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Two-Way Networks: When Adaptation is Useless
Zhiyu Cheng and Natasha Devroye

Abstract— Most wireless communication networks are two-
way, where nodes act as both sources and destinations of
messages. This allows for adaptation at or interaction between the
nodes—a node’s channel inputs may be functions of its message(s)
and previously received signals allowing for potentially larger
rates than those achievable in feedback-free one-way channels
where inputs are functions of messages only. However, examples
exist of channels where adaptation is not beneficial from a capac-
ity perspective. We ask whether analogous results hold for several
multiuser two-way networks. We first consider deterministic two-
way channel models: the binary modulo-2 addition channel and a
generalization of this, and the linear deterministic channel, which
models Gaussian channels at high SNR. For these deterministic
models, we obtain the capacity region for the two-way multiple
access/broadcast channel (MAC/BC), the two-way Z channel,
and the two-way interference channel (under certain partial
adaptation constraints in some regimes). We permit all nodes to
adapt their channel inputs to past outputs (except for portions
of the linear high-SNR two-way interference channel where we
only permit two of the four nodes to fully adapt). However, we
show that the two-way fully or partially adaptive capacity region
consists of two parallel one-way regions operating simultaneously
in opposite directions, i.e., adaptation is useless. We next consider
two noisy channel models: 1) the Gaussian two-way MAC/BC,
where we show that adaptation can at most increase the sum-rate
by (1/2) bit in each direction and 2) the two-way interference
channel, where partial adaptation is shown to be useless when the
interference is very strong. In the strong and weak interference
regimes, we show that the nonadaptive Han and Kobayashi
scheme utilized in parallel in both directions achieves to within
a constant gap for the symmetric rate of the fully (for some
regimes) or partially (for the remaining regimes) adaptive models.
The central technical contribution is the derivation of new,
computable outer bounds which allow for adaptation.

Index Terms— Two-way channel, two-way interference chan-
nel, adaptation, interaction, two-way MAC/BC.

I. INTRODUCTION

TWO-WAY communication, where users A and B wish
to exchange a stream of information, is a natural form

of communication of relevance in present and future wire-
less networks. Applications include two-way high data-rate
tele-medicine over wireless broadband links, mobile video
conferencing over next generation cellular networks, the syn-
chronization of data among terminals, and communication
between a base station and clients. Indeed, much of our current
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wireless communication is already two-way in nature, but it
is not treated as such in practice. Rather, current channel
coding schemes orthogonalize the two directions, rendering the
two-way channel equivalent to two one-way communication
links. While this is simple to implement, whether such non-
adaptive two-way coding schemes are optimal from a capacity
perspective remains an open question.

What makes two-way communications, in which two (or
more) users exchange messages over the same shared channel,
challenging are the possibilities that stem from having nodes
be both sources and destinations of messages. This permits
them to adapt their channel inputs to their past received
signals. Such two-way adaptation was first considered in the
point-to-point two-way channel by Shannon [4]. Shannon’s
inner and outer bounds [4] are not tight in general, and a
general computable1 formula for the capacity region of the
point-to-point two-way channel remains open.

However, encouragingly, capacity is known for several
point-to-point two-way channel models where the interaction
between one’s own signal and that of the other user may
be resolved. For example, in the two-way modulo 2 binary
adder channel where channel outputs Y1 = Y2 = X1⊕ X2 for
binary inputs X1, X2 and ⊕ modulo 2 addition, the capacity
region is one bit per user per channel use. Each user is able to
“undo” the effect of the other as shown in Fig. 1(a), something
that is not possible in one channel use for the elusive binary
multiplier channel with Y1 = Y2 = X1 X2. In the binary
modulo 2 adder channel, information independently flows in
the→ and the← “directions” and nodes need not interact, or
adapt their current inputs to past outputs, to achieve capacity.
In a similar fashion, the capacity of a two-way Gaussian point-
to-point channel is equal to two parallel Gaussian channels as
shown in Fig. 1(b), which may be achieved without the use of
adaptation at the nodes [6]. Similar results are true for two-
way additive exponential noise family channels [7].

A note on terminology. In this work, “adaptation” or
“interaction” is said to take place when the next channel input
is a non-trivial function of the node’s past received signals.
One may alternatively use the terms “feedback” or “cooper-
ation” instead of adaptation or interaction. However, we feel
that “adaptation” and “interaction” better highlights the nature
of two-way communications where there is no real notion of
feedback (which suggests backwards links which serve to aid
communication in the forward direction) as all links may carry
information for both directions simultaneously. “Cooperation”
reflects the fact that nodes may help each other in multi-user

1By computable we mean single-letter expression without the use of
unbounded cardinality auxiliary random variables. Multi-letter formulas for
the capacity of two-way channels exist, see the expressions involving directed
information over code-trees of [5].
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Fig. 1. Examples of point-to-point two-way channels breaking up into two parallel one-way channels.

two-way channels, but has been used in many existing one-
way communication scenarios; “interaction” avoids notions of
directionality.

A. Contributions

We seek examples of multi-user two-way channels rather
than point-to-point two-way channels where, even though
nodes may adapt current inputs to past outputs, this is not
beneficial from a capacity region perspective. In two-way
networks, one may expect adaptation to, in general, be useful
and enlarge the capacity region. For example, in multi-user
Gaussian channels one may intuitively expect adaptation to
allow for correlation between channel inputs which may
translate to coherent gains, or allow for routing messages along
different paths. However, as we will see, there exist multi-
user channels for which adaptation is useless. In particular,
we introduce three two-way channel models:

1) the two-way Multiple Access/Broadcast channel
(MAC/BC) in which there are 4 messages and
3 terminals forming a MAC channel in the→ direction
(2 messages) and a BC channel in the opposite ←
direction (2 messages);

2) the two-way Z channel in which there are 6 messages
and 4 terminals forming a Z channel in the→ direction
(3 messages) and another Z channel in the opposite ←
direction (3 messages);

3) the two-way interference channel (IC) with 4 messages
and 4 terminals forming an IC in the → direction
(2 messages) and another IC in the ← direction
(2 messages).

We emphasize that channel inputs at node j at time i may be
functions of the received signals at node j from times 1 to i−1,

and that data and “feedback” share the same links, i.e. there are
no orthogonal feedback links. Our central contributions are the
derivation of the exact, computable, or approximate (to within
a constant gap) capacity region of several two-way networks
in which adaptation is useless (or leads to bounded gaps) from
a capacity perspective. Typically two-way problems/networks
result in multi-letter expressions or auxiliary random variables;
our results do not.
• We consider deterministic binary modulo 2 adder
channels. These are the simplest examples of multi-user two-
way channels where one might intuitively expect adaptation to
be useless. For these channel models, and slight generaliza-
tions thereof, we obtain outer bounds, and demonstrate that
non-adaptive time-sharing schemes between nodes transmit-
ting in the same direction achieves capacity. Nodes transmit-
ting data in opposite directions simultaneously transmit.
•We next consider linear deterministic models which model
Gaussian channels at high SNR [8] and again ask whether
adaptation may increase the capacity regions beyond that of
two parallel one-way multi-user channels in the → and ←
directions. We will show that it does not for the first two
channel models by obtaining their capacity regions. For the
two-way interference channel, we show that partial adaptation
where only two of the four nodes may adapt, can “block”
the two-way information flow and destroy the ability to
relay/cooperate, resulting in a capacity region equal to two
non-adaptive ICs. In addition, in some regimes of the relative
link strengths, we obtain the capacity region for the symmetric
model with full adaptation where all four nodes are permitted
to adapt.
•We next consider two noisy Gaussian networks. First, for the
Gaussian two-way MAC/BC we demonstrate that adaptation
may only increase the sum-rate in each direction by up to 1

2 bit.
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Next, we consider the symmetric two-way Gaussian IC
where all “direct” channel gains are equal and all “cross-over”
channel gains are equal. We derive new, computable outer
bounds for the symmetric sum-rates for this Gaussian channel
model and show that: a) adaptation is useless in very strong
interference for the partially adaptive model, b) in strong but
not very strong interference, non-adaptive schemes perform to
within 1 bit per user per direction of the fully adaptive capacity
region, and c) the particular non-adaptive Han and Kobayashi
scheme of [9] employed in each direction, achieves to within
a constant gap (2 bits per user per direction maximally) of
fully or partially adaptive outer bounds in all other regimes.
We provide examples of non-symmetric Gaussian two-way
ICs where adaptation may provide unbounded gain over non-
adaptation, and where perfect output feedback may provide
unbounded gain over adaptation.

The emphasis of this work is on demonstrating when
adaptive schemes are useless, and when, even if adaptation is
permitted, it does not significantly increase the capacity region.

B. Related Work

This work builds on: point-to-point two-way channels,
one-way multi-user deterministic channels, and one-way
multi-user channels with feedback. Little work exists thus far
on two-way multi-user channels.

The capacity region of the general point-to-point discrete
memoryless two-way channel may be written in terms as
a limit of multi-letter expressions as in [4, Section 15], or
[5, Theorem 4.1]. Given the complexity in computing this
capacity region, it is not entirely satisfying and the capacity
region of the two-way channel is generally considered to
be open. The binary multiplier channel (BMC) [10]–[14] is
a nice example of a deterministic, binary, common output
two-way channel where capacity is not exactly known, though
its capacity may be expressed in terms of directed information
as in [5, Corollary 4.1].

The first of our three channel models is a two-way MAC/BC
channel. The capacity regions of the linear-deterministic
one-way MAC and BC channels were obtained in [15].
An achievable rate region and an outer bound of
a similar two-way and adaptive multi-user half-duplex
two-way channel is derived in [16] and [17] for Gaussian and
discrete memoryless channels (DMC), respectively. In partic-
ular, the achievable rate region derived employs adaptation
using Block Markov encoding, and the outer bound contains
both auxiliary random variables and messages in its expression
and is thus difficult to compute. These works differ from
our model in that we assume full-duplex operation, have 2
broadcast messages rather than a common one. Other than
[16], [17], the two-way MAC/BC has not been considered,
and bears most resemblance to a combined MAC channel with
feedback and BC channel with feedback (see references in
[18, Ch. 17, Bibliographic Notes], and in particular [19], [20]),
though we note that in our two-way model there are no “free”
feedback links–any feedback must travel over the same links
as the data in the opposite direction, and hence the MAC and
BC with feedback results are not directly applicable.

The second channel model we consider is the two-way
Z channel, with 6 messages. The one-way Z channel (with
3 messages, rather than the Z Interference channel with
2 messages) was first studied in [21], in which a general
outer bound, and a matching inner bound for a special class of
degraded Z channels are obtained. The capacity region of the
one-way deterministic Z channel with invertibility constraints
similar in flavor to those in [22], is found in [23], which will
be of use here.

The last channel model considered is the two-way linear
deterministic IC in which there are 4 messages and 4 terminals
forming ICs in the→ and← directions. The capacity region
of the one-way modulo 2 adder IC is known [18] and is
a special example of a more general class of deterministic
IC for which capacity is known [22], including the one-way
linear deterministic IC [15]. The work here is also related to
one-way ICs with perfect output feedback [24], [25], with rate-
limited feedback [26], with generalized feedback [27], and
interfering feedback [24], [28]. In all these channel models
only two messages are present and the “feedback” links,
whether perfect, noisy, or interfering still serve only to further
rates in the forward direction. The only other example of
a 4-message two-way interference channel besides our prior
work [1]–[3], [29] is in Section VI of [28], [30], where an
example of a linear deterministic scheme is provided which
shows that, at least for one particular asymmetric linear
deterministic two-way IC in weak interference in the → and
strong interference in the ← direction, that adaptation can
significantly improve the capacity region over non-interaction.
The general capacity region of the linear deterministic two-
way IC (with 4 messages) remains open in general despite the
example in [28], [30] and the progress made here. One final
word on terminology: we will refer to the 4 message two-way
IC as the “two-way IC” and the 2 message channel of [28],
[30]–considered in all sections but Section VI–as the “two-way
interference channel with interfering feedback” to emphasize
that the rates are still flowing in one direction only. Further
comparisons with ICs with/without feedback [9], [25], [28],
[30], [31] will be made in Section V and VII.

C. Outline

Channel models are first introduced in Section II. We study
deterministic two-way MAC/BC, two-way Z channel, and
two-way IC in Section III, IV, and V respectively. Gaussian
two-way MAC/BC and two-way IC are considered in
Section VI and VII respectively. We conclude in Section VIII
with some general observations and intuition as to when
adaptation is useless, which may be extracted from these
examples of two-way multi-user channel models.

II. MODELS, DEFINITIONS AND NOTATIONS

We consider three multi-user two-way channels, where
all nodes act as both transmitters (encoders) and receivers
(decoders), as shown in Fig. 2, and described by:
• the two-way MAC/BC channel: transmitters 1 and 3 send
independent messages M12 and M32 to receiver 2, respectively,
forming a MAC in the → direction. Transmitter 2 sends
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Fig. 2. Three multi-user two-way channel models and two of the classes under consideration.

independent messages M21 and M23 to receivers 1 and 3,
respectively, forming a BC in the ← direction.
• the two-way Z channel: transmitters 1 and 4 send messages
M12 and M43 to receivers 2 and 3 respectively. Transmitters 2
and 3 send messages (M21, M23) and (M32, M34) to receivers
1,3 and 2,4 respectively.
• the two-way interference channel: transmitters 1 and 3 send
messages M12 and M34 to receivers 2 and 4, respectively,
forming an IC in the → direction. Similarly, transmitters 2
and 4 send messages M21 and M43 to receivers 1 and 3
respectively, forming another IC in the ← direction.

For each of these models, let M jk denote the message from
node j to node k; all messages are independent and uniformly
distributed over M j k := {1, 2, . . . 2nR jk }, where the ranges of
j, k depend on the channel model (all subsets of {1, 2, 3, 4})
and R jk is the rate of transmission from node j to node k.
For example, in the MAC/BC R12 is the rate of message M12
but R13 and M13 do not exist.

All channels are assumed to be memoryless and at each
channel use, described by the input/output relationships in
Fig. 2. Let X j and Yk denote the channel input of node j
and output at node k used to describe the model (per channel
use). Let X j,i (Y j,i ) denote the channel input (output) at node
j at channel use i , and Xn

j := (X1,1, X1,2, . . . X1,n). Let
[x]+ = max(0, x). For the binary modulo 2 adder channels the
input and output alphabets are {0, 1}, and ⊕ denotes modulo 2
addition. For the linear deterministic models, the channel
inputs and outputs are binary vectors, and all addition will be
bit-wise and modulo 2. We furthermore let S denote an N×N
lower shift matrix, where N = max(n jk) over the relevant
j, k for each channel model, and n jk defines the number of
signal bit levels from transmitter j to receiver k. We will also
consider two other types of channel models: the “deterministic,
invertible and cardinality constrained” deterministic channel

models and the Gaussian two-way MAC/BC and interference
channels. We will define those channel models in the appro-
priate sections.

A node j is said to employ adaptation or interaction if the
channel input at time i is a function of the previously received
outputs,

X j,i = f j (M jK, Y i−1
j ), (1)

where f j ( j ∈ {1, 2, 3, 4}) are deterministic functions, and
M jK := {M jk |k ∈ K} are the (sets of) messages from node
j to all the nodes in K ⊂ {1, 2, 3, 4} where K depends on
the channel model, and may be obtained from Fig. 2. If a
node behaves in a non-adaptive or restricted fashion then its
inputs are functions of its messages only, i.e. X j,i = f j (M jk).
If some nodes adapt while the others do not, we refer to this
as partial adaptation, and will specify which nodes adapt.
Receiver k uses a decoding function gk : Yn

k ×MkI → ̂MJ k
to obtain estimates of all transmitted messages destined to
received k, ̂MJ k := {̂M jk | j ∈ J ,J ⊂ {1, 2, 3, 4}} depend-
ing on the model, given knowledge of its own message(s) MkI
for suitable I ⊂ {1, 2, 3, 4}, which again depends on model.
The capacity region of each channel model is the closure of the
set of rate tuples for which there exist encoding and decoding
functions (of the appropriate rates) which simultaneously drive
the probability that any of the estimated messages is not equal
to the true message, to zero as n→∞.

III. TWO-WAY MAC/BC

We first consider the 3 user, full-duplex two-way MAC/BC
network as shown in Fig. 2(a). As an introductory example,
we first show that adaptation is useless for the modulo 2 adder
MAC/BC and a slight generalization thereof, and capacity may
be achieved via time-sharing. Finally, we consider the linear
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Fig. 3. Time-sharing based achievability for the proof of Theorem 2.

deterministic two-way MAC/BC and show that, once again,
adaptation is useless.

A. An Introductory Example: Modulo 2 Adder MAC/BC

In the two-way modulo 2 adder MAC/BC, we emphasize
that all three users may employ full adaptation–i.e. all channel
inputs at time i may be a function of previously received chan-
nel outputs at that node. There are no additional orthogonal,
or free, “feedback” links. The capacity region may be stated
as follows.

Theorem 1: The capacity region of the two-way modulo 2
adder MAC/BC channel is the set of non-negative rate tuples
(R12, R32, R21, R23) such that

R12 + R32 ≤ 1 (2)

R23 + R21 ≤ 1. (3)

Proof: The outer bound follows from the cut-set bound.
The inner bound follows by time-sharing as in Fig. 3 without
adaptation: α time-shares between channel inputs X1 and X3
for the MAC channel in the→ direction, while β time-shares
between the messages M21 and M23 in the BC in the ←
direction. Both directions ignore the received signals and use
i.i.d. Bernoulli(1/2) codebooks.

Remark 1: We note that the outer bound may alternatively
be derived from either 1) Fano’s inequality and first principles,
taking into account the ability of the nodes to adapt (we pro-
vide one such example for the linear deterministic MAC/BC
channel in Theorem 3 for completeness), or 2) yet another
alternative is to provide Tx 1 and 3 with both M21, M23 and
perfect channel output feedback Y2,i−1 (to derive a bound on
R12+R32 in the→ direction) and to provide Tx 2 with channel
output feedback Y1,i−1 and Y3,i−1 and messages M12, M32 (to
derive a bound on R21 + R23 in the ← direction) at time i .
Then, one can mimic the outer bound for a class of MACs
with FB for the → direction as derived by Willems [19] and
the physically degraded BC with feedback of [20] for the
← BC direction (which goes through without a problem for
the modulo 2 adder and linear deterministic models). Willems’

class of channels is one for which (in our notation), at least
one of H (X1|Y2, X3, X2) or H (X3|Y2, X1, X2) is zero for all
input distributions. We note that we provide Tx 1 and Tx 3
with M21, M23 in addition to the output feedback in order
to be able to construct the inputs X2,i , so that X2 would be
placed in the conditioning of the bounds of [19]. Note also that
while the capacity of Willems’ class of discrete memoryless
channels with feedback is expressed in terms of an auxiliary
random variable U which is the result of the feedback and its
ability to correlate channel inputs. In general, this would result
in a larger region than the MAC channel without feedback.
However, for our binary modulo 2 channel law, even with
conditioning on X2, and the fact that X1, X2, X3 may all be
correlated, these evaluate to the same region; adaptation is
useless.

Remark 2: The capacity region of Theorem 1 is the same
as that of a modulo 2 adder MAC and a modulo 2 adder
BC channel in parallel, which do not interact. That is, the
capacity of a one-way modulo 2 adder MAC is R12+R32 ≤ 1,
while that of a one-way modulo 2 adder BC (which is actually
just a BC with Y1 = X2 = Y3 is R23+ R21 ≤ 1. No adaptation
is needed to achieve these regions: capacity is achieved by
time-sharing amongst the data traveling in the same “direction”
(i.e. between nodes 1 and 3, and between messages M21 and
M23) but not between the two directions themselves.

B. A More General Model for Deterministic MAC/BC

Adaptation is useless for the simple modulo 2 adder
MAC/BC channel and capacity is achieved using time-sharing
in each direction. We ask whether there exists a larger class
of channels for which this holds. We answer this positively
by considering the “deterministic, invertible and alphabet
restricted” class of two-way MAC/BCs with:

Y1 = F1(X1, X2)

Y2 = F2(X1, X2, X3)

Y3 = F3(X2, X3)

where Fm(), m ∈ {1, 2, 3} are deterministic functions which
also satisfy

• P1: |X1| = |X2| = |X3| = |X | = |Y1| = |Y2| = |Y3| =
|Y| = κ for known κ ∈ N

+.
• P2: Given X1, Y1 is invertible, i.e. ∃ a function G1 s.t.

X2 = G1(X1, Y1). Similarly, we assume ∃G21, G23, G3:
X1 = G21(X2, X3, Y2), X3 = G23(X1, X3, Y2), and
X2 = G3(X3, Y3). These conditions exclude two-way
channels such as the binary multiplier channel.

• P3: ∃x∗3 such that given X3 = x∗3 , X1, X2 both uniform
on their alphabets implies both Y1 and Y2 uniform on
their alphabets. Similarly, ∃x∗1 such that given X1 = x∗1 ,
X3, X2 both uniform on their alphabets implies Y2, Y3
uniform on their alphabets. This ensures we can achieve
the full log(κ), and is true only for channels with a high
degree of symmetry.

Under these conditions (which we only claim are sufficient and
not necessarily necessary), the capacity region of the deter-
ministic MAC/BC is given in the following Theorem. These
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conditions somewhat resemble the symmetry structure seen in
discrete one-way additive noise channels, where feedback has
been shown to be useless in [32].

Theorem 2: The capacity region of the two-way “deter-
ministic, invertible and alphabet restricted” MAC/BC satis-
fying the conditions P1, P2, P3 is the set of non-negative
(R12, R32, R21, R43) satisfying:

R12 + R32 ≤ log κ (4)

R21 + R23 ≤ log κ, (5)

which may be achieved via time-sharing (in each direction).
Proof: The outer bound follows directly from the cut set,

or may be directly derived from Fano’s inequality or as a result
of MAC and BC channels with feedback, as in Remark 1.
The restriction on the alphabet sizes condition P1 prohibits
“coherent gain”-like phenomena in the outer bound, where
correlation between user inputs may be beneficial, as in for
example the Gaussian MAC channel with feedback.

Our achievability scheme time-shares between user 1 and
user 3 in the → (MAC) direction, while simultaneously
time-sharing between sending data to user 1 and 3 in the
← (BC) direction, as in Fig. 3. There, we see two time-
sharing coefficients 0 ≤ α, β ≤ 1, where α time-shares in
the → direction and β in the ← direction. Let us consider
the rates achieved in time slot (1), of duration α (WLOG we
have taken α < β). Node 1 encodes M12 into X1 uniformly
distributed over the log(κ) input symbols; node 2 encodes M21
into X2 uniformly distributed over log(κ) input symbols and
node 3 fixes X3 = x∗3 (rate 0). We claim this scheme achieves
the rates R12 = R21 = α log(κ), R23 = R32 = 0. Consider
R12: node 2 receives Y2 = F2(X1, X2, x∗3 ). Since node 2
knows X2 and knows that X3 = x∗3 , by P2, it may construct
X1 = G21(X2, x∗3 , Y2) to decode M12. By P3 this may be
done at full rate α log(κ). Similar arguments for time slots (2)
and (3) demonstrate that the rates in (4)-(5) are achievable.

One example, besides the binary modulo 2 adder channel,
is the channel with input alphabets {0, 1, . . . κ − 1} for some
κ and Y1 = X1 + X2 mod κ , Y2 = X1 + X2 + X3 mod κ ,
and Y3 = X2 + X3 mod κ .

Remark 3: The restriction on the cardinality (sufficient, but
may not be necessary) was brought about by simply consider-
ing the two-way MAC/BC binary adder channel (not modulo),
with inputs X1 = X3 = {0, 1} and outputs Y2 = X1+ X3 with
alphabet {0, 1, 2} in the MAC direction, or which it is easy to
derive inner and outer bounds both of the form R12 + R32 ≤
H (X1 + X3). In general, one would hope, like Shannon did
for the point-to-point two-way channel [4], to derive multi-
user inner and outer bounds of the same form. However, even
if one is able to do so (which may be too much to hope
for in general, but may be reasonable for certain classes of
deterministic models), we are left with the distributions over
which these bounds are taken. That is, back to our example,
to claim that adaptation is useless, the inner bound should be
taken over independent input distributions p(x1)p(x3), while
the outer bound, in general allowing for adaptation, is taken
over joint distributions p(x1, x3) (unless one restricts the set
of input distributions perhaps via dependence-balance-bound-

like techniques [14], an open problem). Inner and outer bounds
taken over these different sets of distributions do not match
for the binary adder channel with ternary output. As such, we
restricted the channels to those for which a form of cooperation
(or adaptation) between users cannot possibly help–which is
the case for the modulo adder channels, and as we will see, the
similar, in terms of properties, linear deterministic channels.

C. Linear Deterministic MAC/BC

The two-way linear deterministic MAC/BC channel is
defined by the input/output equations as in Fig. 2(a).
We recall that all nodes are permitted to adapt, so that at chan-
nel use i , X1,i = f1(M12, Y i−1

1 ), X2,i = f2(M21, M23, Y i−1
2 ),

and X3,i = f3(M32, Y i−1
3 ). The capacity region may be stated

as follows:
Theorem 3: The capacity region of the two-way linear

deterministic MAC/BC is the set of non-negative rate tuples
(R12, R32, R21, R23) such that

MAC→
{

R12 ≤ n12, R32 ≤ n32,

R12 + R32 ≤ max(n12, n32)
(6)

BC ←
{

R21 ≤ n21, R23 ≤ n23

R21 + R23 ≤ max(n21, n23).
(7)

Proof: Achievability may be argued via [8] by mimick-
ing a one-way MAC and one-way BC channel in opposite
directions and noting that each user may subtract off its own
transmitted signal from its received signal. The outer bounds
may be obtained by the cut-set, or via an alternative direct
proof. We include an example of this alternative (to the cut-set)
outer bound proof below, out of interest and to demonstrate
how adaptation may be taken into account.

n(R12 − ε) ≤ I (M12; Y n
2 |M21, M23, M32)

(a)≤
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, M23, M32, Xi

2)]

(b)=
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, M23, M32, Xi

2, Xi
3)]

≤
n

∑

i=1

[H (SN−n12 X1,i )] ≤ n (n12),

where (a) follows since given (Y i−2
2 , M21, M23), we may

construct Xi
2, which cancels out the “self-interference” term

X2,i in Y2,i . We note that the self-interference term can be
always cancelled out in this way in the converse of additive
models. Step (b) follows from the fact that given M32, Xi

2,
we may construct Xi

3. The other single rate bounds follow
similarly.

n(R12 + R32 − ε) ≤ I (M12, M32; Y n
2 |M21, M23)

≤
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, M23, Xi

2)]

≤
n

∑

i=1

[H (SN−n12 X1,i + SN−n32 X3,i )]
≤ n(max(n12, n32)).

We may analogously obtain the other sum-rate bound.
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Remark 4: Without adaptation, the channel would corre-
spond to a MAC channel simultaneously transmitting with
a BC channel with restricted nodes. This coincides with
our outer bound with adaptation, which may furthermore be
achieved in one channel use: adaptation is useless.

IV. TWO-WAY Z CHANNEL

We now consider the 4 user, full-duplex network shown in
Fig. 2(b). The 6 message network, resembles a cascade of three
two-way channels, in the shape of a Z (in each direction).

A. An Introductory Example: Modulo 2 Adder
Two-Way Z Channel

The two-way modulo 2 adder Z channel is discrete and
memoryless, and all four users may employ full adaptation.
The capacity region of this channel is stated as follows:

Theorem 4: The capacity region of the two-way mod-
ulo 2 adder Z channel is the set of non-negative rate tuples
(R12, R21, R23, R32, R34, R43) such that

R12 + R32 + R34 ≤ 1 (8)

R21 + R23 + R43 ≤ 1 (9)

The proof is found in Appendix VIII-A and is not a direct
consequence of the cut-set outer bound.

Remark 5: We note that the proof of the sum-rate outer
bound of the Z channel in Theorems 4, 5, and the sum-rate
bounds of the two-way IC in Theorems 6, 7, 9, 13 all follow
the same general idea of giving an asymmetric genie to one
receiver, as initially done in [22] for the one-way IC, and quite
similar to the Z channel outer bound in [23], and in particular
[24], [25] for the one-way IC with feedback (IC with FB). That
is, in the → direction, we provide one of the receivers with
the message of the non-desired message in the → direction
(as in the IC with FB) as well as all messages of the
← direction (particular to the two-way channels, as no ←
messages in one-way channels), and the desired signal received
at the other receiver of the→ direction (similar to the genies
given in the IC with FB). The additional messages and receiver
output (relative to one-way models) are needed to create
various inputs, as may be done with less side-information in
one-way models.

Remark 6: We again notice that since time-sharing achieves
the above region, adaptation does not enlarge the capacity
region. We again see that the messages in the → and the
← directions may be simultaneously communicated, but that
the messages within one direction must be time-shared.

B. A More General Model for the Two-Way Z Channel

Similar to the more general “deterministic, invertible and
restricted” class of two-way MAC/BC channels where it was
shown that non-adaptive time-sharing achieves capacity, we
may extend the two-way Z modulo 2 adder model to a more
general class of two-way Z channels. The converse follows
along similar lines as for the modulo 2 adder channel. In terms
of achieving the outer bounds R12 + R32 + R34 ≤ log κ and
R21 + R23 + R43 ≤ log κ , one sufficient condition involves
restricting the input and output alphabet sizes to be equal

(eliminating some of the potential benefits of adaptation via
user cooperation), as well as several symmetry constraints akin
to extensions of P2 and P3. Again, one example of such a
channel model is the modulo κ channel. We omit the full
statement as it follows in a straightforward and analogous
fashion to Theorems 2 and 4.

C. Linear Deterministic Two-Way Z Channel

The linear deterministic two-way Z channel is defined by
the input / output equations in Fig. 2(b). The capacity region
is again that of two parallel Z channels in opposite directions;
adaptation is useless.

Theorem 5: The capacity region of the two-way linear
deterministic Z channel is the set of all rate-tuples
(R12, R21, R23, R32, R34, R43) which satisfy the following:

Z →

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R12 ≤ n12, R32 ≤ n32, R34 ≤ n34

R12 + R32 ≤ max(n12, n32)

R32 + R34 ≤ max(n32, n34)

R12 + R32 + R34 ≤ max(n12, n32)+ [n34 − n32]+

Z ←

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R43 ≤ n43, R23 ≤ n23, R21 ≤ n21

R43 + R23 ≤ max(n43, n23)

R23 + R21 ≤ max(n23, n21)

R43 + R23 + R21 ≤ max(n43, n23)+ [n21 − n23]+.

Proof: We first note that the capacity of a class of
deterministic Z channels is shown in [23, Th. 3.1]. To show
achievability of the above, we use the achievability scheme of
[23, Th. 3.1] in each → and ← direction with non-adaptive
nodes. Due to the additive nature of the channel, each receiver
may cancel or subtract out its own “self-interference” term
SN−n j j X j from its received signal. By making the appropriate
correspondences, the above is achievable and equivalent to two
one-way Z channels.

For the converse, note that all but the triple-rate bounds may
be obtained by the cut-set bound, or independently by giving
the appropriate side-information or genie to the receivers (as
illustrated in previous models). The non-cut-set triple rate
bound may be obtained as follows:

n(R12 + R32 + R34 − ε)
≤ I (M12; Y n

2 |M21, M23, M43)
+I (M32, M34; Y n

2 , Y n
4 |M43, M12, M21, M23)

≤ H (Y n
2 |M21, M23, M43)

+H (Y n
4 |M43, M12, M21, M23, Y n

2 )

≤
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, M23, Xi

2)

+H (Y4,i |M12, M21, M23, M43, Y i−1
4 , Xi

4, Y n
2 , Xn

2 )]
(a)≤

n
∑

i=1

[H (SN−n12 X1,i + SN−n32 X3,i )

+ H (SN−n34 X3,i |M12, M21, M23, M43, Y i−1
4 , Xi

4,

SN−n12 X1,i + SN−n22 X2,i + SN−n32 X3,i , Xn
2 , Xn

1 )]
≤

n
∑

i=1

[H (SN−n12 X1,i + SN−n32 X3,i )

+ H (SN−n34 X3,i |SN−n32 X3,i )]
≤ n(max(n12, n32)+ [n34 − n32]+).
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In (a), Xn
1 in the second entropy term follows since given, M12

and Xn
2 , we may construct Xn

1 .
Remark 7: Again, we are always able to achieve the desired

rates in Theorem 5 in only one channel use, therefore
adaptation is useless. The capacity region of this channel,
a 6 dimensional region, is exactly equivalent to the capacity
region of the two one-way linear deterministic Z channels.

V. DETERMINISTIC TWO-WAY INTERFERENCE CHANNELS

The last deterministic multi-user two-way network we
consider is a 4 user, 4 message, full-duplex network, shown
in Fig. 2(c). This channel model merges elements of two-way,
feedback, and interference, and forms two parallel interference
channels in the→ and← directions. Again, we first introduce
the modulo 2 adder model of this channel and show that
adaptation is useless, generalizing this to a slightly larger
class of symmetric channels. This generalization is not as
straightforward as for the MAC/BC and Z channels, and
hence is discussed in somewhat more depth. Finally, for the
symmetric linear deterministic two-way interference channel,
we show that full adaptation is useless when the interference
is very strong, strong, and in some of the weak regimes, while
in all other regimes we show that partial adaptation is useless
(i.e. if only 2 of the nodes adapt, might as well have none of
the nodes adapt).

A. An Introductory Example: Modulo 2 Adder Two-Way IC

We are again motivated by the two-way, modulo 2 adder
IC, perhaps the simplest example of a two-way IC channel in
which adaptation is useless, and capacity is achieved through
time-sharing.

Theorem 6: The capacity region of the two-way modulo 2
adder interference channel is the set of non-negative rate tules
(R12, R21, R34, R43) such that

R12 + R34 ≤ 1 (10)

R21 + R43 ≤ 1. (11)

Proof: We may achieve this region using two time-sharing
random variables; one between nodes 1 and 3, and a second
between nodes 2 and 4. The converse follows by the cut-set
bound, or may alternatively be derived as done in the next
subsection for a more general class of channels.

B. Comments on a More General Class of
Two-Way Deterministic ICs

We ask whether the above two-way modulo 2 IC results
may be extended to a more general class of deterministic ICs
in which adaptation is useless and capacity is achieved through
time-sharing. In both the MAC/BC and Z channel models we
were able to accomplish this by imposing certain cardinality,
invertibility and symmetry constraints. One example of a
channel in this class is the modulo-κ (for some κ) channel.
To extend results to the two-way IC we make two additional
restrictions: 1) we do not consider “self-interference,” and
2) we impose symmetry of the outputs (common output in each
direction). Both of these conditions are sufficient for obtain-
ing sum-rate outer bounds equal to log κ in each direction

(where κ is the input/output alphabet size); whether they are
necessary remains open.

Consider a class of deterministic two-way interference chan-
nels without self-interference, described by:

Y1 = F→(X2, X4)

= Y3 (there is no self-interference, symmetric channel)
Y2 = F←(X1, X3)

= Y4 (there is no self-interference, symmetric channel)

where F→, F← are deterministic functions. Further restrict the
class of channels to those with:
• P1IC: |X1| = |X2| = |X3| = |X4| = |Y1| = |Y2| =
|Y3| = |Y4| = κ for known κ ∈ N

+.
• P2IC: “Invertibility” constraints reminiscent of Costa

and El Gamal [22]. In the notation of [22], we assume
f1 = f2 = F→ (and similarly, in the reverse direction
we have f1 = f2 = F←), and that g1 = g2 are the
identity functions, i.e. g1(X1) = X1 and g2(X3) = X3
(and similarly for the reverse direction). Then we require
that, given X1, Y2 is invertible, i.e. ∃ a function G2 s.t.
X3 = G2(X1, Y2). Similarly, we assume ∃G1, G3, G4:
X4 = G1(X2, Y1), X2 = G3(X4, Y3), and X1 =
G4(X3, Y4).

• P3IC: to ensure the outer bound is achievable through
time-sharing, we impose that F→ is a function such that
∃x∗3 such that X1 and Y2 = Y4 = F→(X1, X3 = x∗3 )
are in 1-to-1 correspondence, and ∃x∗1 such that X3 and
Y2 = Y4 = F→(X1 = x∗1 , X3) are in 1-to-1 correspon-
dence, (and similarly for F←).

For this class of channels, the capacity is given by the
following:

Theorem 7: The capacity region of the two-way “deter-
ministic, invertible and alphabet restricted” IC satisfying the
conditions P1IC, P2IC, P3IC is the set of non-negative rates
(R12, R34, R21, R43) satisfying:

R12 + R34 ≤ log κ (12)
R21 + R43 ≤ log κ, (13)

which may be achieved via time-sharing (in each direction).
Proof: Consider the → direction. Under the above

restrictions, the capacity region of the class of deterministic
(one-way) interference channels in [22] may be simplified to

R12 + R34 ≤ log κ (14)

which may be achieved by time-sharing between the inputs X1
uniform over the κ input symbols, while X3 = x∗3 and vice
versa. That the rates (14) are achievable may alternatively be
directly verified. We find the matching outer bound:

n(R12 + R34 − ε) ≤ I (M12; Y n
2 |M21, M43)

+I (M34; Y n
4 , Y n

2 |M12, M21, M43)

(a)≤
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, M43)

− H (Y2,i |Y i−1
2 , M12, M21, M43)

+ H (Y2,i |Y i−1
2 , M12, M21, M43)]

≤
n

∑

i=1

[H (Y2.i)] ≤ n log κ,
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where in (a) we dropped two negative entropy terms, and were
able to replace Y4,i by Y2,i , allowing us to cancel the 2nd and
3rd terms. This is the central reason why we have restricted
Y2 = Y4 and Y1 = Y3, whether one may somehow cancel
these terms when this is not the case is open. Restricting the
alphabet size as in P1IC yields the final inequality.

Remark 8: We have proposed a slightly more general model
for deterministic two-way ICs in which adaptation is useless.
Our conditions are sufficient but not necessary. For instance, in
the binary multiplier two-way interference channel described
by Y1 = Y3 = X2 X4 and Y2 = Y4 = X1 X3, with all inputs
and outputs binary. It is not difficult to show that adaptation
is useless for this model and the capacity of this channel is
equivalent to the capacity of two one-way binary multiplier
interference channels in parallel, the same capacity region
as in Theorem 6. In addition, we will show in Section VII
that adaptation is also useless for the Gaussian two-way
interference channel with partial adaptation when the two-way
interference is very strong; this channel is not in the class of
channels considered above either.

C. Linear Deterministic Two-Way IC

The two-way linear deterministic interference channel is
defined by the input/output equations in Fig. 2(c). In this
section we will be considering the general linear deterministic
IC, as well as the “symmetric” linear deterministic IC for
which p := n12 = n21 = n34 = n43, q := n14 = n41 =
n23 = n32, and α := q/p. This will allow us to compare the
symmetric, normalized sum capacity of various one and two-
way interference channels, defined as Csym(α) := R12+R34

2 .
Recall our definition of partial adaptation (nodes 1 and 3 are
fixed or “restricted”) of Section II:

X1,i = f1(M12), X2,i = f2(M21, Y i−1
2 ) (15)

X3,i = f3(M34), X4,i = f4(M43, Y i−1
4 ) (16)

We first prove a Lemma key to showing that partial adaptation
is useless, and that the inability of certain nodes to adapt
essentially “blocks” the ability of adaptation to help at all.

Lemma 8: Under partial adaptation conditions (15)–(16),
for some deterministic functions f5 and f6,

X2,i = f5(M12, M21, M34) ⊥ M43, ∀i (17)

X4,i = f6(M43, M34, M12) ⊥ M21, ∀i (18)

where ⊥ denotes independence.
Proof: Note that X2,i = f2(M21, Y i−1

2 ) and Y i−1
2 =

SN−n12 Xi−1
1 + SN−n22 Xi−1

2 + SN−n32 Xi−1
3 . Since Xi−1

1 and
Xi−1

3 are functions only of M12 and M34 respectively, we
may conclude that there exists a function f ∗ such that X2,i =
f ∗(M21, M12, M34, Xi−1

2 ). Iterating this argument, and noting
that X2,1 is only a function of M21, we obtain the theorem.
The result for X4,i follows by a similar argument.

Theorem 9: The capacity region of the two-way linear
deterministic interference channel under partial adaptation
constraints is the set of (R12, R21, R34, R43) which satisfy the

following:

R12 ≤ n12, R34 ≤ n34 (IC→a)

R12 + R34 ≤ max(n12, n32)+ [n34 − n32]+ (IC→b)

R12 + R34 ≤ max(n34, n14)+ [n12 − n14]+ (IC→c)

R12 + R34 ≤ max([n12 − n14]+, n32)

+max([n34 − n32]+, n14) (IC→d)

2R12 + R34 ≤ max(n12, n32)+ [n12 − n14]+
+max([n34 − n32]+, n14) (IC→e)

R12 + 2R34 ≤ max(n34, n14)+ [n34 − n32]+
+max([n12 − n14]+, n32) (IC→f)

R21 ≤ n21, R43 ≤ n43 (IC→a)

R21 + R43 ≤ max(n21, n41)+ [n43 − n41]+ (IC→b)

R21 + R43 ≤ max(n43, n23)+ [n21 − n23]+ (IC→c)

R21 + R43 ≤ max([n21 − n23]+, n41)

+max([n43 − n41]+, n23) (IC→d)

2R21 + R43 ≤ max(n21, n41)+ [n21 − n23]+
+max([n43 − n41]+, n23) (IC→e)

R21 + 2R43 ≤ max(n43, n23)+ [n43 − n41]+
+max([n21 − n23]+, n41). (IC→f)

Proof: For achievability, note that self-interference may be
removed at each receiver due to this channel model’s linearity,
in which case the physical channel model reduces to two one-
way IC in opposite directions. We may thus apply the well-
known Han–Kobayashi scheme [33] in each direction, ignoring
the ability of the nodes to adapt, achieving the expression in
(IC→) and (IC←).

Now we prove the converse. Single-rates follow as in (6),
and using Lemma 8 (where we use partial adaptation). For the
sum-rate (IC→ b):
n(R12+R34−ε)
(a)≤ I (M12; Y n

2 |M21, M43)+ I (M34; Y n
4 , Y n

2 |M12, M21, M43)

≤ I (M12; Y n
2 |M21, M43)+ I (M34; Y n

2 |M21, M12, M43)

+H (Y n
4 |M21, M12, M43, Y n

2 )

(b)= I (M12; Y n
2 |M21, M43)+ I (M34; Y n

2 |M21, M12, M43)

+
n

∑

i=1

[H (SN−n34 X3,i |M21, M12, M43, Y i−1
4 , Xi

4, Y n
2 , Xn

2 , Xi
1)]

≤
n

∑

i−1

[H (Y2,i |Y i−1
2 , M21, Xi

2)−H (Y2,i |Y i−1
2 , M12, M21, M43)

+H (Y2,i |Y i−1
2 , M12, M21, M43)+H (SN−n34 X3,i |M21, M12,

M43, Y i−1
4 , Xi

4, SN−n12 Xn
1+SN−n22 Xn

2+SN−n32 Xn
3 , Xn

2 , Xi
1)]

≤
n

∑

i=1

[H (SN−n12 X1,i+SN−n32 X3,i )+H (SN−n34 X3,i |SN−n32 X3,i )]

≤n(max(n12, n32)+[n34−n32]+)
(c)= n(max(p, q)+[p−q]+).

We introduce the genie Y n
2 in the second mutual information

term in (a), i.e. we provide asymmetric side information to



1802 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

only one receiver. In (b), we add Xi
1 in the entropy term

because of the iterated argument that, given M12, Xn
2 , Xi

4, we
can construct Xi

1. For (c), we assumed a symmetric channel.
Remark 9: Note that we do not need partial adaptation in

this bound, and so these conclusions actually hold for full
adaptation. This implies that for the symmetric channel, full
adaptation is useless when two-way interference is strong
(1 ≤ α ≤ 2, α = q/p) and weak in some interval (2/3 ≤
α ≤ 1, α = q/p). Interestingly, when 2/3 ≤ α ≤ 2, the
“V” curve is also the capacity for the linear deterministic
symmetric interference channel with feedback [25]. If we add
another asymmetric genie Y n

4 in the first term in (a), then we
obtain the second sum-rate bound (IC→ c).

It may further be shown that for symmetric channels,
adaptation is also useless when two-way interference is very
strong (α > 2, α = q/p). To show this, we re-derive the
single-rate bounds this time not assuming partial adaptation
(allowing for full adaptation), and using symmetry in the last
step:

n(R12−ε)

≤ I (M12;Y n
2 , Y n

3 |M21, M34) ≤ H (Y n
2 , Y n

3 |M21, M34)

=
n

∑

i=1

[H (Y2,i , Y3,i |Y i−1
2 , Y i−1

3 , M21, M34, Xi
2, Xi

3)]

=
n

∑

i=1

[H (SN−n12 X1,i , SN−n43 X4,i |Y i−1
2 , Y i−1

3 , M21, M34, Xi
2, Xi

3)]

≤
n

∑

i=1

[H (SN−n12 X1,i , SN−n43 X4,i )]=n max(n12, n43)=np

Under very strong interference constraints, this is also known
to be achievable. Thus, we have obtained the capacity for the
symmetric linear deterministic two-way IC when α ≥ 2/3,
where we see that full adaptation is useless. We will comment
more on this in Remark V-D, and in Fig. 4.

We now continue with the sum-rate outer bound (IC→ d),
which uses a similar genie to that in Costa and El Gamal’s
[22] capacity result for a class of deterministic ICs, i.e. gives
to one receiver the interference created at the other receiver
by the desired message. The same type of genie (though this
time noisy) is used in the new outer bound for the Gaussian
one-way interference channel by Etkin, Tse and Wang [9]. The
main difference is that we also provide the transmitters in the
→ direction the messages in the← direction, or M21 and M43,
in order to be able to create X2 and X4 and remove these from
the entropy terms, obtaining only entropies of combinations of
the variables in the → direction.

n(R12+R34 − ε) ≤ I (M12; Y n
2 , SN−n14 Xn

1 , M21, M43)

+I (M34; Y n
4 , SN−n32 Xn

3 , M21, M43)

(d)= H (Y n
2 |SN−n14 Xn

1 , M43, M21)+H (SN−n14 Xn
1 |M43, M21)

−H (Y n
2 , SN−n14 Xn

1 |M12, M21, M43)

+H (Y n
4 |SN−n32 Xn

3 , M43, M21)+H (SN−n32 Xn
3 |M43, M21)

−H (Y n
4 , SN−n32 Xn

3 |M34, M21, M43)

Fig. 4. Csym for various linear deterministic ICs as a function of α := q
p ;

q interfering link strength, p direct link strength.

(e)= H (Y n
2 |SN−n14 Xn

1 , M43,M21)+H (Y n
4 |SN−n32 Xn

3 ,M43, M21)

+
n

∑

i=1

H (SN−n14 X1,i |SN−n14 Xi−1
1 , M43, M21, M34)

−H (Y2,i |Y i−1
2 , M12, M21, M43, Xi

2, Xi
1)

+
n

∑

i=1

H (SN−n32 X3,i |SN−n32 Xi−1
3 , M43, M21, M12)

−H (Y4,i |Y i−1
4 , M34, M21, M43, Xi

4, Xi
3)

( f )= H (Y n
2 |SN−n14 Xn

1 ,M43,M21)+H (Y n
4 |SN−n32 Xn

3 ,M43,M21)

+
n

∑

i=1

H (SN−n14 X1,i |SN−n14 Xi−1
1 , M43, M21, M34, Xi

3, Xi
4)

−H (SN−n32 X3,i |SN−n32 Xi−1
3 , M12, M21, M43, Xi

2, Xi
1)

+
n

∑

i=1

H (SN−n32 X3,i |SN−n32 Xi−1
3 , M43, M21, M12, Xi

1, Xi
2)

−H (SN−n14 X1,i |SN−n14 Xi−1
1 , M34, M21, M43, Xi

4, Xi
3)

= H (Y n
2 |SN−n14 Xn

1 , M43,M21)+H (Y n
4 |SN−n32 Xn

3 ,M43, M21)

≤
n

∑

i=1

[H (SN−n12 X1,i+SN−n32 X3,i |SN−n14 X1,i )

+H (SN−n14 X1,i+SN−n34 X3,i |SN−n32 X3,i )]
≤ n(max([n12 − n14]+, n32)+max([n34 − n32]+, n14)),

where (d) follows from the independence of the messages,
(e) by the chain rule of entropy and the fact that we can
create Xi

1 given M12, and we can create Xi
2 given M21, Y i−1

2
(similarly for Xi

3, Xi
4). We have also added the independent

messages M34 and M12 to the 3rd and 5th terms’ conditioning.
For (f), we have expanded the Y2,i and Y4,i in the entropy terms
of the 4th and 6th terms and removed the contributions from
the conditioning. In the 3rd term, we can create Xi

3 from M34

and Xi
4 from SN−n14 Xi−1

1 , Xi
3 and M43 (similarly for the 5th

term creating Xi
1 and Xi

2).
The sum-rate bound in the opposite direction may be derived

in a similar fashion, despite the asymmetry caused by the
partial adaptation condition.

Remark 10: We needed partial adaptation at nodes 1 and 3
(Lemma 8) to show bounds (IC→ d) and (IC← d). By
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symmetry, we may obtain the same result if nodes 2 and 4
were restricted.

Finally,

n(2R12+R34 − ε)

≤ I (M12; Y n
2 |M21, M43)+ I (M12; Y n

2 , Y n
4 |M21, M43, M34)

+I (M34; Y n
4 , SN−n32 Xn

3 |M21, M43)

= H (Y n
2 |M21, M43)− H (Y n

2 |M21, M43, M12)

+H (Y n
4 |M21, M43, M34)+H (Y n

2 |M21, M43, M34, Y n
4 )

+H (Y n
4 , SN−n32 Xn

3 |M21, M43)

−H (Y n
4 , SN−n32 Xn

3 |M34, M21, M43)
(h)= H (Y n

2 |M21, M43)− H (Y n
2 |M21, M43, M12)

+H (SN−n32 Xn
3 |M43, M21, M12)

+H (Y n
4 |SN−n32 Xn

3 , M43, M21)+H (Y n
4 |M21, M43, M34)

−H (Y n
4 , SN−n32 Xn

3 |M34, M21, M43)

+H (Y n
2 |M21, M43, M34, Y n

4 )

(i)≤
n

∑

i=1

[H (SN−n12 X1,i+SN−n32 X3,i )

+ H (SN−n14 X1,i+SN−n34 X3,i |SN−n32 X3,i )

+ H (SN−n12 X1,i |SN−n14 X1,i )]
= n(max(n12, n32)+max([n34−n32]+, n14)+[n12−n14]+),

where (h) follows from the definition of partial adaptation
and Lemma 8 (skipping a transition to multi-letter for brevity),
and (i) by canceling the 2nd and 3rd terms, as well as the
5th and the 6th terms. We may similarly prove the other
bounds of this form (IC→ f), (IC← e) and (IC← f).

We again see that, under partial adaptation constraints,
adaptation is useless and we obtain the capacity region of
two one-way ICs. Essentially, partial adaptation prevented
messages being relayed by other messages (which was also
impossible in the MAC/BC and Z channels). For example,
under full adaptation, message M12 may be relayed from Tx1
to Rx 2 through nodes 3 and 4. This path is “blocked” by the
partial adaptation assumption, as node 3 could not adapt to
carry M12. However, it should be pointed out that this is not
necessary in general: full adaptation in the two-way modulo 2
adder IC is useless as we showed in the previous subsection,
but the path is not blocked.

D. Symmetric Rate Comparison With Other
Interference Channel Models

For symmetric deterministic linear ICs, we may compare
the symmetric sum-capacity Csym of various one-way and
two-way models. Recalling α := q/p, we plot Csym as a
function of α for the IC [9], the IC with noiseless output
feedback [25], the IC with rate-limited feedback [26] (for a
fixed value of β = 0.125 in the notation of [26]), and the
two-way IC with full adaptation considered here (for α ≥ 2/3
only). Several observations may be made: the two-way IC
with partial adaptation behaves like two one-way interference
channels operating in parallel over the forward and backwards
link. This tells us that allowing partial adaptation is useless–
i.e. may as well not adapt. Interestingly, the same holds true

even for full adaptation for α > 2/3. This was also concluded
for the linear deterministic one-way interference channel with
interfering feedback links in [24]; what is interesting is that
we can just as well squeeze in extra information messages
in the feedback link (in the two-way interference channel
model) rather than use the backwards links for feedback.
The symmetric sum-capacity for the fully adaptive two-way
IC remains open for α < 2/3; it is solved for partial
adaptation.

Recently, the work in [28], [30] has considered a one-way
interference channel with interfering feedback links (again
forming an interference channel), a generalization of some of
the deterministic interference channels with feedback consid-
ered in [24], where the feedback link spends fraction λ of its
time sending feedback, and uses the remaining (1−λ) for other
things (such as for example sending independent backwards
messages, though adaptation as in (1) is not considered). This
differs from our model which integrates sending feedback and
messages over all links, allows for adaptation, and does not
force this separation. Because of these differences, and since
the symmetric sum-capacity in [28], [30] in our notation for
α ≥ 2/3, it is a function of this parameter λ, it is not plotted
here.

VI. GAUSSIAN TWO-WAY MULTIPLE-ACCESS

BROADCAST CHANNEL

All previous channel models considered were deterministic.
We now ask whether we may obtain insight into whether
adaptation is useless / useful in certain noisy channels. We
do so by considering the Gaussian two-way MAC/BC in this
section, and the Gaussian two-way IC in the next.

We demonstrate that adaptation in the real Gaussian
two-way MAC/BC with independent noises can only improve
the sum-capacity up to 1/2 bit per direction. We show this
by comparing non-adaptive inner bounds for this channel to
outer bounds to the two-way Gaussian MAC/BC. Our outer
bound for the → MAC direction is derived directly; the
outer bound for the ← BC direction follows by enhancing
the BC channel by giving Tx 2 perfect output feedback and
rendering the channel degraded, at which point the converse of
[20, Thm.2] follows.

A. Channel Model

At each channel use, the Gaussian two-way MAC/BC is
described by the input/output relationships

Y1 = X2 + Z1

Y2 = X1 + X3 + Z2

Y3 = X2 + Z3,

subject to power constraints E[|X j |2] ≤ Pj , j ∈ {1, 2, 3},
and independent, identically distributed complex Gaussian
noise Z j ∼ CN (0, N j ) at all nodes j ∈ (1, 2, 3); WLOG
assume that N3 ≥ N1. Note that we have removed the “self-
interference” terms such as X1 in the expression of Y1 (for
example) in contrast to the deterministic models considered.
This is for ease of exposition, to make the parallels with
the MAC and BC channels more direct. Note that in a
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Gaussian model, these “self-interference” terms can always
be subtracted at a given node in any case. In contrast, in the
Gaussian interference channel next, we will NOT eliminate the
self-interference terms from the channel model, to demonstrate
how they may be handled directly. Recall that the inputs of
the Gaussian two-way MAC/BC are fully adaptive, i.e.

X1,i = f1(M12, Y i−1
1 ), X2,i = f2(M21, M23, Y i−1

2 ),

X3,i = f3(M32, Y i−1
3 ). (19)

B. The Limited Utility of Adaptation in the Gaussian
Two-Way MAC/BC

We now have the following theorem.

Theorem 10: Adaptation in the Gaussian MAC/BC channel
may only improve the sum-rate in the → and ← directions
by up to 1/2 bit per direction.

Proof: First let us consider the → direction. For achiev-
ability, let the→ direction use the capacity achieving scheme
for the non-adaptive Gaussian MAC, whose sum-rate is
dominated by

R12 + R32 ≤ 1

2
log

(

1+ P1 + P3

N2

)

. (20)

For the converse, first consider the MAC direction, and
follow steps along the lines of a MAC with feedback as in
[19], [34]:

n(R12 + R32)

= H (M12, M32) = H (M12, M32|M21, M23) (21)

= H (M12, M32|M21, M23, Y n
2 )+ I (M12, M32; Y n

2 |M21, M23)

(22)

(a)≤ nεn +
n

∑

i=1

H (Y2,i |Y i−1
2 , M21, M23)

−H (Y2,i |Y i−1
2 , M12, M32, M21, M23, Y n

1 , Y n
3 ) (23)

(b)≤ nεn +
n

∑

i=1

H (Y2,i |X2,i )− H (Y2,i |X1,i , X2,i , X3,i ) (24)

(c)≤ nεn +
n

∑

i=1

H (X1,i + X3,i + Z2,i )− H (Z2,i) (25)

(d)≤ nεn + n

2
log

(

1+ P1 + P3 + 2
√

P1 P3

N2

)

(26)

where (a) follows by Fano’s inequality for the first term, by
the chain rule of entropy for the 2nd and 3rd terms, and by
conditioning reduces entropy in adding Y n

1 and Y n
3 to the

3rd term, (b) since for the 2nd term, given M21, M23 and
Y i−1

2 one can construct X2,i and then conditioning reduces
entropy, and for the 3rd term since given all the terms in the
conditioning we may create X1,i , X2,i , and X3,i and then use
the memoryless property of the channel model, (c) follows by
conditioning reduces entropy and by the memoryless channel,
(d) since it suffices to consider X1, X3 to be jointly Gaussian
and is outer bounded when they are maximally correlated, as
adaptation may permit joint p(x1, x3).

Now, taking the difference between the outer bound to the
adaptive two-way MAC/BC in the MAC direction in (26) and
the non-adaptive inner bound of (20) yields

(26)− (20) = 1

2
log

(

1+ 2
√

P1 P3

N2 + P1 + P3

)

≤ 1

2
log

(

1+ P1 + P3

P1 + P3

)

= 1

2
,

where the inequality follows as 2
√

P1 P3 ≤ P1 + P3, and we
have decreased the denominator.

For the← direction use the capacity achieving scheme for
the non-adaptive single-antenna Gaussian broadcast channel,
which yields the rates, for 0 ≤ α ≤ 1

R21 ≤ 1

2
log

(

1+ αP2

N1

)

, R23 ≤ 1

2
log

(

1+ (1− α)P2

N3 + αP2

)

.

(27)

For the converse, for the BC ← direction we enhance the
channel as follows:

• Give Tx 2 perfect output feedback, i.e. access to Y1,i−1,
Y3,i−1 at time i as well as access to M12, M32. Together
with feedback, this allows it to create Xi

1, Xi
3.

• Render the channel physically degraded by providing
Rx 1 with Y n

3 . Then Rx 3’s output is trivially a physically
degraded version of Rx 1’s output. This is where we
use the fact that, WLOG N3 ≥ N1 (if the reverse had
been true we would have given Y n

1 to Rx 3 instead). This
is crucial in ensuring a constant gap to a non-adaptive
scheme.

The converse of [20, Thm. 2], which shows that feedback
does not change the capacity region of the physically degraded
BC, then follows along all the same steps with the notation
correspondences ([20] ↔ this paper) as follows:

W1 ↔ M21, W2 ↔ M23, Y n ↔ (Y n
1 , Y n

3 ),

Zn ↔ Y n
3 , Xn ↔ Xn

2

The key point in proving the converse is [20, Lemma 3], which
follows in a straightforward manner even given the added
adaptation constraint (i.e. X2,i is also a function of Y i−1

2 which
is not present in the original [20, Thm. 2]), but we re-state and
prove it here in our notation for clarity and completeness.

Lemma 11: Analogous to Lemma 3 of [20]. For all λ ≥ 0,

n(R21 + R23) ≤ I (M23; Y n
3 )+ λI (M21; Y n

1 , Y n
3 |M23)

≤
n

∑

i=1

I (Ui ; Y3,i)+ λI (X2,i ; Y1,i , Y3,i |Ui )

where Ui := (M23, Y i−1
1 , Y i−1

3 ).
Proof: For the first term,

I (M23; Y n
3 ) =

n
∑

i=1

I (M23; Y3,i |Y i−1
3 )

=
n

∑

i=1

H (Y3,i |Y i−1
3 )− H (Y3,i |M23, Y i−1

3 )
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≤
n

∑

i=1

H (Y3,i)− H (Y3,i |M23, Y i−1
3 , Y i−1

1 )

=
n

∑

i=1

I (Y3,i ;Ui )

by definition of Ui := (M23, Y i−1
3 , Y i−1

1 ). For the second term,

I (M21; Y n
1 , Y n

3 |M23)

=
n

∑

i=1

I (M21; Y1,i , Y3,i |M23, Y i−1
1 , Y i−1

3 )

=
n

∑

i=1

I (M21; Y1,i , Y3,i |Ui )

≤
n

∑

i=1

I (M21, X2,i ; Y1,i , Y3,i |Ui )

=
n

∑

i=1

H (Y1,i , Y3,i |Ui )− H (Y1,i, Y3,i |Ui , M21, X2,i )

=
n

∑

i=1

I (Y1,i , Y3,i ; X2,i |Ui )

where several steps in the proof of [20, Lemma 3] are not
needed as our channel is trivially degraded.
Following the same arguments as in [20, Thm. 2],
the above Lemma yields an outer bound equivalent to
the region in (28), where we note that in addition to
Ui = (M23, Y i−1

1 , Y i−1
3 ) to construct X2,i = f (M21, M23,

Y i−1
2 , M12, M32, Y i−1

1 , Y i−1
3 ) ≡ f (Ui , M21, Zi−1

2 , M12, M32)
we also need M12, M32, M21, Zn

2 , but that, given the above
definition of the random variable Ui , the factorization of
the inputs as p(u)p(x2|u) still holds. Note that with some
abuse of notation we have left the channel distribution as
p(y1, y3|x2)p(y3|y1, y3) to emphasize that Rx 1 has access to
both Y n

1 , Y n
3 (we have forced the channel to be degraded) and

thus that Rx 3, with access to Y n
3 only is trivially a degraded

version of this. The outer bound for the ← BC direction is
thus given by the set of all non-negative R21, R23 such that

R21 ≤ I (X2; Y1, Y3|U), R23 ≤ I (U ; Y3) (28)

over all distributions of the form p(u)p(x2|u)p(y1, y3|x2)
p(y3|y1, y3). Evaluation for the Gaussian channel, as done
in [35], yields an outer bound of

R21 ≤ 1

2
log

(

1+ αP2

N1

N1 + N3

N3

)

,

R23 ≤ 1

2
log

(

1+ (1− α)P2

N3 + αP2

)

(29)

for 0 ≤ α ≤ 1.
Taking the difference between the sum of the outer bound

to the adaptive two-way MAC/BC in the BC direction in (29)
and the sum of the non-adaptive inner bounds of (27) yields

(29)− (27) = 1

2
log

(

1+ αP2

N1

N1 + N3

N3

)

− 1

2
log

(

1+ αP2

N1

)

(a)≤ 1

2
log

(

1+ 2αP2

N1

)

− 1

2
log

(

1+ αP2

N1

)

≤ 1

2
.

where (a) follows as N1+N3
N3
= 1+ N1

N3
≤ 2 since N1 ≤ N3.

Remark 11: We note that this result also implies that for the
one-way Gaussian MAC with FB and the one-way BC with
FB, feedback and adaptation of the nodes can only increase
capacity by up to 1/2 bit (sum-rate) per direction. This fact
has been partially noted in [25].

Remark 12: We also note that, in a similar vein to
Theorem 1, in the Gaussian channel, in the MAC→ direction,
the two-way sum-rate R12 + R32 is outer bounded by the
capacity of the one-way MAC channel with perfect output
feedback (once we provide the messages of the opposite
direction, and output feedback as genies). Similarly, in the
BC ← direction, we first render the channel degraded (and
provide messages in the opposite direction as genies) and
then outer bound this direction by an outer bound to the one-
way degraded BC with perfect output feedback. This raises
the interesting question of whether each direction of two-way
channels is in fact outer bounded by the one-way counterpart
with perfect output feedback. The authors suspect so, at least
in channels in which one’s own “self-interference” or signal
may be cancelled, or in which some invertibility conditions
hold.2

VII. GAUSSIAN TWO-WAY INTERFERENCE CHANNEL

We now consider the Gaussian two-way interference chan-
nel, and ask when non-adaptive schemes such as the celebrated
Han and Kobayashi [33] perform as well, or nearly as well,
as adaptive schemes. We do not construct any inner bounds
which employ adaptation; our focus is on showing when non-
adaptive schemes perform “well”. Rather, we derive an outer
bound for the Gaussian two-way IC under full adaptation
(all 4 nodes may adapt) and several under partial adaptation
(only 2 of the 4 may adapt) constraints. We then show that
non-adaptive schemes sometimes achieve the capacity, or at
least to within a constant gap of either the fully or partially
adaptive schemes. We note that while the converses and the
steps are new and exploit carefully chosen genies, when we
evaluate these by further outer-bounding our outer-bounds,
interestingly, we sometimes re-obtain some of the outer bounds
of the interference channel [9] or the interference channel with
feedback [25]. This in turn is sufficient to achieve capacity
to within a constant gap, which we emphasize, sometimes is
limited to partial adaptation and will be made explicit.

A. Channel Model, Definitions, and Partial
Adaptation Lemma

At each channel use, the Gaussian two-way IC is described
by the input/output relationships

Y1 = g11X1 + g21X2 + g41X4 + Z1

Y2 = g12X1 + g22 X2 + g32 X3 + Z2

Y3 = g23X2 + g33X3 + g43X4 + Z3

Y4 = g14X1 + g34X3 + g44X4 + Z4,

2After acceptance of this work, Anant Sahai pointed out that this might
be possible by the use of private and common randomness arguments at all
nodes. We leave this as an open question for now.
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where g jk, for j, k ∈ {1, 2, 3, 4} are the complex channel
gains. We assume the power constraints E[|X j |2] ≤ Pj = 1,
j ∈ {1, 2, 3, 4}, and independent, identically distributed com-
plex Gaussian noise Z j ∼ CN (0, 1) at all nodes j ∈
(1, 2, 3, 4). Define SNR12 = |g12|2,SNR21 = |g21|2,SNR34 =
|g34|2,SNR43 = |g43|2, and INR14 = |g14|2,INR41 =
|g41|2,INR23 = |g23|2,INR32 = |g32|2. Note that “self-
interference” terms such as g11X1 are included in the expres-
sion of Y1 (for example). In this Gaussian model, it is clear that
since node 1 knows X1 we may remove this self-interference
term due to the additive nature of the channel. However,
we leave it in our expressions to emphasize precisely this
fact. In other channels such as the two-way binary multiplier
channel, where Y = X1 X2 one cannot “undo” ones’ own
channel, which is one source of difficulty for this elusive two-
way channel. In all converses, the fact that we can cancel or
subtract out a node’s “self-interference” is shown explicitly.

We say that the Gaussian two-way interference channel
operates under “full adaptation” if we allow

X1,i = f1(M12, Y i−1
1 ), X2,i = f2(M21, Y i−1

2 ) (30)

X3,i = f3(M34, Y i−1
3 ), X4,i = f4(M43, Y i−1

4 ). (31)

Similarly, it operates under “partial adaptation” if we only
allow the following:

X1,i = f1(M12), X2,i = f2(M21, Y i−1
2 ) (32)

X3,i = f3(M34), X4,i = f4(M43, Y i−1
4 ), (33)

i.e. nodes 1 and 3 are “restricted” [4]. By symmetry, we may
alternatively allow nodes 2 and 4 to be restricted and 1, 3 to
be fully adaptive; whether allowing 1, 2 or 1, 4 to be restricted
and the complement fully adaptive remains an open problem.

We are interested in the symmetric capacity (or sum-rate),
when all the SNRs equal a given SNR, and all the INRs
equal a given INR. For full adaptation, due to the symmetry,
we consider the per-user rates Rsym = R12+R34

2 = R21+R43
2 .

In partial adaptation, there is only partial symmetry (nodes 1
and 3 are fixed, while 2 and 4 are not), and hence we will
consider the per user rates Rsym→ = R12+R34

2 and Rsym← =
R21+R43

2 for the forward and reverse directions respectively. We
will derive outer bounds for Rsym under full adaptation and
Rsym→, Rsym← under partial adaptation, and show these to be
achievable to within constant gaps by non-adaptive schemes.

We first prove a modified version of Lemma 8 relevant in
partial adaptation for the Gaussian channel.

Lemma 12: Under partial adaptation (32)–(33), for some
deterministic functions f5 and f6,

X2,i = f5(M12, M21, M34, Zi−1
2 ) ⊥ M43, ∀i (34)

X4,i = f6(M43, M34, M12, Zi−1
4 ) ⊥ M21, ∀i (35)

where ⊥ denotes independence.
Proof: Note that X2,i = f2(M21, Y i−1

2 ) and Y i−1
2 =

g12 Xi−1
1 + g22 Xi−1

2 + g32 Xi−1
3 + Zi−1

2 . Since Xi−1
1 and Xi−1

3
are functions only of M12 and M34 respectively, we may
conclude that there exists a function f ∗ such that X2,i =
f ∗(M21, M12, M34, Xi−1

2 , Zi−1
2 ). Iterating this argument, and

noting that X2,1 is only a function of M21, we obtain the
lemma. The result for X4,i follows similarly. That X2,i is

independent of M43 follows since M43 is independent of all
the arguments inside f ∗.

B. Outer Bounds

We now present two outer bounds for the Gaussian two-way
IC under full and partial adaptation respectively. We derive
general outer bounds, imposing symmetry only in the final
step.

Theorem 13: Outer bound: full adaptation. For the
Gaussian two-way symmetric IC under full adaptation, any
achievable symmetric rate Rsym = R12+R34

2 = R21+R43
2 ,

achievable by each user, satisfies

Rsym ≤ 1

2
log

(

1+ SNR+ INR+ 2
√
SNR× INR)

+ 1

2
log

(

1+ SNR

1+ INR
)

. (36)

Proof: It is sufficient to consider R12 + R34 due to
symmetry. This bound is inspired by the corresponding sum-
rate bound in the linear deterministic model, i.e., we add
asymmetric genie Y n

2 at node 4 and this resembles the
bounding technique used by Suh and Tse for the interference
channel with feedback [25]. We also note that we could have
equivalently provided node 4 with the genie g32 Xn

3 + Zn
2

instead of Y n
2 (in addition to M12, M21, M43 and Zn

1 ) which
more resembles the type of genie seen in ICs and ICs with
feedback. We have given Y n

2 as it is then easier to see how
node 4 may create Xn

2 based on M21 and Y n
2 , and the bounds

work out to the same. Notice the genie Zn
1 in the conditioning

of both terms as well which is not seen in the feedback
bounds [25]; this is needed in order to, together with the genie
M12, M21, M43, Y n

2 , be able to create Xn
1 at node 4 (essentially,

to create Y n
1 to create Xn

1 ).

n(R12+R34−ε)

≤ I (M12; Y n
2 |M21, M43, Zn

1 )

+I (M34; Y n
4 , Y n

2 |M12, M21, M43, Zn
1 )

= H (Y n
2 |M21, M43, Zn

1 )−H (Y n
2 |M21, M43, Zn

1 , M12)

+H (Y n
2 , Y n

4 |M21, M12, M43, Zn
1 )

−H (Y n
2 , Y n

4 |M21, M12, M43, Zn
1 , M34)

≤ H (Y n
2 |M21, M43, Zn

1 )+H (Y n
4 |M21, M12, M43, Zn

1 , Y n
2 )

−H (Zn
2 , Zn

4 )
(a)= H (Y n

2 |M21, M43, Zn
1 )−H (Zn

2)

+
n

∑

i=1

[H (g34X3,i+Z4,i |M21, M12, M43,

Y i−1
4 , Xi

4, Y n
2 , Xn

2 , Zn
1 , Xi

1)]−H (Zn
4)

(b)≤
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, X2,i )−H (Z2,i)

+H (g34X3,i+Z4,i |X4,i , g32 X3,i+Z2,i , Xi
1, Xn

2 )−H (Z4,i)]
(c)≤

n
∑

i=1

H (g12X1,i+g32X3,i+Z2,i |X2,i )−H (Z2,i)

+H (g34X3,i+Z4,i |X4,i , g32 X3,i+Z2,i)−H (Z4,i) (37)
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In step (a), Xi
1 in the conditioning of the third term is

constructed from (M12, Xn
2 , Xi

4, Zn
1 ). In step (b), we used

conditioning reduces entropy, and g32 X3,i + Z2,i in the condi-
tioning of the third term is decoded from Y n

2 . In step (c), we
only keep the self-interference X4,i and drop the terms Xi

1, Xn
2

in the conditioning of the third term. We could leave these and
express the outer bound in terms of correlation coefficients
between the inputs (which in general may be correlated due
to full adaptation). However, in subsequent steps we will seek
to maximize, or outer bound this outer bound to obtain a
simple analytical expression, which amounts to setting certain
correlation coefficients to 0, or equivalently, dropping the
terms Xi

1, Xn
2 in the conditioning. Further evaluation yields

(36), for details please refer to Appendix VIII-B.
Remark 13: Sum-rate bound: Note that the final, evaluated

symmetric, normalized sum-rate bound in (36) has the same
form as the IC with perfect output feedback outer bound
[25, upper bound on (7)], though they are arrived at using
different genies (though similar in many senses as mentioned
above). In both channel models, inputs may be arbitrarily
correlated as no additional arguments for restricting the input
distributions have been made, leading to similar bounding
techniques using correlation coefficients.

Theorem 14: Outer bound: partial adaptation. For the
Gaussian two-way IC under partial adaptation (32)–(33),
in addition to the bounds in Theorem 13, we may also
conclude that any achievable rates (R12, R21, R34, R43), and
Rsym→ = R12+R34

2 and Rsym← = R21+R43
2 must satisfy,

R12 ≤ log(1+ SNR12) (38)

R21 ≤ log(1+ SNR21) (39)

R34 ≤ log(1+ SNR34) (40)

R43 ≤ log(1+ SNR43) (41)

Rsym→ ≤ log

(

1+ INR+ SNR− INR× SNR
1+ INR

)

(42)

Rsym← ≤
⎧

⎨

⎩

log
(

1+ INR+ SNR
INR

)

, if SNR ≤ INR3

log
(

1+ (
√
SNR+√INR)2

1+INR
)

, if SNR > INR3

(43)
Proof: For the single-rate bounds, it is sufficient to show

the first two due to symmetry. Notice that we must treat the
→ and← directions separately however due to the asymmetry
of the partial adaptation.

n(R12−ε)

≤ I (M12;Y n
2 |M21, M34) ≤ H (Y n

2 |M21, M34)

−H (Y n
2 |M21, M34, M12, Xn

1 , Xn
2 , Xn

3 )

(a)≤
n

∑

i=1

[H (Y2,i |Y i−1
2 , M21, X2,i , M34, X3,i )−H (Z2,i)]

≤
n

∑

i=1

[H (g12X1,i+Z2,i )−H (Z2,i)] ≤
n

∑

i=1

[log(1+SNR12)]

n(R21−ε)

≤ I (M21;Y n
1 |M12, M43, M34, Zn−1

4 )

≤ H (Y n
1 |M12, M34, M43, Zn−1

4 )

−H (Y n
1 |M12, M34, M43, Zn−1

4 , M21, Xn
1 , Xn

2 , Xn
4 )

(b)≤
n

∑

i=1

[H (Y1,i |M12, M34, M43, Zn−1
4 , Y i−1

1 , X1,i, X4,i )−H (Z1,i)]

≤
n

∑

i=1

[H (g21X2,i+Z1,i )−H (Z1,i)] ≤
n

∑

i=1

[log(1+SNR21)]

where (a) and (b) follows from the definition of partial
adaptation and Lemma 12.

Next, we consider the sum-rate bounds (42) and (43), which
are inspired by the techniques used by Etkin, Tse and Wang for
the interference channel [9]. For the → direction of the sym-
metric rate, (44), which is shown at the top of the next page.
In the first step, we have given (g14 Xn

1+Zn
4 ) and (g32Xn

3+Zn
2 )

as side information. Step (a) follows from the independence
of the messages. In step (b), the 2nd and 5th terms follow
since g14X1,i and g32 X3,i are functions only of M12 and M34,
and the 3rd and 6th terms follow from the definition of partial
adaptation. For (c), in the conditioning of the 2nd term, we
are able to add (Xi

3, g32 Xi−1
3 + Zi−1

2 ) due to partial adaptation
constraints, and (Y i−1

4 , Xi
4) are constructed from (g14Xi−1

1 +
Zi−1

4 , M43, Xi
3). The 5th term follows similarly. In step (d),

−H (Z2,i) and −H (Z4,i) are obtained from a portion of the
6th and 3rd terms in (c) respectively using the chain rule
(noises are independent from other terms), and the remainder
(chain rule) of the 6th and 3rd terms are cancelled by the
2nd and 5th terms respectively.

To obtain (42) we continue to outer bound (44) in terms
of SNR and INR, using the fact that Gaussians maximize
entropy subject to variance constraints. Specifically, one may
intuitively see that, if one defines λ j k = E[X j X∗k ], that one
may express (44) in terms of λ12, λ13, λ14, λ34, λ23. One also
notices from the conditional entropy expression in (44) that
taking λ14 = λ23 = λ12 = λ34 = 0, and since λ13 =
0 (naturally, by partial adaptation) will maximize the outer
bound. This may alternatively be worked out by calculating
the conditional covariance matrices directly (as we will show
for the next bound on R←). In this case then, for each i ,
we may bound

H (g12X1 + g32 X3 + Z2|g14X1 + Z4, X2)− H (Z2)

≤ H (g12X1 + g32 X3 + Z2|g14X1 + Z4)− H (Z2)

≤ log 2πe(Var(g12X1 + g32X3 + Z2|g14X1 + Z4))

− log 2πe(Var(Z2))

≤ log

(

1+ SNR+ INR− SNR× INR
1+ INR

)

,

which together with the symmetric expressions for the third
and fourth terms in (44) yield (42).

For the← direction, we are similarly able to obtain the sum-
rate bound, despite some asymmetry due to partial adaptation,
where we leave out some steps:

n(R21+R43−ε)≤ I (M21; Y n
1 , g23 Xn

2+Zn
3 , M12, M34)

+ I (M43; Y n
3 , g41 Xn

4+Zn
1 , M12, M34) ≤ . . .
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n(R12+R34−ε) ≤ I (M12; Y n
2 , g14 Xn

1+Zn
4 , M21, M43)+ I (M34; Y n

4 , g32 Xn
3+Zn

2 , M21, M43)

(a)= H (Y n
2 |g14Xn

1+Zn
4 , M43, M21)+H (g14Xn

1+Zn
4 |M43, M21)−H (Y n

2 , g14 Xn
1+Zn

4 |M12, M21, M43)

+H (Y n
4 |g32Xn

3+Zn
2 , M43, M21)+H (g32Xn

3+Zn
2 |M43, M21)−H (Y n

4 , g32 Xn
3+Zn

2 |M34, M21, M43)

(b)= H (Y n
2 |g14Xn

1+Zn
4 , M43, M21)+

n
∑

i=1

[H (g14X1,i+Z4,i |g14 Xi−1
1 +Zi−1

4 , M43, M21, M34)

− H (Y2,i , g14 X1,i+Z4,i |Y i−1
2 , g14 Xi−1

1 +Zi−1
4 , M12, M21, M43, Xi

2, Xi
1)]

+H (Y n
4 |g32Xn

3+Zn
2 , M43, M21)+

n
∑

i=1

[H (g32X3,i+Z2,i |g32Xi−1
3 +Zi−1

2 , M43, M21, M12)

− H (Y4,i , g32 X3,i+Z2,i |Y i−1
4 , g32 Xi−1

3 +Zi−1
2 , M34, M21, M43, Xi

4, Xi
3)]

(c)= H (Y n
2 |g14Xn

1+Zn
4 , M43, M21)+

n
∑

i=1

[H (g14X1,i+Z4,i |g14 Xi−1
1 +Zi−1

4 , M43, M21, M34, Xi
3, Y i−1

4 , Xi
4, g32 Xi−1

3 +Zi−1
2 )

− H (g32X3,i+Z2,i , Z4,i |Y i−1
2 , g14 Xi−1

1 + Zi−1
4 , M12, M21, M43, Xi

2, Xi
1, g32 Xi−1

3 +Zi−1
2 )]

+H (Y n
4 |g32Xn

3+Zn
2 , M43, M21)+

n
∑

i=1

[H (g32X3,i+Z2,i |g32Xi−1
3 +Zi−1

2 , M43, M21, M12, Xi
1, Y i−1

2 , Xi
2, g14 Xi−1

1 +Zi−1
4 )

− H (g14X1,i+Z4,i , Z2,i |Y i−1
4 , g32 Xi−1

3 +Zi−1
2 , M34, M21, M43, Xi

4, Xi
3, g14 Xi−1

1 +Zi−1
4 )]

(d)=
n

∑

i=1

[H (Y2,i |Y i−1
2 , g14Xn

1+Zn
4 , M43, M21)−H (Z2,i)+H (Y4,i |Y i−1

4 , g32 Xn
3+Zn

2 , M43, M21)−H (Z4,i)]

≤
n

∑

i=1

[H (g12X1,i+g32X3,i+Z2,i |g14X1,i+Z4,i , X2,i )−H (Z2,i)+H (g34X3,i+g14X1,i+Z4,i |g32 X3,i+Z2,i , X4,i )−H (Z4,i)]

(44)

≤
n

∑

i=1

[H (g21X2,i+g41X4,i+Z1,i |g23X2,i+Z3,i , X1,i )

−H (Z1,i)+H (g43X4,i+g23X2,i+Z3,i |g41X4,i

+Z1,i , X3,i )−H (Z3,i)] (45)

We again proceed to outer bound (45) to obtain (43).
It is sufficient to evaluate the first two terms in (45) due
to symmetry. Once again, we could outer bound (45) in
terms of the conditional covariance matrices and then pro-
ceed to select values of the correlation coefficients (complex)
λi j := E[Xi X∗j ] which maximize this outer bound. A more
intuitive method is to note that the conditional entropies in
(45) will be maximized if λ14 = λ32 = 0, and λ12 = λ34 = 0
(similar to (52)), which may also be obtained by dropping
X1,i , X3,i in the conditioning terms. At that point, we are only
left with the coefficient λ24 = E[X2 X∗4 ], (which in contrast
to the → bound is not automatically 0 due to the possible
adaptation in the ← direction) yielding the following bound
for Rsym← = R21+R43

2 by symmetry:

Rsym←
≤ H (g21X2 + g41X4 + Z1|g23X2 + Z3, X1)− H (Z1)

≤ H (g21X2 + g41X4 + Z1|g23X2 + Z3)− H (Z1)

≤ log 2πe (Var(g21X2 + g41X4 + Z1|g23X2 + Z3))

− log 2πe(Var(Z1))

≤ log

(

1+ INR+ SNR+ 2|λ24| cos θ
√
SNR× INR

−SNR× INR+ INR
2|λ24|2 + 2

√
SNRINR3/2|λ24| cos θ

1+ INR
)

.

(46)

where θ is the angle of g21g∗41λ24. To maximize (46), we take
the partials of the expression with respect to |λ24| and θ and
set these to 0. For these to equal 0 for all SNR and INR we
must have θ = 0 and |λ24| =

√
SNR×INR
INR2 (discussed next). Note

that we must constrain |λ24| ∈ [0, 1]. In the interval |λ24| ∈[

0,
√
SNR×INR
INR2

]

one may verify that the function is increasing

in |λ24|. Thus, if
√
SNR×INR
INR2 ≤ 1, (|λ24| =

√
SNR×INR
INR2 , θ = 0)

maximizes (46); this happens if SNR ≤ INR3, and yields the
first bound in (43). Otherwise, for SNR > INR3, (λ24 = 1,
θ = 0) maximizes (46), yielding the second equation in (43).

Remark 14: The sum-rate bound for Rsym→ of (42) has
the same form as Etkin, Tse and Wang’s outer bound for
one-way Gaussian interference channel [9, (12)] which is
useful in weak interference. The sum-rate bound for Rsym←
is quite different, and we note that it may be verified that (43)
is always at least as large as (42), as one might expect given
the partial adaptation constraints on nodes in the→ direction,
but none on the nodes in the ← direction.

We next show that these outer bounds, derived for the fully
adaptive or partially adaptive models, may be achieved to
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TABLE I

CONSTANT GAPS BETWEEN NON-ADAPTIVE SYMMETRIC HAN AND KOBAYASHI SCHEMES IN EACH DIRECTION AND PARTIALLY

OR FULLY ADAPTIVE OUTER BOUNDS FOR THE SUM-RATE OF THE SYMMETRIC TWO-WAY GAUSSIAN IC

within a constant gap or capacity by non-adaptive schemes–i.e.
the simultaneous decoding or the Han and Kobayashi scheme
operating in the two directions independently. We break our
analysis into three sub-sections: 1) very strong interference,
2) strong interference, and 3) weak interference. The overall
finite gap results are summarized in Table I.

C. Very Strong Interference: INR ≥ SNR(1+ SNR)

We first show that a non-adaptive scheme may achieve
the capacity for the two-way Gaussian IC under a partially
adaptive model in very strong interference. For the symmetric
two-way Gaussian IC, define “very strong interference” as the
class of channels for which INR ≥ SNR(1 + SNR), as in
[9, below equation (21)]. It is well known that the capacity
region of the one-way Gaussian IC in very strong interference
is that of two parallel Gaussian point-to-point channels [36],
which may be achieved by having each receiver first decode
the interfering signal, treating its own as noise, subtracting
off the decoded interference, and decoding its own message.
Given that the interference is so strong, this may be done
without a rate penalty. We ask whether the same is true for
the two-way Gaussian IC with partial adaptation. The answer
is affirmative and the capacity region is given by the following
theorem:

Theorem 15: The capacity region for the two-way Gaussian
interference channel with partial adaptation in very strong
interference is the set of rate pairs (R12, R21, R34, R43), such
that (38)–(41) are satisfied.

Proof: Each node may ignore its ability to adapt, and
rather transmit using a CN (0, 1) Gaussian random code. Each
receiver may cancel its own self-interference, and then proceed
to first decode the single interfering term before decoding its
own message. This standard non-adaptive scheme may achieve
the outer bound in (38)–(41) in Theorem 14.

D. Strong Interference: SNR ≤ INR ≤ SNR(1+ SNR)

In this regime, we are able to show that a non-adaptive
scheme may achieve capacity to within a constant gap of any
fully adaptive scheme (in contrast to any partially adaptive
scheme in the last subsection). A symmetric two-way Gaussian
IC, as in [9], is said to be in “strong interference” when
INR ≥ SNR.

The capacity region of one-way Gaussian interference chan-
nel in strong interference is given by [37], and for symmetric
channels, the sum-capacity when the interference is strong but
not very strong, i.e. SNR ≤ INR ≤ SNR(1 + SNR), may be
written as

Rsym = R12 + R34

2
≤ 1

2
log(1+ SNR+ INR). (47)

We note that this rate is achievable for the two-way
Gaussian IC by using the simultaneous non-unique decoding
scheme for the interference channel in strong interference
[18], [37], [38]) in the → and ← directions, and noting
that any self-interference may be canceled. This non-adaptive
scheme which achieves (47) in each direction also achieves
to within 1 bit (per user, per direction) of our fully adaptive
outer bound (36) in strong but not very strong interference.

Theorem 16: The sum-capacity for the two-way symmetric
Gaussian interference channel with full adaptation in strong
(but not very strong) interference is within 1 bit to (47) (per
user, per direction)

Proof:

(36)−(47) = 1

2
log(1+SNR+INR+2

√
SNR× INR)

+1

2
log

(

1+ SNR

1+INR
)

− 1

2
log (1+SNR+INR)

(a)≤ 1

2
log 2(1+SNR+INR)

+1

2
log

(

1+ SNR

1+INR
)

− 1

2
log(1+SNR+INR)

(b)≤ 1

2
+ 1

2
log

(

1+INR
INR

)

= 1.

In step (a), we use the fact that 1 + SNR + INR +
2
√
SNR× INR ≤ 2(1+SNR+INR). Step (b) follows from the

condition of strong interference INR ≥ SNR. Since our bound
(36) is valid for the symmetric assumptions of full adaptation,
we conclude that the non-adaptive schemes’ gap to the fully
adaptive outer bound for each user, for each direction is at
most 1 bit.

Remark 15: Note that if we were to evaluate the fully
adaptive outer bound of (51) and (52) under partial adaptation
constraints instead, i.e. X1 and X3 are only functions of M12
and M34 respectively, then we would be able to set λ13 in
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Fig. 5. Example of a channel in which adaptation yields unbounded gain
over non-adaptation. The non-adaptive scheme would not be able to achieve
any non-trivial rates for R12 and R34, while the adaptive scheme would be
able to achieve strictly positive rates.

(51) and λ34 in (52) equal to 0, yielding a new outer bound
Rsym→ ≤ 1

2 log(1+SNR+INR)+ 1
2 log

(

1+ SNR
1+INR

)

. In this

case a gap of 1
2 bit instead of 1 bit may be shown for Rsym→.

However, due to the asymmetry of partial adaptation (λ24 in
general not equal to 0), in the opposite direction, we would
still have a 1 bit gap for Rsym←.

E. Weak Interfererence: INR ≤ SNR

We now show that the well known Han and Kobayashi
scheme employed in the → and ← directions may achieve
to within a constant number of bits of the fully or partially
adaptive (depends on the channel regimes, or relative SNR and
INR values) sum-capacity for the two-way Gaussian IC.

Theorem 17: A non-adaptive scheme may achieve to within
a 2 bit per user per direction of the partially adaptive sum-
capacity for the two-way symmetric Gaussian IC in weak inter-
ference. In some channel regimes, this non-adaptive scheme
also achieves to within a constant gap of any fully adaptive
scheme.

Proof: As for the one-way IC [9], we break our proof
into two regimes: INR ≥ 1 or INR < 1.

1) INR ≥ 1: Outer bounds have already been derived.
Consider now using the specific choice of the Han and
Kobayashi (HK) strategy utilized for the symmetric one-way
IC as in [9, (4)] in each direction. That is, view nodes 1,2
as transmitters and 3,4 as receivers in the → direction and
employ the particular choice of the HK scheme where private
messages are encoded at the level of the noise, and similarly
for the← direction consider nodes 3,4 as transmitters and 1,2
as receivers. Due to the additive nature of the channel and
each node’s ability to first cancel out their self-interference,
one may achieve the following rates per user, per node for
each direction when INR ≥ 1 for the symmetric two-way
Gaussian IC:

RH K = min

{

1

2
log(1+INR+SNR)

+ 1

2
log

(

2+SNR
INR

)

−1, log

(

1+INR+ SNR
INR

)

−1

}

(48)

=:min{RH K 1, RH K 2}. (49)

If the first term in (48) is active we show a constant gap to
the outer bound (36),

(36)− RH K 1 ≤ 1

2
log 2(1+SNR+INR)

−1

2
log(1+INR+SNR)

+1

2
log

(

1+SNR
INR

)

− 1

2
log

(

2+SNR
INR

)

+1

≤ 1

2
log(2)+ 1

2
log(1)+1 = 1.5

Remark 16: Since our bound (36) is derived assuming full
adaptation, we may conclude that this gap holds for both
Rsym→ and Rsym← (i.e. holds for Rsym). If we were to
consider partial adaptation (λ13 = 0), this gap could be
reduced to 1 bit instead of 1.5 bits for Rsym→, but would
remain 1.5 bits for Rsym← as λ24 �= 0 in general for partial
adaptation.
If the second term in (48) is active, we use (42) to bound
the gap for Rsym→ as

(42)− RH K 2

= log

(

1+INR+SNR− INR× SNR
1+INR

)

− log

(

1+INR+ SNR
INR

)

+1

= log

(

(1+INR)2+SNR
1+INR

INR

INR(1+INR)+SNR
)

+1

= log

(

INR(1+INR)2+SNR× INR
INR(1+INR)2+SNR(1+INR)

)

+1 ≤ 1

Since our bound (42) has the same form as the ETW bound [9],
the sum-capacity of the Gaussian two-way interference chan-
nel with partial adaptation in the forward direction is also
to within 1 bit of the specific HK rate (48), (49) when
INR ≥ 1.

We use outer bound (43) for the backward direction, to
bound the gap for Rsym←, noting that we need to consider
both cases separately. If the first term in (43) is relevant
(SNR ≤ INR3):

(43)− RH K 2 = log

(

1+ INR+ SNR

INR

)

− log

(

1+ INR+ SNR

INR

)

+ 1 = 1

If the second term in (43) is relevant (SNR ≥ INR3):

(43)−RH K 2

= log

(

(1+2INR+SNR+2
√
SNR× INR)INR

(1+INR)((1+INR)INR+SNR)

)

+1

(a)≤ log

(

(2(1+INR+SNR)+INR)INR

(1+INR)((1+INR)INR+SNR)

)

+1

≤ log

(

2(INR+SNR×INR+2INR2+SNR+INR3)

INR+SNR×INR+2INR2+SNR+INR3

)

+1=2

where (a) follows the fact that 1 + SNR + INR +
2
√
SNR× INR ≤ 2(1+ SNR+ INR).
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Fig. 6. An example of a channel in which perfect output feedback (denoted by the dashed arrows in the left figure) would be able to achieve strictly positive
rates for R12 and R34, but the adaptive scheme for the same channel on the right would not be able to achieve non-zero rates for any of the links.

Remark 17: We have shown that the capacity region of the
Gaussian two-way interference channel with partial adaptation
(fix X1 and X3) is within at most 2 bits per user per direction
to the sum-rate achieved by two simultaneous HK schemes
in opposite directions when INR ≥ 1. Again, we may
conclude that partial adaptation cannot significantly increase
the capacity for Gaussian two-way IC with weak interference.

2) INR < 1: In this case, a symmetric version of the HK
scheme may be obtained from [9, (69)], for which each of the
four users may achieve the following rate:

RINR<1 ≤ log

(

1+ SNR

1+ INR
)

(50)

We show that this achieves to within 1 bit of the outer
bound (36)

(36)− RINR<1 ≤ 1

2
log

(

1+ SNR+ INR+ 2
√
SNR× INR)

−1

2
log

(

1+ SNR

1+ INR
)

≤ 1

2
log

(

2(1+ SNR+ INR)(1+ INR)

1+ SNR+ INR
)

(a)≤ 1

2
log(4) = 1

where (a) uses the condition INR < 1. Since (36) was
obtained for full adaptation, we conclude that the capacity of
the Gaussian two-way IC is to within 1 bit to the HK region
when INR < 1 for both directions.

F. Final Comments on Adaptation Versus No-Adaptation,
and Versus Perfect Output Feedback

In the above, we have highlighted classes of two-way
interference channels for which adaptation is useless. For the
Gaussian channel, only highly symmetric scenarios were con-
sidered. The conclusions made for such symmetric scenarios,
while insightful, do not tell the whole story. That is, it must be
noted that adaptation can provide unbounded gains over non-
adaptation for certain channels. A simple example of a channel
in which we see this is shown in Fig. 5. Here the forward
channel has no direct links, while the reverse channel has
no cross-over links. In this scenario, a non-adaptive scheme
would not be able to achieve any positive rate for R12 and
R34. However, the adaptive scheme would be able to achieve
positive rates for R12 and R34 by “routing” the messages. For
example, message M12 may exploit adaptation to take the path:

Tx 1 → cross-over link to Rx 4 → direct reverse link from
Tx 4 to Rx 3 → cross-over link Tx 3 to Rx 2. An adaptive
network may thus provide unbounded gain over a non-adaptive
network for at least some of the rates. Note however that if
the reverse direction is “routing” messages for the forward
direction, its own message rates will decrease.

One can also find examples of networks where perfect
output feedback provides unbounded gain over adaptation.
Note that in most scenarios where adaptation is useless, perfect
output feedback is known to be useless as well. For example,
for the symmetric linear deterministic two-way IC shown in
Fig. 4, the symmetric sum-rate of the linear deterministic
one-way IC and one-way IC with feedback are identical for
2
3 ≤ α ≤ 2, indicating that feedback is useless. In this regime,
adaptation was also shown to be useless. In the two-way
MAC/BC, for all deterministic models, perfect output feedback
may be shown to be useless, and adaptation was also useless.
One might ask whether feedback and adaptation being useless
always go hand in hand.

The following example shows the intuitive fact that adap-
tation being useless does not imply that feedback is useless.
To show that feedback may provide an unbounded gain over
pure adaptation, consider the two-way IC in Fig. 6. For
message M12 to travel from Tx 1 to Rx 2, using feedback it
may do so by taking the path: Tx 1→ cross-over link to Rx 4
→ feedbacks to Tx 3 → cross-over link to Rx 2. However,
clearly if we employ only adaptation over these forward and
reverse links, M12 is only able to be decoded by Rx 4 and
even with adaptation has no possible way to reach Rx 2.
So, feedback may improve the capacity in an unbounded way
over adaptation, at least when feedback is “free,” or perfect
(not over other interfering links in the reverse direction).
An alternative example of when feedback may outperform
adaptation is in the symmetric linear deterministic IC: for
α > 2, as seen in Fig. 4, feedback outperforms adaptation.
This is intuitive, as feedback is provided over perfect, infinite
capacity links, whereas adaptation must take place over the
same links over which the data travels.

Whether feedback being useless necessarily implies that
adaptation is also useless is an interesting open question;
all known examples for additive, memoryless channels seem
to suggest this but it has not been rigorously shown. In
a similar vein, whether each direction of a two-way chan-
nel is outer bounded by its one-way counterpart with per-
fect output feedback is another open question, related to
Remarks 1 and 12.
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VIII. CONCLUSION

In this work, we have demonstrated a few examples of two-
way multi-user channels for which adaptation, or the ability of
nodes to adapt their current channel inputs based on previously
received channel outputs, is useless from a capacity region
perspective, i.e. non-adaptive schemes achieve outer bounds
derived for the fully adaptive models. Specifically, we obtained
the capacity regions of the two-way MAC/BC channel, the
two-way Z channel, and the two-way IC of binary modulo-2
addition model, the “deterministic, invertible and cardinality
constrained” model, and the linear deterministic model. Inter-
estingly, adaptation (full or partial) is not needed to attain
the capacity regions even though it is permitted. For noisy
channels, we first showed that adaptation can only increase
the sum-rate of the two-way Gaussian MAC/BC by up to
1
2 bit per direction. We then considered the Gaussian two-way
IC with 4 terminals and 4 messages. There, it was shown that
partial adaptation is useless in very strong interference, and
for all other regimes non-adaptive schemes achieved to within
constant gaps of fully, or partially, adaptive schemes. We have
demonstrated several examples where adaptation is useless–
the question of when adaptation is useless in general networks
remains a challenging open question. However, based on some
of the examples seen here, we believe that the following
properties may be needed to make the claim that “adaptation
is useless” for a particular network: 1) the self-interference
can be cancelled (excludes the binary multiplier channel),
2) no loop in the networks (excludes the relaying of
data along stronger paths), and 3) no “coherent” gains
(excluding possible gains by having users use adaptation
to create joint input distributions in for example Gaussian
networks).

APPENDIX

A. Proof of Theorem 4

Proof: Time-sharing may again be used to achieve this
region. For the converse,
Proof of bound (8):

n(R12 + R32 + R34 − ε)

≤ I (M12; Y n
2 |M21, M23, M43)

+I (M32, M34; Y n
4 , Y n

2 |M43, M12, M21, M23)
(a)≤ I (M12; Y n

2 |M21, M23, M43)

+I (M32, M34; Y n
2 |M43, M12, M21, M23)

+I (M32, M34; Y n
4 |M43, M12, M21, M23, Y n

2 )
(b)≤ H (Y n

2 |M21, M23, M43)− H (Y n
2 |M12, M21, M23, M43)

+H (Y n
2 |M12, M21, M23, M43)

+H (Y n
4 |M43, M12, M21, M23, Y n

2 )

(c)≤
n

∑

i=1

[H (Y2,i)+ H (Y4,i |M12, M21, M23, M43, Y i−1
4 , Y n

2 )]

(d)=
n

∑

i=1

[H (Y2,i)+ H (X3,i ⊕ X4,i |M12, M21, M23, M43,

Y i−1
4 , Xi

4, Xi−1
3 , Y n

2 , Xn
2 )]

Fig. 7. The Markov chain used in the outer bound proof of Theorem 4.

(e)=
n

∑

i=1

[H (Y2,i)+ H (X3,i |M12, M21, M23, M43,

Y i−1
4 , Xi

4, Xi−1
3 , Xn

1 ⊕ Xn
2 ⊕ Xn

3 , Xn
2 , Xn

1 )]
=

n
∑

i=1

[H (Y2,i)] ≤ n

where (a) follows from the chain rule. We drop two negative
entropy terms in inequality (b) and notice that the second
and the third entropy terms cancel each other. In (c), we
apply the chain rule first, then we drop the conditioning
part of the first entropy term. In (d), we construct Xi

4 =
f4(M43, Y i−1

4 ) and note that Xi−1
3 may be obtained from

Y i−1
4 = Xi−1

3 ⊕ Xi−1
4 , given Xi−1

4 . Adding Xn
2 follows from

the fact Xn
2 = f2(M21, M23, Y n−1

2 ). In (e), we cancel X4,i in
the second entropy term since we know Xi

4. In addition, given
M12 and Xn

2 , we may construct Xn
1 as illustrated in Fig. 7.

Now, we may obtain Xn
3 from Y n

2 = Xn
1⊕Xn

2⊕Xn
3 , so that the

second entropy term in zero. Bound (9) follows by symmetry.

B. Evaluation of the Sum-Rate Outer Bound With Full
Adaptation in Gaussian Two-Way IC of Theorem 13

Letting E[X j X∗k ] = λ j k , suppressing the subscript i , and
assuming a symmetric channel, the first two terms in (37) may
be bounded as

H (g12X1 + g32 X3 + Z2|X2)− H (Z2)

≤ H (g12X1 + g32 X3 + Z2)− H (Z2)

≤ log 2πe(Var(g12 X1)

+Var(g32 X3)+ 2Cov(g12X1, g32 X3)+ 1)− log 2πe(1)

= log(SNR+ INR+ 2|λ13| cos θ
√
SNR× INR+ 1) (51)

where θ is the angle of g12g∗32λ13. Similarly, the last two terms
may be bounded as

H (g34X3 + Z4|g32 X3 + Z2, X4)− H (Z4)

≤ log

(

Var(g34X3 + Z4|g32X3 + Z2, X4)

σ 2
4

)

≤ log

(

1+ SNR(1− |λ34|2)
INR(1− |λ34|2)+ 1

)

. (52)

To obtain (36) one may verify that the sum of (51) and (52)
is maximized at λ34 = 0 and λ13 = 1, θ = 0.
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