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Abstract—In multi-user two-way channels nodes are both
sources and destinations of messages. This allows for “adapta-
tion” at or “interaction” between the nodes – the next channel
inputs may be a function of the past received signals at a partic-
ular node. How to best adapt is key to two-way communication
problems, rendering them complex and challenging. However,
examples exist of channels where adaptation is not beneficial from
a capacity perspective; it is known that for the point-to-point
two-way modulo 2 adder and Gaussian channels, adaptation
does not increase capacity. Recently, it was shown that the two-
way modulo-2 additive versions of the multiple-access / broadcast
(MAC/BC respectively, in the two directions), the Z channel and
the interference channel also have capacity regions equal to two
parallel one-way versions of the channels. In this work we show
that the same is true for the linear deterministic multi-user two-
way channels which approximate their Gaussian counterparts at
high SNR, which include the two-way MAC/BC channel, the two-
way Z channel, and the two-way interference channel under some
adaptation constraints. For all three channel models we obtain
the capacity region, which is that of two one-way channels in each
direction, which may be achieved without the use of adaptation.

I. INTRODUCTION

In two-way communication, in which two users exchange
messages over the same shared channel, nodes may be sources
and destinations of messages. This permits them to adapt their
channel inputs to their past received signals (which we loosely
term “interaction” or “adaptation”), as first considered in the
point-to-point two-way channel by Shannon [1]. Shannon’s
inner and outer bounds [1] are not tight in general, and have
since been tightened, but a general computable formula for the
capacity of the two-way channel remains open.

For point-to-point two-way channels, capacity is known for
several channel models where the interaction between ones
own signal and that of the other may be resolved. For example,
in the two-way modulo 2 binary adder channel where Y1 =
Y2 = X1 +X2 for binary X1, X2 and modulo 2 addition, the
capacity region is one bit per user per channel use, as each
user is able to “undo” the effect of the other, something that
is not possible (at least not in one channel use) for the elusive
binary multiplier channel with Y1 = Y2 = X1X2. In the binary
modulo 2 adder channel, information independently flows in
the → and the ← “directions” and nodes need not interact to
achieve capacity. In a similar fashion, the capacity of a two-
way Gaussian point-to-point channel is equal to two parallel
Gaussian channels, which may be achieved without the use of
adaptation at the nodes [2]. “Adaptation” or “interaction” is

said to take place when the next channel input of a node is a
non-trivial function of that node’s past received signals.

Contributions. In this paper, we are interested in deter-
mining whether similar statements can be made in multi-user
channels rather than point-to-point channels. One expects this
not to be true in general. For example, in multi-user Gaussian
channels one may intuitively expect adaptation to allow for
correlation between channel inputs which may translate to
coherent gains. However, as we will see, there exist multi-
user channels for which adaptation is useless.

We introduce three two-way multi-user linear deterministic
channels useful for approximating Gaussian channels at high
SNR [3]. Specifically, we consider the linear deterministic
two-way a) Multiple Access / Broadcast channel (MAC/BC
with 4 messages), b) Z channel (6 messages), and c) inter-
ference channel (IC, 4 messages). We ask whether adaptation
may increase the capacity regions beyond that of two parallel
one-way multi-user channels in the → and ← directions. We
will show that it does not for the first two channel models. For
the two-way interference channel, we will show that partial
adaptation where only 2 of the four nodes may adapt, can
“block” the two-way information flow and destroy the ability
to relay / cooperate. Under this constraint, we obtain the ca-
pacity region which is equal to two non-adaptive interference
channels. In deriving outer bounds for these channel models,
we use carefully chosen genies and Markov chain structures.

Related Work. The first of our three channel models is a
linear deterministic MAC/BC channel. The capacity regions of
the linear-deterministic one-way MAC and BC channels were
obtained in [4]. An achievable rate region and an outer bound
of a similar multi-user (multiple-access and broadcast with
a common message) half-duplex two-way channel is derived
in [5], [6] for Gaussian and discrete memoryless channels,
respectively. The second channel model we consider is the
two-way linear deterministic Z channel. The capacity region
of the one-way deterministic Z channel is found in [7].

The last channel model considered is the two-way linear
deterministic IC. The capacity region of the one-way modulo
2 adder IC is known [8] and is a special example of a more
general class of deterministic IC for which capacity is known
[9], including the one-way linear deterministic IC [4]. The
work here is also related to one-way ICs with perfect output
feedback [10], [11], with rate-limited feedback [12] and with
noisy, interfering feedback [13]. In all these channel models
only two messages are present and the backwards feedback



links, whether perfect, noisy, or interfering still serve only to
further rates in the forward direction. The tradeoff between
sending new information versus feedback on each of the links
is not addressed; the only other example of such a 4-message
two-way interference channel besides our prior work [14],
[15] is in Section VI of [13], where an example of a linear
deterministic scheme in a specific regime is provided.

The two-way versions of the binary modulo 2 MAC/BC,
Z and IC were first considered in [14], where adaptation was
shown to be useless – time-sharing achieved capacity. Here we
extend the limited results on multi-user two-way channels to
the more general class of linear deterministic channel models.

II. MODELS, DEFINITIONS AND NOTATIONS

We introduce three multi-user two-way linear deterministic
channels (we drop the “linear deterministic” from now on)
which are shown in Fig. 1, where we see that all nodes act as
both transmitters (encoders) and receivers (decoders), and let
Mjk denote the message from node j to node k:

• the two-way MAC/BC channel: transmitter 1 and 3 send in-
dependent messages M12 and M32 to receiver 2, respectively,
forming a Multiple Access Channel (MAC) in the→ direction.
Meanwhile, transmitter 2 sends two independent messages
M21 and M23 to receiver 1 and 3, respectively, forming a
Broadcast Channel (BC) in the ← direction.

• the two-way Z channel: transmitter 1 and 4 send messages
M12 and M43 to receiver 2 and 3 respectively. Transmitter 2
and 3 send messages (M21,M23) and (M32,M34) to receivers
1,3 and 2,4 respectively. We thus have two Z channels in
opposite directions.

• the two-way interference channel: transmitter 1 and 3 send
messages M12 and M34 to receiver 2 and 4, respectively,
forming an IC in the → direction. Similarly, transmitter 2 and
4 send messages M21 and M43 to receiver 1 and 3 respectively,
forming another IC in the ← direction.

The channel inputs and outputs of user j ∈ {1, 2, 3, 4}
at discrete time i are Xj,i and Yj,i. Let Ai

j =
(Aj,1, Aj,2, ..., Aj,i), for any given time i. A node is said
to employ adaptation (rather than “feedback” to emphasize
two-way communications rather than one-way communication
with “feedback” links. One may equivalently use the term
“cooperation”, though we feel “adaptation” emphasizes the
fact that a node can adapt current inputs to past outputs.) if the
channel input at time i is a function of the previously received
outputs, Xj,i = fj(Mjk, Y

i−1
j ), where fj (j ∈ {1, 2, 3, 4}) are

deterministic functions. If a node behaves in a non-adaptive or
restricted fashion then its inputs are functions of its messages
only, i.e. Xj,i = fj(Mjk). If some nodes adapt while the
others do not, we refer this as partial adaptation, and will
specify which nodes adapt.

The messages Mjk of rate Rjk are uniformly distributed in
{1, 2, · · · 2nRjk} for j, k in the appropriate sets depending on
the channel model. At each time step 0 ≤ i ≤ n, for n the
blocklength, encoder j selects the next input Xj,i(Mjk, Y

i−1
j )

(which may also be a function of 2 messages in the Z

channel). The channel inputs and outputs are binary vectors,
and all addition will be bit-wise and modulo 2. We furthermore
let S denote an N × N lower shift matrix, where N will
be defined for each channel model. In addition, we define
njk = blog h2

jkPjc to indicate the number of signal bit levels
from transmitter j to receiver k, where hjk is the channel gains
and Pj denotes the power of the transmitter j. Note that nii

(the interference caused at a node due to its own transmission)
exists in our model, though we may just as well have left it
out given the additive nature of the model; including/leaving it
out is not WLOG for other channel models such as the binary
multiplier channel. Note that Receiver k uses a decoding
function gk : Yn

k → M̂jk to obtain an estimate M̂jk of
the transmitted message Mjk. The capacity region is the
supremum over all rate tuples which simultaneously drive the
probability that any of the estimated messages is not equal
to the true message, to zero as n → ∞. We now proceed to
define the channel model for each different channel and obtain
its capacity region.

III. THE CAPACITY REGION OF THE TWO-WAY LINEAR
DETERMINISTIC MAC/BC

The two-way linear deterministic MAC/BC channel is de-
fined by the following input/output equations as in Fig. 1(a).
All nodes are permitted to adapt, so that at channel use i,
X1,i = f1(M12, Y

i−1
1 ), X2,i = f2(M21,M23, Y

i−1
2 ), and

X3,i = f3(M32, Y
i−1
3 ). In this case, the capacity region maybe

stated as follows:
Theorem 1: The capacity region of the two-way linear

deterministic MAC/BC is the set of non-negative rate tuples
(R12, R32, R21, R23) such that

MAC →
{
R12 ≤ n12, R32 ≤ n32,
R12 +R32 ≤ max(n12, n32)

(1)

BC ←
{
R21 ≤ n21, R23 ≤ n23

R21 +R23 ≤ max(n21, n23).
(2)

Proof: Achievability may be argued via [3] by mimicking
a one-way MAC and one-way BC channel in opposite direc-
tions and noting that in this channel model, each user may
subtract off its own transmitted signal from its received signal.
We note that for this channel, the bounds may be obtained by
the cut-set outer bound, but that we derive it in an alternative
way nonetheless as the technique illustrates how adaptation
may be taken into account and leads to more general outer
bounds (for two-way MAC/BC channels), which are omitted.

n(R12 − ε) ≤ I(M12;Y n
2 |M21,M23,M32)

≤
n∑

i=1

[H(Y2,i|Y i−1
2 ,M21,M23,M32, X

i
2)]

(a)

≤
n∑

i=1

[H(Y2,i|Y i−1
2 ,M21,M23,M32, X

i
2, X

i
3)]

≤
n∑

i=1

[H(SN−n12X1,i)] ≤ n(n12),
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(a) Two-way linear deterministic MAC/BC (b) Two-way linear deterministic Z channel (c) Two-way linear deterministic interference channel

Fig. 1. Three two-way linear deterministic channel models under consideration.

where (a) follows from a Markov chain that given M32, X
i
2,

we have Xi
3. The other single rate bounds follow similarly.

n(R12 +R32 − ε) ≤ I(M12,M32;Y n
2 |M21,M23)

≤
n∑

i=1

[H(Y2,i|Y i−1
2 ,M21,M23, X

i
2)]

≤
n∑

i=1

[H(SN−n12X1,i + SN−n32X3,i)] ≤ n(max(n12, n32)).

We can obtain the other sum-rate bound in a similar way.
Remark 2: Without adaptation, the channel would corre-

spond to a MAC channel simultaneously transmitting with a
BC channel with restricted nodes. Since we are able to achieve
the desired rates in one channel use, adaptation is useless,
and the capacity region is a four dimensional region that is
equivalent to the capacity region of the linear deterministic
MAC and the linear deterministic BC in opposite directions.

IV. THE CAPACITY REGION OF THE TWO-WAY LINEAR
DETERMINISTIC Z CHANNEL

The linear deterministic two-way Z channel is defined by
the input / output equations in Fig. 1(b). If all nodes employ
adaptation, then at channel use i, X1,i = f1(M12, Y

i−1
1 ),

X2,i = f2(M21,M23, Y
i−1
2 ), X3,i = f3(M32,M34, Y

i−1
3 ),

X4,i = f4(M43, Y
i−1
4 ).

Theorem 3: The capacity region of the two-way lin-
ear deterministic Z channel is the set of all rate-tuples
(R12, R21, R23, R32, R34, R43) which satisfy the following:

Z →


R12 ≤ n12, R32 ≤ n32, R34 ≤ n34

R12 +R32 ≤ max(n12, n32)
R32 +R34 ≤ max(n32, n34)
R12 +R32 +R34 ≤ max(n12, n32) + [n34 − n32]+

Z ←


R43 ≤ n43, R23 ≤ n23, R21 ≤ n21

R43 +R23 ≤ max(n43, n23)
R23 +R21 ≤ max(n23, n21)
R43 +R23 +R21 ≤ max(n43, n23) + [n21 − n23]+.

Proof: We first note that the capacity of a class of
deterministic Z channels is shown in [7, Th. 3.1]. To show

achievability of the above, we use the achievability scheme
of [7, Th. 3.1] in each → and ← direction with non-adaptive
nodes (adaptive may mimic non-adaptive). By making the ap-
propriate correspondences, we see that the above is achievable
and equivalent to two one-way Z channels.

Now, we prove the converse. We note that again, all but
the triple-rate bounds may be obtained by the two-way cut-
set bound, but that they are left as they illustrate the impact
of adaptation and how these bounds made be generalized. By
symmetry, we only show two sum-rate bounds.

n(R32 +R34 − ε) ≤ I(M32,M34;Y
n
2 , Y

n
4 |M21,M23,M43,M12)

≤
nX

i=1

[H(Y2,i, Y4,i|M21,M23,M43,M12, Y
i−1
2 , Y i−1

4 , Xi
2, X

i
4)]

(a)

≤
nX

i=1

[H(Y2,i, Y4,i|M21,M23,M43,M12, Y
i−1
2 , Y i−1

4 , Xi
2, X

i
4, X

i
1)]

≤
nX

i=1

[H(SN−n32X3,i, S
N−n34X3,i)] ≤ n(max(n32, n34)),

where (a) follows from a Markov chain that given M12, X
i
2,

we have Xi
1. We also have,

n(R12 +R32 +R34 − ε) ≤ I(M12;Y
n
2 |M21,M23,M43)

+ I(M32,M34;Y
n
2 |M43,M12,M21,M23)

+ I(M32,M34;Y
n
4 |M43,M12,M21,M23, Y

n
2 )

≤ H(Y n
2 |M21,M23,M43)−H(Y n

2 |M12,M21,M23,M43)

+H(Y n
2 |M12,M21,M23,M43) +H(Y n

4 |M43,M12,M21,M23, Y
n
2 )

≤
nX

i=1

[H(Y2,i|Y i−1
2 ,M21,M23, X

i
2)

+H(Y4,i|M12,M21,M23,M43, Y
i−1
4 , Y n

2 )]

(b)

≤
nX

i=1

[H(SN−n12X1,i + SN−n32X3,i)

+H(SN−n34X3,i|M12,M21,M23,M43, Y
i−1
4 ,

Xi
4, S

N−n12X1,i + SN−n22X2,i + SN−n32X3,i, X
n
2 , X

n
1 )]

≤
nX

i=1

[H(SN−n12X1,i + SN−n32X3,i) +H(SN−n34X3,i|SN−n32X3,i)]

≤ n(max(n12, n32) + [n34 − n32]
+).

In (b), given M12 and Xn
2 , we may construct Xn

1 .



Remark 4: Again, we are always able to achieve the de-
sired rates in Theorem 3 in only one channel use, therefore
adaptation is useless. The capacity region of this channel, a
six dimensional region, is exactly equivalent to the capacity
region of the two one-way linear deterministic Z channels.

V. THE CAPACITY REGION OF THE TWO-WAY LINEAR
DETERMINISTIC INTERFERENCE CHANNEL

The two-way linear deterministic IC is defined by the input /
output equations in Fig. 1(c). Now we define partial adaptation
(fixed nodes 1 and 3: “restricted nodes”) as:

X1,i = f1(M12), X2,i = f2(M21, Y
i−1
2 ) (3)

X3,i = f3(M34), X4,i = f4(M43, Y
i−1
4 ) (4)

We first prove a Lemma regarding partial adaptation, which
is key in showing that partial adaptation is useless, and that
the inability of certain nodes to adapt essentially “blocks” the
ability of adaptation to help at all.

Lemma 5: Under the partial adaptation conditions in (3) –
(4), for some deterministic functions f5 and f6,

X2,i = f5(M12,M21,M34) ⊥M43, ∀i (5)
X4,i = f6(M43,M34,M12) ⊥M21, ∀i (6)

where ⊥ denotes independence.
Proof: Note that X2,i = f2(M21, Y

i−1
2 ) and Y i−1

2 =
SN−n12Xi−1

1 + SN−n22Xi−1
2 + SN−n32Xi−1

3 . Since Xi−1
1

and Xi−1
3 are functions only of M12 and M34 respectively, we

may conclude that there exists a function f∗ such that X2,i =
f∗(M21,M12,M34, X

i−1
2 ). Iterating this argument, and noting

that X2,1 is only a function of M21, we obtain the theorem.
The result for X4,i follows by a similar argument.

Theorem 6: The capacity region of the two-way linear de-
terministic IC is the set of (R12, R21, R34, R43) which satisfy
the equations in (A) and (B) in Fig. 2.

Proof: For achievability, we consider the two-way in-
terference channel as two one-way interference channels and
apply the well-known Han-Kobayashi scheme [16] to achieve
the inner bound (ignore the ability to adapt). Now we prove
the converse. Due to space constraints we only focus on the
sum-rates; single-rates follow as in (1), and using Lemma 5.

n(R12 +R34 − ε)
(a)

≤ I(M12;Y
n
2 |M21,M43) + I(M34;Y

n
4 , Y

n
2 |M12,M21,M43)

≤ I(M12;Y
n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

+H(Y n
4 |M21,M12,M43, Y

n
2 )

(b)
= I(M12;Y

n
2 |M21,M43) + I(M34;Y

n
2 |M21,M12,M43)

+

nX

i=1

[H(SN−n34X3,i|M21,M12,M43, Y
i−1
4 , Xi

4, Y
n
2 , X

n
2 , X

i
1)]

≤
nX

i−1

[H(Y2,i|Y i−1
2 ,M21, X

i
2)−H(Y2,i|Y i−1

2 ,M12,M21,M43)

+H(Y2,i|Y i−1
2 ,M12,M21,M43)

+H(SN−n34X3,i|M21,M12,M43, Y
i−1
4 , Xi

4,

SN−n12Xn
1 + SN−n22Xn

2 + SN−n32Xn
3 , X

n
2 , X

i
1)]

≤
nX

i=1

[H(SN−n12X1,i + SN−n32X3,i)

+H(SN−n34X3,i|SN−n32X3,i)]

≤ n(max(n12, n32) + [n34 − n32]
+)

(c)
= n(max(p, q) + [p− q]+)

We introduce the genie Y n
2 in the second mutual information

term in (a), i.e. we provide asymmetric side information to
only one receiver. In (b), we add Xi

1 in the entropy term
because of the iterated argument that, given M12, X

n
2 , X

i
4, we

can construct Xi
1. For (c), we consider the symmetric case with

p = n12 = n21 = n34 = n43, q = n14 = n41 = n23 = n32.
Remark 7: We do not need partial adaptation in this bound,

and so these conclusions actually hold for full adaptation. It
may further be shown that, assuming symmetry, adaptation is
useless when two-way interference is strong (α ≥ 1, α = q/p)
and weak in some interval (2/3 ≤ α ≤ 1, α = q/p).
Interestingly, when 2/3 ≤ α ≤ 2, the “V” curve is also
the capacity for the linear deterministic symmetric IC with
feedback [11]. Adding an asymmetric genie Y n

4 in the first
term in (a), yields the second sum-rate bound in Fig. 2 (A).

n(R12 +R34 − ε) ≤ I(M12;Y
n
2 , S

N−n14Xn
1 ,M21,M43)

+ I(M34;Y
n
4 , S

N−n32Xn
3 ,M21,M43)

(d)
= H(Y n

2 |SN−n14Xn
1 ,M43,M21) +H(SN−n14Xn

1 |M43,M21)

−H(Y n
2 , S

N−n14Xn
1 |M12,M21,M43)

+H(Y n
4 |SN−n32Xn

3 ,M43,M21) +H(SN−n32Xn
3 |M43,M21)

−H(Y n
4 , S

N−n32Xn
3 |M34,M21,M43)

(e)
= H(Y n

2 |SN−n14Xn
1 ,M43,M21)

+H(SN−n14Xn
1 |M43,M21,M34)−H(SN−n32Xn

3 |M12,M43,M21)

+H(Y n
4 |SN−n32Xn

3 ,M43,M21)

+H(SN−n32Xn
3 |M43,M21,M12)−H(SN−n14Xn

1 |M43,M21,M34)

= H(Y n
2 |SN−n14Xn

1 ,M43,M21) +H(Y n
4 |SN−n32Xn

3 ,M43,M21)

≤
nX

i=1

[H(SN−n12X1,i + SN−n32X3,i|SN−n14X1,i)

+H(SN−n14X1,i + SN−n34X4,i|SN−n32X3,i)]

≤ n(max([n12 − n14]
+, n32) + max([n34 − n32]

+, n14)),

where (d) follows from the independence of the messages.
For (e), the 2nd and 5th terms follow since X1 and X3 are
functions only of M12 and M34. The 3rd and 6th terms follow
for the same reason, together with Lemma 5.

n(R21 +R43 − ε) ≤ I(M21;Y
n
1 , S

N−n23Xn
2 ,M12,M34)

+ I(M43;Y
n
3 , S

N−n41Xn
4 ,M12,M34)

(f)
= H(Y n

1 |SN−n23Xn
2 ,M12,M34) +H(SN−n23Xn

2 |M12,M34)

−H(Y n
1 , S

N−n23Xn
2 |M12,M34,M21)

+H(Y n
3 |SN−n41Xn

4 ,M12,M34) +H(SN−n41Xn
4 |M12,M34)

−H(Y n
3 , S

N−n41Xn
4 |M12,M34,M43)

(g)
= H(Y n

1 |SN−n23Xn
2 ,M12,M34) +H(SN−n23Xn

2 |M12,M34,M43)

−H(SN−n41Xn
4 |M12,M34,M21)



R12 ≤ n12, R34 ≤ n34, (16)

R12 + R34 ≤ max(n12, n32) + [n34 − n32]
+

R12 + R34 ≤ max(n34, n14) + [n12 − n14]
+

R12 + R34 ≤ max([n12 − n14]
+, n32) + max([n34 − n32]

+, n14)

2R12 + R34 ≤ max(n12, n32) + [n12 − n14]
+ + max([n34 − n32]

+, n14)

R12 + 2R34 ≤ max(n34, n14) + [n34 − n32]
+ + max([n12 − n14]

+, n32)

(17)
R21 ≤ n21, R43 ≤ n43 (18)

R21 + R43 ≤ max(n21, n41) + [n43 − n41]
+ (19)

R21 + R43 ≤ max(n43, n23) + [n21 − n23]
+ (20)

R21 + R43 ≤ max([n21 − n23]
+, n41) + max([n43 − n41]

+, n23) (21)

2R21 + R43 ≤ max(n21, n41) + [n21 − n23]
+ + max([n43 − n41]

+, n23) (22)

R21 + 2R43 ≤ max(n43, n23) + [n43 − n41]
+ + max([n21 − n23]

+, n41) (23)

Proof of bound (??):

n(R12 + R34 − �)

(a)

≤ I(M12; Y
n
2 |M21, M43) + I(M34; Y

n
4 , Y n

2 |M12, M21, M43)

= I(M12; Y
n
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Fig. 1. The Markov chain

n23 = n32.

Remark 8: This bound is tight for the two-way linear de-
terministic symmetric interference channel when 2/3 ≤ α ≤
2, α = m/n. In other words, adaptation is useless when the
two-way interference is strong (1 ≤ α ≤ 2) and weak in
some interval (2/3 ≤ α ≤ 1). We do not use the definition
of partial adaptation in this bound, instead, we consider full
adaptation. Thus, by symmetry, we can prove bound (19). If
we add another asymmetric genie Y n

4 in the first term in (a),
then we have bound (??). Again, bound (20) follows from
symmetry. Intuitively, full adaptation is useless in this bound
is because we add an asymmetric genie to only one receiver,
which results in the nodes can not full cooperate with each
other.
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We introduce a genie Y n
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term in (a), which means we provide asymmetric side infor-
mation to only one receiver. In (b), we add Xi

1 in the entropy
term due to a Markov chain in Fig. 1, which shows that given
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Remark 8: This bound is tight for the two-way linear de-
terministic symmetric interference channel when 2/3 ≤ α ≤
2, α = m/n. In other words, adaptation is useless when the
two-way interference is strong (1 ≤ α ≤ 2) and weak in
some interval (2/3 ≤ α ≤ 1). We do not use the definition
of partial adaptation in this bound, instead, we consider full
adaptation. Thus, by symmetry, we can prove bound (19). If
we add another asymmetric genie Y n

4 in the first term in (a),
then we have bound (??). Again, bound (20) follows from
symmetry. Intuitively, full adaptation is useless in this bound
is because we add an asymmetric genie to only one receiver,
which results in the nodes can not full cooperate with each
other.

(A) IC in → direction (B) IC in ← direction

Fig. 2. Capacity region of two-way linear deterministic interference channel with partial adaptation.

+H(Y n
3 |SN−n41Xn

4 ,M12,M34) +H(SN−n41Xn
4 |M12,M34,M21)

−H(SN−n23Xn
2 |M12,M34,M43)

≤
nX

i=1

[H(SN−n21X2,i + SN−n41X4,i|SN−n23X2,i)

+H(SN−n43X4,i + SN−n23X2,i|SN−n41X4,i)]

≤ n(max([n21 − n23]
+, n41) + max([n43 − n41]

+, n23)),

where (f) follows from the independence of the messages.
Equation (g) follows from partial adaptation and Lemma 5.

Remark 8: In the above, nodes 1 and 3 were restricted
(needed for Lemma 5). By symmetry, we may obtain the same
result if nodes 2 and 4 were restricted. Finally,

n(2R12 +R34 − ε)
≤ I(M12;Y

n
2 |M21,M43) + I(M12;Y

n
2 , Y

n
4 |M21,M43,M34)

+ I(M34;Y
n
4 , S

N−n32Xn
3 ,M21,M43)

(h)
= H(Y n

2 |M21,M43)−H(Y n
2 |M21,M43,M12)

+H(Y n
4 |M21,M43,M34) +H(Y n

2 |M21,M43,M34, Y
n
4 )

+H(Y n
4 , S

N−n32Xn
3 |M21,M43)

−H(Y n
4 , S

N−n32Xn
3 |M34,M21,M43)

(i)
= H(Y n

2 |M21,M43)−H(Y n
2 |M21,M43,M12)

+H(SN−n32Xn
3 |M43,M21,M12)

+H(Y n
4 |SN−n32Xn

3 ,M43,M21) +H(Y n
4 |M21,M43,M34)

−H(Y n
4 , S

N−n32Xn
3 |M34,M21,M43) +H(Y n

2 |M21,M43,M34, Y
n
4 )

≤
nX

i=1

[H(SN−n12X1,i + SN−n32X3,i) +H(SN−n14X1,i

+ SN−n34X3,i|SN−n32X3,i) +H(SN−n12X1,i|SN−n14X1,i)]

= n(max(n12, n32) + max([n34 − n32]
+, n14) + [n12 − n14]

+),

where (h) follows from the independence of the messages,
and (i) from the definition of partial adaptation and Lemma 5.
We may similarly prove the other bounds of this form.

Remark 9: We again see that, under partial adaptation con-
straints, adaptation is useless and we obtain the capacity of
two one-way ICs. Essentially, this partial adaptation prevented
messages being relayed by other messages (which was also
impossible in the MAC/BC and Z channels). For example,
under full adaptation, message M12 may be relayed from Tx1
to Rx 2 through nodes 3 and 4. This path is “blocked” by

the partial adaptation assumption, as node 3 could not adapt
to carry M12. However, it should be pointed out that this is
not necessary in general: adaptation in the two-way modulo 2
adder IC is useless [14], but the path is not blocked.

VI. CONCLUSION

We obtained the capacity regions of the two-way linear
deterministic MAC/BC channel, the two-way linear determin-
istic Z channel, both with full adaptation, and the two-way
linear deterministic IC, with partial adaptation. Interestingly,
adaptation is not needed to attain the capacity regions even
though it is permitted, demonstrating multi-user examples of
two-way channels where adaptation or interaction is useless.
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