 ).

In this case, the capacity region may be stated as follows.
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Fig. 2. The Markov chain used in the outer bound proof of Theorem 1.

Theorem 1: The capacity region of the two-way modulo 2
adder MAC/BC channel is the set of non-negative rate tuples
(R12, R32, R21, R23) such that

R12 +R32 ≤ 1 (1)
R23 +R21 ≤ 1. (2)

Proof: We first prove the converse; achievability may be
argued via time-sharing.
Proof of bound (1): The first bound follows from the sum-
rate outer bound of the multiple-access channel. By Fano’s
inequality,

n(R12 +R32 − ε) ≤ I(M12,M32;Y n
2 )

= H(Y n
2 )−H(Y n

2 |M12,M32)

≤
n∑

i=1

[H(Y2,i|Y i−1
2 )]

≤
n∑

i=1

[H(Y2,i)]

≤ n

where the last inequality follows as Y2,i is a binary random
variable whose entropy is thus bounded by 1.
Proof of bound (2):

n(R21 +R23 − ε)
(a)

≤ I(M21;Y n
1 |M12,M32) + I(M23;Y n

3 |M12,M32,M21)
(b)

≤ H(Y n
1 |M12,M32)−H(Y n

1 |M21,M12,M32)
+H(Y n

3 |M12,M32,M21)
(c)

≤
n∑

i=1

[H(Y1,i)−H(Y1,i|M21,M12,M32, Y
i−1
1 )

+H(Y3,i|M12,M32,M21, Y
i−1
3 )]

(d)
=

n∑
i=1

[H(Y1,i)−H(X1,i ⊕X2,i|M21,M12,M32, Y
i−1
1 , Xi

1)

+H(X2,i ⊕X3,i|M12,M32,M21, Y
i−1
3 , Xi

3)]
(e)

≤
n∑

i=1

[H(Y1,i)

−H(X2,i|M21,M12,M32, Y
i−1
1 , Xi

1, X
i−1
2 , Xi

3, Y
i−1
3 )

+H(X2,i|M21,M12,M32, Y
i−1
1 , Xi

1, X
i−1
2 , Xi

3, Y
i−1
3 )]

=
n∑

i=1

[H(Y1,i)]

≤ n

Time

Transmit

Receive

0 1

Fig. 3. Time-sharing achievability scheme for two-way modulo 2 adder
MAC/BC channel.

where (a) follows from Fano’s inequality, (b) drops a
negative entropy term, (c) uses the chain rule and condi-
tioning reduces entropy. In (d), Xi

1 = f1(M12, Y
i−1
1 ) and

Xi
3 = f3(M32, Y

i−1
3 ). We cancel X1,i and X3,i in the entropy

term in (e) since we know Xi
1 and Xi

3 respectively. In addition,
we introduce genies Xi−1

2 , Y i−1
3 , Xi

3 in the negative entropy
term. For the third entropy term, Xi−1

2 may be obtained
from Y i−1

3 = Xi−1
2 ⊕ Xi−1

3 (bit-wise modulo 2) since we
know Xi−1

3 . We may obtain Y i−1
1 using the Markov chain

illustrated in Fig. 2. Finally, Xi
1 is given by the encoding

function Xi
1 = f1(M12, Y

i−1
1 ) (with slight abuse of notation,

as vectors are denoted here). We again bound H(Y1,i) ≤ 1.
We are able to achieve this outer bound using two time-

sharing random variables without adaptation: α time-shares
between channel inputs X1 and X3 for the MAC channel in the
→ direction, while β time-shares between the messages M21

and M23 (encoded as X2(M21) and X2(M23) respectively) in
the BC in the← direction. Both directions ignore the received
signals and use i.i.d. Bernoulli(1/2) codebooks. For clarity, we
illustrate who transmits when in Figure 3, where we note the
inputs and outputs in order to emphasize that at all times, both
receivers may decode 1 bit per channel use after canceling their
own transmitted codeword.

Remark 2: Without adaptation, the encoding functions
would become

X1,i = f1(M12)
X2,i = f2(M21,M23)
X3,i = f3(M32)

This channel model thus resembles a MAC channel simulta-
neously transmitting with a BC channel with restricted nodes.
In this case, we are still able to achieve the capacity region of
Theorem 1 using time-sharing. As such, we see that allowing
nodes to adapt does not increase the capacity region of this
channel model, and the capacity region is that of a modulo 2
adder MAC and a binary BC channel in parallel.

Remark 3: We notice that capacity is achieved by time-
sharing amongst the nodes/messages transmitting in the same
“direction” (i.e. between nodes 1 and 3, and between messages
M21 and M23) but not between the two directions themselves.
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That is, transmission may take place simultaneously between
the two directions, as is the case in the point-to-point modulo
2 adder and Gaussian channel models, where no time-sharing
is needed between the two transmission directions → and ←.

IV. THE CAPACITY REGION OF THE TWO-WAY MODULO 2
ADDER INTERFERENCE CHANNEL

The two-way modulo 2 adder interference channel is dis-
crete and memoryless and at each channel use is described
by

Y1 = X1 ⊕X2 ⊕X4

Y2 = X1 ⊕X2 ⊕X3

Y3 = X2 ⊕X3 ⊕X4

Y4 = X1 ⊕X3 ⊕X4.

If all nodes employ adaptation, then at channel use i

X1,i = f1(M12, Y
i−1
1 )

X2,i = f2(M21, Y
i−1
2 )

X3,i = f3(M34, Y
i−1
3 )

X4,i = f4(M43, Y
i−1
4 ).

The capacity region of this channel is stated as follow:
Theorem 4: The capacity region of the two-way modulo 2

adder interference channel is the set of non-negative rate tules
(R12, R21, R34, R43) such that

R12 +R34 ≤ 1 (3)
R21 +R43 ≤ 1. (4)

Proof: Clearly we may achieve this region using two
time-sharing random variables; one between nodes 1 and 3,
and a second between nodes 2 and 4. For the converse,

Proof of bound (3):

n(R12 +R34 − ε)
(a)

≤ I(M12;Y
n
2 |M21,M43) + I(M34;Y

n
4 , Y

n
2 |M12,M21,M43)

= I(M12;Y
n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

+ I(M34;Y
n
4 |M21,M12,M43, Y

n
2 )

(b)

≤ I(M12;Y
n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

+H(Y n
4 |M21,M12,M43, Y

n
2 )

(c)
= I(M12;Y

n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

+
nX

i=1

[H(X1,i ⊕X3,i ⊕X4,i|M21,M12,M43, Y
i−1
4 , Xi

4, Y
n
2 , X

n
2 )]

(d)
= I(M12;Y

n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

+
nX

i=1

[H(X1,i ⊕X3,i|M21,M12,M43, Y
i−1
4 , Xi

4, X
n
1 ⊕Xn

3 , X
n
2 )]

= I(M12;Y
n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

(e)

≤
n∑

i−1

[H(Y2,i)−H(Y2,i|Y i−1
2 ,M12,M21,M43)

+H(Y2,i|Y i−1
2 ,M12,M21,M43)]

=
n∑

i=1

[H(Y2,i)]

≤ n

where (a) follows from Fano’s inequality and the introduc-
tion of a genie Y n

2 in the second mutual information term.
We drop a negative entropy term in inequality (b). In (c), we
apply the chain rule on the entropy term and we add Xi

4 and
Xn

2 in the conditioning part since Xi
4 = f4(M43, Y

i−1
4 ) and

Xn
2 = f2(M21, Y

n−1
2 ). In (d), we cancel X4,i in the entropy

term since we know Xi
4. In addition, Xn

1 ⊕ Xn
3 is decoded

from Y n
2 = Xn

1 ⊕Xn
2 ⊕Xn

3 since Xn
2 is known. Thus, the last

entropy term is zero. We apply the chain rule again in step (e)
and drop the conditioning part of the first entropy term and
a negative entropy term. The bound (4) follows by symmetry.

Remark 5: The capacity region of the two-way modulo 2
adder interference channel with full adaptation is the same as
the combination of two one-way modulo 2 adder interference
channels. Capacity is achieved using time sharing and nodes
need not adapt. Thus, adaptation is again useless in this
scenario.

V. THE CAPACITY REGION OF THE TWO-WAY MODULO 2
ADDER Z CHANNEL

The two-way modulo 2 adder Z channel is discrete and
memoryless and at each channel use is described by

Y1 = X1 ⊕X2

Y2 = X1 ⊕X2 ⊕X3

Y3 = X2 ⊕X3 ⊕X4

Y4 = X3 ⊕X4.

If all nodes employ adaptation, then at channel use i

X1,i = f1(M12, Y
i−1
1 )

X2,i = f2(M21,M23, Y
i−1
2 )

X3,i = f3(M32,M34, Y
i−1
3 )

X4,i = f4(M43, Y
i−1
4 ).

The capacity region of this channel is stated as follow:
Theorem 6: The capacity region of the two-way modulo

2 adder Z channel is the set of non-negative rate tuples
(R12, R21, R23, R32, R34, R43) such that

R12 +R32 +R34 ≤ 1 (5)
R21 +R23 +R43 ≤ 1 (6)

Proof: Time-sharing may again be used to achieve this
region. For the converse,
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Fig. 4. The Markov chain used in the outer bound proof of Theorem 6.

Proof of bound (5):

n(R12 +R32 +R34 − ε)
≤ I(M12;Y n

2 |M21,M23,M43)
+ I(M32,M34;Y n

4 , Y
n
2 |M43,M12,M21,M23)

(a)

≤ I(M12;Y n
2 |M21,M23,M43) + I(M32,M34;Y n

2 |M43,M12,

M21,M23) + I(M32,M34;Y n
4 |M43,M12,M21,M23, Y

n
2 )

(b)

≤ H(Y n
2 |M21,M23,M43)−H(Y n

2 |M12,M21,M23,M43)
+H(Y n

2 |M12,M21,M23,M43)
+H(Y n

4 |M43,M12,M21,M23, Y
n
2 )

(c)

≤
n∑

i=1

[H(Y2,i) +H(Y4,i|M12,M21,M23,M43, Y
i−1
4 , Y n

2 )]

(d)
=

n∑
i=1

[H(Y2,i) +H(X3,i ⊕X4,i|M12,M21,M23,M43, Y
i−1
4 ,

Xi
4, X

i−1
3 , Y n

2 , X
n
2 )]

(e)
=

n∑
i=1

[H(Y2,i) +H(X3,i|M12,M21,M23,M43, Y
i−1
4 ,

Xi
4, X

i−1
3 , Xn

1 ⊕Xn
2 ⊕Xn

3 , X
n
2 , X

n
1 )]

=
n∑

i=1

[H(Y2,i)]

≤ n

where (a) follows from the chain rule. We drop two negative
entropy terms in inequality (b) and notice that the second and
the third entropy terms cancel each other. In (c), we apply
the chain rule first, then we drop the conditioning part of the
first entropy term. In (d), we first add Xi

4 in the conditioning
part of the second entropy term since Xi

4 = f4(M43, Y
i−1
4 ).

Note Xi−1
3 is decoded from Y i−1

4 = Xi−1
3 ⊕ Xi−1

4 since
Xi−1

4 is known. Adding Xn
2 follows from the fact Xn

2 =
f2(M21,M23, Y

n−1
2 ). In (e), we cancel X4,i in the second

entropy term since we know Xi
4. In addition, given M12 and

Xn
2 , we may construct Xn

1 as illustrated in Fig. 4. Now, we
may obtain Xn

3 from Y n
2 = Xn

1 ⊕Xn
2 ⊕Xn

3 , so that the second
entropy term in zero. Bound (6) follows by symmetry.

Remark 7: We again notice that since time-sharing achieves
the above region, adaptation does not help. We again see
that the messages in the → and the ← directions may be
simultaneously communicated, but that the messages within
one direction must be time-shared.

VI. CONCLUSION

We obtained the capacity regions of the two-way modulo
2 adder MAC/BC channel, the two-way modulo 2 adder
interference channel and the two-way modulo 2 adder Z
channel, all with adaptation. We showed that adaptation does
not affect the capacity regions in these channels and that
the capacity region of the two-way channel is that of two
parallel one-way channels in the → and ← directions. This
relied heavily on being able to construct inputs and outputs
at various nodes, which is a direct result of the deterministic,
invertible (can undo the modulo 2 sum if know one of the
components), and highly symmetric nature of the channels
considered. We suspect that when one of these components is
missing, adaptation will be of use. To answer this, a number
of questions regarding whether the adaptation helps in two-
way networks are the subject of ongoing work, including: 1)
multi-user two-way modulo 2 adder channels with noise; 2)
the general deterministic two-way channels; and 3) Gaussian
channels.
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