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Abstract—In a K-pair-user two-way Gaussian interference
channel (IC), 2K messages and 2K transmitters/receivers form
a Gaussian K-user IC in the forward direction (K messages)
and another Gaussian K-user IC in the backward direction
(K messages) which operate simultaneously in full-duplex mode.
All nodes are permitted to interact, i.e. adapt current channel
inputs to past received signals. We derive a new sum-rate outer
bound for linear deterministic and Gaussian noise channels
allowing for interaction, but show that for symmetric scenarios
and certain interference regimes (moderately weak and strong),
non-interactive schemes achieve to within a constant gap of
this outer bound. That is, interaction for symmetric channels
in certain interference regimes may only improve the sum-rate
by a constant number of bits per channel use.

I. INTRODUCTION

Shannon first proposed and studied the point-to-point two-
way channel in 1961 [1], but relatively few results on two-way
point-to-point channels, and even fewer on two-way networks,
have emerged in recent years. This may be in part due to the
difficulty which arises when one permits interaction between
nodes, i.e., each node can adapt its channel inputs to their past
received signals. How to best adapt, in order to characterize
the capacity of two-way communications, is a very challenging
question, and the capacity of two-way channels in general
remains open.

However, capacity is known for several point-to-point two-
way channel models such as the two-way modulo 2 binary
adder channel and two-way Gaussian channel [2], as well
as recently studied multi-user two-way channels, for several
specific cases [3]. It appears that capacity is known only for
specific two-way channels in which interaction between nodes
is shown to be useless, i.e., it cannot increase the capacity, and
thus the capacities of these (multi-user) two-way channels are
equivalent to the capacities of two simultaneously operating
one-way channels.

One multi-user two-way channel first studied by the authors
is the two-way interference channel [3]–[6], in which there are
4 independent messages: two-messages to be transmitted over
an interference channel (IC) in the→ direction simultaneously
with two-messages to be transmitted over an in-band IC in the
← direction. All 4 nodes in this network act as both sources
and destinations of messages, which allows for interaction
between the nodes. The capacity of the two-way interference
channel, like the one-way interference channel, is still open,
but is known for certain classes of deterministic channels [3],
[4] and to within a constant gap for the Gaussian channel

in certain parameter regimes and under certain adaptation
constraints [3], [5].

In this work, we first propose and study a natural extension
of the (2-pair-user) two-way IC: the K-pair-user two-way IC
where there are 2K messages and 2K users forming a K-
user IC (K messages) in the forward direction and another
K-user IC in the backward direction (K messages). Again,
all nodes may employ interaction – i.e. signals may be a
function of previously received outputs. Compared to the 2-
pair-user IC, each user in the K-pair-user two-way IC suffers
interference from the K − 1 users on the opposite side, as
well as possibly from the K−1 users on the same side due to
the interaction between users. Thus, received signals may in
general be combinations of all 2K messages. We note that
the self-interference signals can be easily subtracted off at
receivers in this theoretical work since each user knows its
own signal and the considered Gaussian channel is additive.

We derive new outer bounds for the symmetric K-pair-user
two-way linear deterministic and Gaussian ICs. For the linear
deterministic channel model [7], we show the sum-capacity
in the moderately weak and strong interference regimes, and
this corresponds to the sum-capacity when no adaptation
is permitted (i.e. the “W” curve for two one-way K-user
ICs). Achievability follows from the existing non-interactive
scheme for the one-way K-user linear deterministic IC [8].
For the Gaussian model, again for the moderately weak and
strong interference regimes, we show that the symmetric sum-
capacity is to within a constant gap of two non-interactive
outer bounds of two simultaneous one-way K-user Gaussian
ICs, which in turn is to within a constant gap of non-interactive
achievability scheme for most channel gains (i.e. outside an
outage set), as shown in [9]. The technique used for deriving
outer bounds bears semblance to the proof of the outer bound
for the one-way K-user Gaussian IC with feedback [10].
However, due to the additional messages, additional noise and
adaptation in our channel model, the construction of some
terms in the proof is non-trivial and novel.

The one-way K-user interference channel has been previ-
ously studied: in [11], the degrees of freedom were shown to
be K/2; the generalized degrees of freedom was obtained in
[8]; the approximate sum capacity of the symmetric K-User
Gaussian IC was shown in [9]; and the feedback capacity was
studied by [10]. We note that our work differs from prior work
in that we consider an interactive, full-duplex two-way K-pair-
user IC for the first time, and our results show that interaction



Fig. 1. K-pair-user two-way interference channel. Mjk denotes the message
known at node j and desired at node k; M̂jk denotes that k would like to
decode the message Mjk from node j.

again is useless or cannot significantly increase the symmetric
sum-capacity in certain regimes.

II. SYSTEM MODEL

In this section, we describe the K-pair-user two-way in-
terference channel, and in particular, the Gaussian and linear
deterministic channel models.

A. K-pair-user two-way interference channel

We consider a K-pair-user two-way interference channel as
shown in Fig. 1, where there are 2K messages and 2K ter-
minals forming a K-user IC in the → direction (K messages)
and another K-user IC in the ← direction (K messages). All
nodes are able to operate in full-duplex mode, i.e. they can
transmit and receive signals simultaneously.

The channel inputs and outputs of user j ∈ {1, 2, ..., 2K}
at discrete time i are Xj,i and Yj,i that lie in alphabets
Xj and Yj respectively. The messages Mjk of rate Rjk

from transmitter j to receiver k are uniformly distributed
in {1, 2, · · · 2nRjk} for j, k ∈ {1, 2, ..., 2K} and blocklength
n. Let Ai

j = (Aj,1, Aj,2, ..., Aj,i), for any given time i.
A node is said to employ interaction if the channel input
at time i is a function of the previously received outputs,
Xj,i = fj(Mjk, Y

i−1
j ), where fj (j ∈ {1, 2, ..., 2K}) are

deterministic functions. Receiver k uses a decoding function
dk : Yn

k → M̂jk to obtain an estimate M̂jk of the transmitted
message Mjk. The capacity region is the closure of all rate
tuples which simultaneously drive the probability that any of
the estimated messages is not equal to the true message, to
zero as n→∞.

B. Gaussian model

The K-pair-user Gaussian two-way interference channel at
each channel use, is described by (with subscripts “o” for odd

and “e” for even)

Yo =

K∑
m=1

g2m,oX2m + Zo, o = 1, 3, ..., 2K − 1 (1)

Ye =

K∑
m=1

g2m−1,eX2m−1 + Ze, e = 2, 4, ..., 2K. (2)

where gjk, j, k ∈ {1, 2, ..., 2K} is the channel coefficient from
node j to node k, and the network is subject to complex
Gaussian noise Zl ∼ CN (0, 1), l ∈ {1, 2, ..., 2K}. Let P
be the transmit power constraint at each user: E[|Xl|2] ≤
P, l ∈ {1, 2, ..., 2K}, and let P = 1 without loss of generality.
Then define SNRl,l+1 = |gl,l+1|2, SNRl+1,l = |gl+1,1|2, l ∈
{1, 2, ..., 2K}, and INRjk = |gjk|2, for j, k in the appropriate
sets that denote cross links between users. Note that we
have removed the “self-interference” terms such as g11X1 in
the expression of Y1 (for example) since they can be easily
subtracted off due to the additive nature of the channel.

Symmetric capacity. We are interested in the symmetric
capacity when all the SNRs equal a given SNR, and all the
INRs equal a given INR. We consider the per-user rates
Rsym = R12+R34

2 = R21+R43

2 .

C. Linear deterministic model

For the linear deterministic model which models the Gaus-
sian channel at high SNR, the channel inputs and outputs are
binary vectors, and all addition is bit-wise and modulo 2. We
define njk = blog g2jkP c to indicate the number of signal bit
levels from transmitter j to receiver k. Let S denote an N×N
lower shift matrix, where N = max(njk). Now the channel
inputs/outputs relationship can be described as

Yo =

K∑
m=1

SN−n2m,oX2m, o = 1, 3, ..., 2K − 1 (3)

Ye =

K∑
m=1

SN−n2m−1,eX2m−1, e = 2, 4, ..., 2K. (4)

III. OUTER BOUNDS AND CAPACITY/GAP RESULTS

For the symmetric K-pair-user two-way interference chan-
nel with interaction in two “medium” interference regimes
(to be specified in the theorem statements), we derive new
outer bounds and demonstrate a capacity result for the linear
deterministic and a constant gap result for the Gaussian model.

A. Capacity result for the linear deterministic model

We consider the symmetric case in which all direct links
have the same number of signal bit levels p, and all cross
links have the same number of signal bit levels q, and define
α = q/p.

Theorem 1: The symmetric sum-capacity of linear deter-
ministic K-pair-user two-way interference channel with inter-
action when 2/3 < α < 2, α 6= 1 is the rate which satisfies:

Rsym ≤
1

2
(max(p, q) + [p− q]+) (5)



Proof: Achievability follows from the known non-
adaptive scheme as in [8] (used in each direction separately).
For the converse, valid for interactive, two-way channel mod-
els, let MA denote all the messages except M12,M34. Then,

n(R12 +R34)

≤ H(M12) +H(M34)

= H(M12,M34|MA)

≤ H(M12,M34, Y
n
2 , Y

n
4 |MA)

= H(Y n
4 |MA) +H(M34|MA, Y

n
4 )

+H(Y n
2 |M34,MA, Y

n
4 ) +H(M12|M34, Y

n
2 , Y

n
4 ,MA)

≤ H(Y n
4 ) +H(M34|Y n

4 ) +H(Y n
2 |M34,MA, Y

n
4 ) +H(M12|Y n

2 )

≤ n(max(p, q) + 2ε) +H(Y n
2 |M34,MA, Y

n
4 ).

We proceed to bound the remaining entropy term:

H(Y n
2 |M34,MA, Y

n
4 )

≤ H(Y n
2 , Y

n
3 , Y

n
5 , ..., Y

n
2K−1|M34,MA, Y

n
4 )

=
n∑

i=1

[H(Y2,i, Y3,i, Y5,i, ..., Y2K−1,i|Y i−1
2 , Y i−1

3 , Y i−1
5 , ...,

Y i−1
2K−1, Y

n
4 ,M34,MA, X

n
4 , X

i
2, X

i
3, X

i
5, ..., X

i
2K−1)]

(a)
=

n∑
i=1

[H(Y2,i|Y i−1
2 , Y i−1

3 , Y i−1
5 , ..., Y i−1

2K−1, Y
n
4 ,M34,MA,

Xn
4 , X

i
2, X

i
3, X

i
5, ..., X

i
2K−1, X

i
6, X

i
8, ..., X

i
2K)]

≤
n∑

i=1

[H(SN−pX1,i|SN−qX1,i)]

= n[p− q]+

where in (a) we use a Markov chain that given
(M65, Y

n
4 , X

i
3, X

i
5, ..., X

i
2K−1) and the symmetric nature

(channel gains in the cross links between transmitter 1 and
the non-desired receivers are the same) of the model, we
can construct Xi

6. Similarly, Xi
8, ..., X

i
2K are constructed.

Combining everything and considering the symmetric rate,
completes the proof.

Remark 1: We note that in the regime 2/3 < α < 2 (which
contains the “moderately weak and strong interference regimes
in the terminology of [8]), this capacity result is the same
as that of two K-user ICs operating simultaneously in both
directions, i.e. the same as two K-user ICs as in [8].The
technique is standard and similar to the proof in [10], but with
more messages and care to be taken because of the interaction.

Remark 2: For the case of α = 1, the channel gains in
the direct links and cross links are the same. This point has
been shown to be discontinuous in the generalized degrees of
freedom for the one-way K-user IC [8] (the value is 1/K)
because at this point all receivers receive exactly same signals
for the linear deterministic model. However, if one considers
time-varying channels which grow at the same rate but are not
necessarily identical, the value of this point, which is known
as the degrees of freedom, is shown to be K/2 [11], which
is achieved by interference alignment. The same result has
been shown for almost all (excluding a set of measure zero)
constant channels in [12]. For the K-pair-user two-way IC, we

show the degrees of freedom is K in [13] for both time-varying
or constant channels.

B. Constant gap result for Gaussian model

We next derive an outer bound for the Gaussian interactive
two-way K-user IC and show that, for certain “medium inter-
ference” regimes to be specified, this lies to within a constant
gap of the outer bounds for two one-way, non-interactive K-
user Gaussian ICs (for symmetric channels) of [9, Eq. (42)]
which are identical to those of the 2-user IC [14], which in
turn have been shown to lie within a constant gap of again,
non-adaptive inner bounds for all channel gains outside a small
outage set (we leave details of this “small outage set” to [9]).
This means that, in the two regimes considered, “adaptation”
or “interaction” may only provide a bounded gain.

Theorem 2: The symmetric sum-capacity of K-pair-user
Gaussian two-way interference channel with interaction in the
moderately weak interference ( 23 log SNR ≤ log INR ≤ log SNR
or 2

3 ≤ α ≤ 1) and the strong interference (log SNR ≤
log INR ≤ 2 log SNR or 1 ≤ α ≤ 2) regimes is within
log(K)+ K

2 −1 bits to the outer bound of two simultaneously
operating one-way (non-interactive) Gaussian K-user interfer-
ence channels, which in turn may be shown to be within a
constant gap to non-adaptive inner bounds for all channel gains
outside a small outage set, as done in [9].

Proof:
We first derive a new outer bound for our channel model

and then show the gap result. Let Z3,...,2K−1 be the vector
of noises Z3, Z5, ..., Z2K−1. Define Z̄l = Zl − Z4, l =
6, 8, ..., 2K. Let Z̄6,...,2K denote Z̄6, Z̄8, ..., Z̄2K .

n(R12 +R34 − ε)
(a)

≤ I(M34;Y n
4 |MA, Z

n
3,...,2K−1) + I(M12;Y n

2 , Y
n
4 |M34,MA, Z

n
3,...,2K−1)

(b)

≤ I(M34;Y n
4 , Z̄

n
6,...,2K |MA, Z

n
3,...,2K−1)

+ I(M12;Y n
2 , Y

n
4 , Z̄

n
6,...,2K |M34,MA, Z

n
3,...,2K−1)

= H(Y n
4 , Z̄

n
6,...,2K |MA, Z

n
3,...,2K−1)

+H(Y n
2 |Y n

4 , Z̄
n
6,...,2K ,M34,MA, Z

n
3,...,2K−1)

−H(Y n
2 , Y

n
4 , Z̄

n
6,...,2K |M12,M34,MA, Z

n
3,...,2K−1)

where (a) follows as all messages and noises are independent;
(b) by adding the side information Z̄n

6,...,2K . We bound the
three terms above respectively. For the first term:

H(Y n
4 , Z̄

n
6,...,2K |MA, Z

n
3,...,2K−1) ≤ H(Y n

4 ) +H(Z̄n
6,...,2K)

≤ H(g14X
n
1 + g34X

n
3 + ...+ g2K−1,4X

n
2K−1 + Zn

4 ) +H(Z̄n
6,...,2K)

(a)

≤ n log 2πe(1 + SNR + (K − 1)INR + 2(K − 1)
√
SNR× INR

+ (K − 1)(K − 2)INR) + n(K − 2) log(2πe)(2)

where in (a) we have used the fact that Gaussians maxi-
mize entropy subject to power constraints and the symmet-
ric channel model. Due to interaction, the inputs Xl, l ∈
{1, 3, ..., 2K − 1} may be correlated, and so we have upper
bounded this term by assuming all the transmitters have the
same power and they are maximally (fully) correlated.



The second term can be bounded as follows:

H(Y n
2 |Y n

4 , Z̄
n
6,...,2K ,M34,MA, Z

n
3,...,2K−1)

≤ H(Y n
2 , Y

n
3 , Y

n
5 , ..., Y

n
2K−1|Y n

4 , Z̄
n
6,...,2K ,M34,MA, Z

n
3,...,2K−1)

=

n∑
i=1

[H(Y2,i, Y3,i, Y5,i, ..., Y2K−1,i|Y i−1
2 , Y i−1

3 , Y i−1
5 , ..., Y i−1

2K−1,

Y n
4 , Z̄

n
6,...,2K ,M34,MA, X

i
2, X

i
3, X5i, ..., X

i
2K−1, X

n
4 , Z

n
3,...,2K−1)]

(b)
=

n∑
i=1

[H(Y2,i, Y3,i, Y5,i, ..., Y2K−1,i|Y i−1
2 , Y i−1

3 , Y i−1
5 , ..., Y i−1

2K−1,

Y n
4 , Z̄

n
6,...,2K ,M34,MA, X

i
2, X

i
3, X

i
5, ..., X

i
2K−1, X

n
4 , Z

n
3,...,2K−1,

X6,i, X8,i, ..., X2K,i)]

≤
n∑

i=1

[H(g12X1,i + Z2,i|g14X1,i + Z4,i)]

= n log 2πe

(
1 +

SNR

1 + INR

)
where in step (b) we construct X6,i in the conditioning

because (1), g14Xi−1
1 +Zi−1

4 can be decoded from Y n
4 since

Xi
3, X

i
5, ..., X

i
2K−1 are known; (2), Z̄i−1

6 is known so that
g14X

i−1
1 + Zi−1

6 can be constructed; and (3), we consider
symmetric model, i.e. g14 = g16. Therefore g16X

i−1
1 +

Zi−1
6 is known and then we can construct X6,i. Similarly

X8,i, ..., X2K,i can be constructed.
Finally, the negative third term can be lower bounded as:

H(Y n
2 , Y

n
4 , Z̄

n
6,...,2K |M12,M34,MA, Z

n
3,...,2K−1)

≥ H(Y n
2 , Y

n
4 , Z̄

n
6,...,2K |M12,M34,MA, Z

n
3,...,2K−1,

Xn
1 , X

n
3 , X

n
5 , ..., X

n
2K−1) ≥ H(Zn

2 , Z
n
4 , Z̄

n
6,...,2K)

= H(Zn
2 , Z

n
4 , Z

n
6 , ..., Z

n
2K) = nK log 2πe

Combining everything and considering the symmetric rate
yields the following outer bound for the K-pair-user two-way
Gaussian interference channel:
Rsym =

R12 +R34

2

≤ 1

2
log(1 + SNR + (K − 1)2INR

+ 2(K − 1)
√
SNR× INR) +

1

2
log

(
1 +

SNR

1 + INR

)
+
K − 2

2

We show that our outer bound is to within a constant gap
to existing non-adaptive outer bounds for K-user one-way
Gaussian interference channel provided in [9, Eq. (42)].

1) The following non-adaptive bound is for moderately
weak interference regime given by 2

3 log SNR ≤ log INR ≤
log SNR or 2

3 ≤ α ≤ 1:

Rsym1 ≤
1

2
log(1 + SNR) +

1

2
log(1 +

SNR

1 + INR
) (6)

In this case, the gap may be bounded as

Rsym −Rsym1 =
1

2
log

1 + (K − 1)2INR + SNR + 2(K − 1)
√
SNR× INR

1 + SNR

+
K − 2

2

INR<SNR

≤ 1

2
log

(
1 +

(K2 − 1)SNR

1 + SNR

)
+
K − 2

2

≤ 1

2
log(K2) +

K − 2

2
= logK +

K

2
− 1.

2) The following non-adaptive bound is for strong but not
very strong interference regime given by log SNR ≤ log INR ≤
2 log SNR or 1 ≤ α ≤ 2:

Rsym2 ≤
1

2
log(1 + SNR + INR) (7)

In this case, the gap may be bounded as

Rsym −Rsym2 =

1

2
log

1 + (K − 1)2INR + SNR + 2(K − 1)
√
SNR× INR

1 + INR
+
K − 2

2
INR>SNR

≤ 1

2
log

(
1 +

(K2 − 1)INR

1 + INR

)
+
K − 2

2
≤ logK +

K

2
− 1.

IV. CONCLUSION

We introduced the K-pair-user two-way Gaussian inter-
ference channel with interaction, derived new outer bounds,
and demonstrated a capacity result for the linear deterministic
model and a constant gap result for the Gaussian model, both
in two “medium” interference regimes. These results indicate
that, for these regimes and symmetric rates, interaction be-
tween users is useless or may only provide limited capacity
gains, as is the case for one-way K-user ICs with feedback in
these same regimes. Characterizing capacity and gap results
for other interference regimes is an interesting topic for future
work.
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