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Abstract—This paper studies the sum-rate of a class of mem-
oryless, real-valued additive white Gaussian noise interference
channels (IC) achievable by treating interference as noise (TIN).
We develop and analytically characterize the rates achievable
by a new strategy that uses superpositions of Gaussian and
discrete random variables as channel inputs. Surprisingly, we
demonstrate that TIN is sum-generalized degrees of freedom
optimal and can achieve to within an additive gap of O(1) or
O(log log(SNR)) to the symmetric sum-capacity of the classical
IC. We also demonstrate connections to other channels such
as the IC with partial codebook knowledge and the block
asynchronous IC.

I. INTRODUCTION

Consider a memoryless real-valued additive white Gaussian
noise interference channel with input-output relationship

Y n1 = h11X
n
1 + h12X

n
2 + Zn1 , (1a)

Y n2 = h21X
n
1 + h22X

n
2 + Zn2 , (1b)

where Xn
j := (Xj1, · · ·Xjn) and Y nj := (Yj1, · · ·Yjn) are

the length-n vector inputs and outputs, respectively, for user
j ∈ [1 : 2], the noise vectors Znj are independent and have i.i.d.
zero-mean unit-variance Gaussian components and the inputs
Xn
j is subject to a per-block power constraint 1

n

∑n
i=1X

2
ji ≤

1, for j ∈ [1 : 2]. Input Xn
j , j ∈ [1 : 2], is a function

of the independent message Wj that is uniformly distributed
on [1 : 2nRj ], where Rj is the rate and n the block length.
Receiver j ∈ [1 : 2] wishes to recover Wj from the channel
output Y nj with arbitrary small probability of error. Achievable
rates and capacity region are defined in the usual way [1].

In this work we shall focus on the sum-capacity, defined as
the largest achievable R1 +R2. It was shown by [2] that the
sum-capacity of any information stable [3] IC is given by

max
n∈N,PXn1 ,Xn2 =PXn1

PXn2

1

n

(
I(Xn

1 ;Y
n
1 ) + I(Xn

2 ;Y
n
2 )
)
. (2)

For the Gaussian noise channel in (1), the maximization in (2)
is further restricted to inputs satisfying the power constraint.

For sake of simplicity, we shall focus from now on on the
symmetric Gaussian IC only, defined as |h11|2 = |h22|2 =
S ≥ 0, |h12|2 = |h21|2 = I ≥ 0, and denote its sum-
capacity in (2) as C(S, I). In general, little is known about
the optimizing distribution in (2) and only some special cases
have been solved. In [6] it was showed that i.i.d. Gaussian
inputs maximize (2) for

√
I
S (1 + I) ≤ 1

2 . In contrast, the
authors of [7] show that in general Gaussian inputs do not

maximize expressions of the form of (2). The difficulty of
the problem in (2) arises from the competitive nature of the
problem [8]: for example, say X2 is i.i.d. Gaussian, taking
X1 to be Gaussian increases I(Xn

1 ;Y
n
1 ) but simultaneously

decreases I(Xn
2 ;Y

n
2 ), as Gaussians are known to be the “best”

inputs for Gaussian point-to-point channels, but are also the
“worst” type of noise for a Gaussian input.

A lower bound to the sum-capacity can be obtained by
considering i.i.d inputs in (2), thus giving

RL(S, I) = max
PX1,X2

=PX1
PX2

(
I(X1;Y1) + I(X2;Y2)

)
, (3)

where the maximization in (3) is further restricted to inputs
satisfying the power constraint. In [8], [5] the authors demon-
strated the existence of input distributions that outperform i.i.d.
Gaussian inputs in RL(S, I) for certain asynchronous IC. Both
works use local perturbations of an i.i.d. Gaussian input: [5,
Lemma 3] considers a fourth order approximation of mutual
information, while [8, Theorem 4] uses perturbation in the
direction of Hermite polynomials of order larger than three. In
both cases the input distribution is assumed to have a density.
For the cases reported in [5], [8], the improvement over i.i.d.
Gaussian inputs shows in the decimal digits of the achievable
rates; it is hence not clear that these inputs can actually provide
substantial rate gains compared to Gaussian inputs.

Recently in [9], for the IC with one oblivious receiver,
we showed that a properly chosen discrete input has a
somewhat different behavior than continuous inputs: it may
yield a “good” I(X1;Y1) while keeping I(X2;Y2) relatively
unchanged, thus substantially improving the rates compared to
using Gaussian inputs in the same achievable region expres-
sion. In this work we seek to analytically evaluate the lower
bound in (3) for a special class of mixed Gaussian and discrete
inputs by generalizing the approach of [9].

Our contributions, and paper organization, are as follows.
In Section II we present the main tools used in our analysis:
a lower bound on the the mutual information attained by a
discrete input on a point-to-point Gaussian noise channel and
tools to compute the cardinality and minimum distances of
sum-sets. In Section III we present an achievable sum-rate
valid for any memoryless IC obtained by evaluating RL(S, I)
with an input that consists of the superposition of discrete
and Gaussian components, which we term mixed input from
now on. In Section IV we show that, in terms of generalized
degrees of freedom (gDoF), mixed inputs in RL(S, I) achieve



the optimal C(S, I). In Section V we show that at any finite
(S, I), RL(S, I) with mixed inputs lies to within a constant
gap of O(1) or of log(log(S)) from C(S, I). In Section VI
we apply our results to the block asynchronous IC and the
oblivious IC. Section VII concludes the paper.

We use the following notation convention: if A is a random
variable (r.v.) we denote its support by supp(A); |A| is the
cardinality of a set A or cardinality of supp(A) if A is r.v.;
the symbol dmin(S) = mini 6=j:si,sj∈S |si − sj | denotes the
minimum distance among the points in the set S. With some
abuse of notation we also use dmin(A) to denote dmin(supp(A))

for a r.v. A; X ∼ N (µ, σ2) denotes a real-valued Gaussian
r.v. X with mean µ and variance σ2; log(·) denotes logarithms
in base 2 and ln(·) in base e; we let [x]+ := max(x, 0) and
log+(x) := [log(x)]+; bxc refers to largest integer less than
or equal to x; PAM(N, dmin) denotes the uniform distribution
over a zero-mean real-valued Pulse Amplitude Modulation
(PAM) constellation with N points and minimum distance
dmin (and average energy E = d2min

N2−1
12 ).

In the following we will compare RL(S, I) to an upper
bound on C(S, I), denoted by RU (S, I), from the classical IC
with full codebook knowledge at all nodes and with block
synchronous communication. RU (S, I) is therefore an upper
bound to the capacity of block asynchronous or IC with partial
codebook knowledge. As mentioned earlier, from [6] we have

RL(S, I) = C(S, I) = log

(
1 +

S

1 + I

)
if

√
I

S
(1 + I) ≤ 1

2
.

Moreover, C(S, I) ≤ RU (S, I) := min (O1, O2, O3) with

O1 := log (1 + S) cut-set bound, (4a)

O2 := log

(
1 + I+

S

1 + I

)
from [10], (4b)

2O3 := log+
(
1 + S

1 + I

)
+ log(1 + I+ S) from [11]. (4c)

II. MAIN TOOLS

In this Section we present the main tools to evaluate the
lower bound in (3) under mixed inputs. At the core of our
proof is the following new lower bound on the rate achieved
by a discrete input on a point-to-point Gaussian noise channel.

Theorem 1 ([9, Theorem 1]). Let XD be a discrete r.v. with N
distinct masses and minimum distance dmin, ZG ∼ N (0, 1),
and S be a non-negative constant. Then,

I(XD;
√
SXD + ZG) ≥ Id

(
N,

Sd2min

4

)
, (5)

where, for N ∈ N and x ∈ R we define

Id (N, x) :=

[
log(N)− 1

2
log
( e
2

)
− log

(
1 + (N − 1)e−x

)]+
.

The inequality in (5) nicely captures the effect of the
cardinality and minimum distance of the discrete constellation

on the achievable mutual information. We are not the first
to analytically consider discrete inputs. For point-to-point
Gaussian noise channel: [12] characterized the optimal discrete
input distribution at high and low SNR; [13] found tight
high-SNR asymptotic of mutual information for any discrete
constellation whose size N is independent of SNR; in [14]
the authors considered the point-to-point power-constrained
Gaussian noise channel and derived lower bounds on the
achievable rate when the input is constrained to be PAM.
However, in our work we need a firm lower bound that holds
for all SNR’s and all input distributions. The reason is that we
want to carefully select N as a function of SNR, a problem
that was left open in [12]. Note that we can not directly use
[14] as the sum of two PAMs is not necessarily another PAM.

In multi-user settings, we may wish to select one user’s
input as Gaussian, another as discrete, or both mixtures of
discrete and Gaussian. To handle such scenarios based on (5),
we need bounds on the cardinality and minimum distance of
sums of discrete constellations. If X and Y are two sets,
denote the sum-set as X + Y := {x + y|x ∈ X, y ∈ Y }.
Tight bounds on the cardinality and the minimum distance of
X+Y , for general X and Y , are an open problem in number
theory. The following set of sufficient conditions will play an
important role in evaluating (3) under mixed inputs.

Proposition 1. Let (hx, hy) ∈ R2 be two constants,
X ∼ PAM(|X|, dmin(X)) and Y ∼ PAM(|Y |, dmin(Y )).
Then dmin(hxX+hyY ) = min(|hx|dmin(X), |hy|dmin(Y )) and
|hxX + hyY | = |X||Y |

if |Y ||hy|dmin(Y ) ≤ |hx|dmin(X) (6)
or if |X||hx|dmin(X) ≤ |hy|dmin(Y ), (7)

Proof: The conditions in (6)-(7) are such that one PAM
constellation is completely contained within two points of the
other PAM constellation.

When Proposition 1 is not applicable, we will use the
following proposition inspired by [15]:

Proposition 2. Let X and Y be two PAM(N, dmin). Then
|hxX + hyX| = |X|2 almost everywhere and

dmin(hxX+hyY ) ≥ min
(
|hx|, |hy|

)
min

(
1, γ
)
dmin (8)

for all (hx, hy) ∈ E ⊆ R2 where the complement of E has
Lesgebue measure smaller than 2γ, for any γ > 0.

Proof: The proof can be found in Appendix A.

III. ACHIEVABLE SUM-RATE WITH MIXED INPUTS

We now evaluate the lower bound in (3) with inputs

Xi =
√
1− δ XiD +

√
δ XiG, δ ∈ [0, 1], (9a)

XiD ∼ PAM

(
N,

√
12

N2 − 1

)
, XiG ∼ N (0, 1), (9b)

where Xij are independent for i ∈ [1 : 2], j ∈ {D,G}. The
input in (9) has two parameters: the number of points N (since
here we consider unitary power constraint), and the power split



TABLE I: Parameters used in the proof of Theorems 2 and 3.

α N δ d2
min(S) dL(α) Additive Gap

[0, 1/2] Not Applicable 1 Not Applicable 2(1− α) 1 bit [10], for S ≥ I(1 + I)

(1/2, 2/3]

⌊√
1 +

(
I2

1+S+2I

)1−ε⌋
1

1+I
I2

1+S+2I
12

N2−1
(2− ε)α eq.(15), for

S < I(1 + I)
I3 ≤ S(1 + S+ 2I)

(2/3, 2)
⌊√

1 +
√
I
⌋

1
1+I

Imin(S,I)
1+S+2I

12
N2−1

min(1, γ2)
max(α, 2− α)
except on an outage
set of measure ≤ 2γ

eq.(16), for I3 > S(1 + S+ 2I)
I < S(1 + S)

[2,∞)
⌊√

1 + S1−ε
⌋

0 S 12
N2−1

2(1− ε) eq.(14) for I ≥ S(1 + S)

δ. Careful choices of these parameters will lead to the desired
results in different regimes. The inputs in (9) are symmetric,
i.e., same parameters for both users, since we restrict attention
to a symmetric IC. Extensions to a non-symmetric ICs are
straightforward but more computationally involved.

Proposition 3. For the input in (9), RL(S, I) may be further
lower bounded as

RL(S, I) ≥ 2Id

(
|S|,

d2min(S)

4

)
+ log

(
1 +

Sδ

1 + Iδ

)
−min

(
log(N2), log

(
1 +

I(1− δ)
1 + Iδ

))
,

where the sum-set S is defined as

S :=

{ √
1− δ√

1 + Sδ + Iδ
(
√
Sx1D +

√
Ix2D) :

x1D ∈ X1D

x2D ∈ X2D

}
,

Proof: Due to the symmetry of the problem I(X1;Y1) =
I(X2;Y2) = RL(S, I)/2; hence, for a Z ∼ N (0, 1), we have

I(X2;Y2) = h(
√
IX1 +

√
SX2 + Z)− h(

√
IX1 + Z)

=

(
h

( √
1− δ√

1 + Sδ + Iδ
(
√
Sx1D +

√
Ix2D) + Z

)
− h(Z)

)
︸ ︷︷ ︸

≥Id

(
|S|,

d2
min(S)

4

)
by Theorem 1

−
(
h

( √
1− δ√
1 + Iδ

√
IX1D + Z

)
− h(Z)

)
︸ ︷︷ ︸

=I
( √

1−δ√
1+Iδ

√
IX1D+Z;X1D

)
≤min(log(N), 12 log(1+

I(1−δ)
1+Iδ )

+
1

2
log(1 + Iδ + Sδ)− 1

2
log(1 + Iδ),

where the mutual information upper bound follows since
‘Gaussian maximizes the differential entropy for a given
second moment constraint’ and ‘a uniform input maximizes
the entropy of a discrete random variable’ [1].

IV. HIGH SNR PERFORMANCE

In this Section we show that the lower bound in Proposi-
tion 3 attains the same generalized degrees of freedom (gDoF)
as the upper bound in (4), where gDoF is defined as

dL(α) := lim
S→∞

RL(S, I = Sα)
1
2 log(1 + S)

. (10)

Similarly, define dU (α) by replacing RL by RU in (10). With
the upper bound in (4) we have [10]

dU (α) = 2min
(
1,max

(α
2
, 1− α

2

)
,max (α, 1− α)

)
. (11)

The main result of this Section is:

Theorem 2. A mixed input as in Proposition 3 achieves the
gDoF summarized in Table I.

Proof: The parameters of the input in (9) are chosen as in
Table I. When α ≤ 1

2 , Gaussian inputs are optimal to within
1 bit [10], hence we set δ = 1. For α ∈ (1/2, 2), we choose
δ such that the interference from the Gaussian portion of the
input, which is treated as noise, is ‘below the level of the
noise’ [10] by setting δ = 1

1+I . For α ≥ 2, we choose to send
only discrete inputs by setting δ = 0.

In very strong interference S(1 + S) ≤ I ⇐⇒ α ≥ 2, we
set δ = 0 and N = b

√
1 + S1−εc, for some ε ∈ (0, 1) where

ε < 1 insures a non-vanishing rate as S increases and ε > 0
insures that the minimum distance increases as S increases.
With this δ and N , the condition in (6) is N2S ≤ I, which
is readily verified in this regime. Therefore |S| = N2 and
d2min(S)

4 = 3S
N2−1 ≈ Sε from Proposition 1. By plugging these

values in Proposition 3, an achievable sum-rate is

RL ≥ 2Id

(
N2,

3S

N2 − 1

)
−min

(
log(N2), log (1 + I)

)
≥ log(N2)− log

( e
2

)
− 2 log

(
1 + (N2 − 1)e

− 3S
N2−1

)
. (12)

Finally, in the high-SNR limit we obtain
limS→∞

eq.(12)
0.5 log(1+S) = 2(1 − ε). The moderately weak

interference regime α ∈ (1/2, 2/3] follows similarly: now the
condition in Proposition 1 is N2I ≤ S and the sum-rate is
given by (13) (see next) because δ = 1

1+I .
For the remaining regime α ∈ (2/3, 2), we set N =⌊√
1 +
√
I
⌋
≈ Sα/4 and δ = 1

1+I and therefore, from
Proposition 2, |S| = N2 and d2min(S) as in Table I almost
surely for all channel parameters. Here d2min(S) increases in S
(i.e., no need for the ε parameter as in the previous regimes)
but the result holds for all channel parameters up to an outage
set of measure less than 2γ, where γ > 0 also affects the
minimum distance. By plugging these values in Proposition 3



we can further lower bound the achievable sum-rate as

RL ≥ log(N2)− log
( e
2

)
− 2 log

(
1 + (N2 − 1)e−

d2
min(S)

4

)
+ log

(
1 +

S

1 + 2I

)
. (13)

Finally, in the high-SNR limit we obtain
limS→∞

eq.(13)
0.5 log(1+S) = α+ 2[1− α]+ = max(2− α, α).

Theorem 2 shows that a mixed input can achieve the
optimal (same as the classical IC) gDoF: exactly in very
weak interference α ∈ [0, 1/2], arbitrarily close in moderately
weak interference α ∈ (1/2, 2/3] and very strong interfer-
ence α > 2, and up to an outage set, similar to [15], in
α ∈ (2/3, 2]. This result, especially for the strong and very
strong interference regimes, is unexpected. In the classical IC,
which we use as an upper bound, we know that i.i.d. Gaussian
inputs with joint decoding of the intended and interfering
message is optimal in strong and very strong interference.
The lower bound RL(S, I) however seems to imply TIN; if
this interpretation of the mutual information expression of
RL(S, I) were correct, then we would conclude that 0 gDoF
are achievable if both users are active because the strong
interference ‘swamps’ the useful signal at each receiver and
since it is Gaussian, it is the “worst” find of noise; indeed,
i.i.d. Gaussian inputs give RL(S, I) = log

(
1 + S

1+I

)
that

corresponds to 0 gDoF for I ≥ S. Our work shows that by
selecting non-Gaussian inputs with more structure, and by
exploiting knowledge of this structure leads to unbounded
gains (gDoF gains) even when interference is treated as noise.

V. FINITE SNR PERFORMANCE

In this Section we ‘refine’ the gDoF result of Theorem 2
by proving an additive gap between a sum-capacity upper
bound in (4) and the sum-rate achievable with a mixed input
in Proposition 3. This improves the result of Section IV and
demonstrates that the classical IC gDoF are exactly achievable.

Theorem 3. A mixed input as in Proposition 3 achieves the
gap summarized in Table I.

Proof: We analyze the different regimes separately. We
only consider the case S ≥ 1, otherwise a trivial gap of 1 bit
can be achieved by silencing both users, and I ≥ 1, otherwise
a trivial gap of 1 bit can be achieved by using Gaussian inputs
and treating interference as noise, i.e., δ = 1 in (9).

Very strong interference α ≥ 2: in (12), in addition to setting

the parameters as in Table I, we further set ε =
[
log( 1

3 ln(S))

log(S)

]+
so that log

(
1 + (N2 − 1)e

− 3S
N2−1

)
≤ 1 bit. The gap is the

difference between RU in (4a) and RL and is bounded as

RU −RL≤ log (1 + S)− log
(
b
√
1 + S1−εc2

)
+ log

( e
2

)
+ 2

(a)

≤ log (1 + S)− 2 log

(
1

2

√
1 + S1−ε

)
+ log

( e
2

)
+ 2

(b)

≤ log (Sε) + log
( e
2

)
+ 4

(c)

≤
[
log

(
1

3
ln(S)

)]+
+ log

( e
2

)
+ 4, (14)

where: (a) bxc ≥ 1
2x for x ≥ 1, (b) 1+x

1+x1−ε ≤ xε for x ≥ 1,
and (c) definition of ε.

Moderately weak interference regime 1/2 < α ≤ 2/3: the
gap analysis is similar to the very strong interference regime
but we now use the upper bound in (4b): we first notice that
the difference between the upper bound in (4b) and the last
term in (13) can be upper bounded as

log

(
1 + I+

S

1 + I

)
− log

(
1 +

S

1 + 2I

)
≤ log

(
1 +

I2

1 + S+ 2I

)
+ log(2)

therefore, the gap analysis is the same as that leading to (14)
if we replace S with I2

1+S+2I and we add an extra bit; we
therefore conclude that in this regime the gap is

RU −RL ≤
[
log

(
1

3
ln

(
I2

1 + S+ 2I

))]+
+ log

( e
2

)
+ 5

≤
[
log

(
1

3
ln

(
S

3

))]+
+ log

( e
2

)
+ 5, (15)

where the last inequality follows since I ≤ S in this regime.
Very weak interference α ∈ [0, 1/2]: Gaussian inputs and

treat interference as noise are optimal to within 1 bit [10].
Remaining regime α ∈ (2/3, 2): the difference between the

upper bound in (4c) and the last term in (13) satisfies

1

2
log+

(
1 + S

1 + I

)
+

1

2
log(1 + I+ S)− log

(
1 +

S

1 + 2I

)
≤ 1

2
log(1 + I) + log(2)

thus the gap, with N =
⌊√

1 +
√
I
⌋

, is

RU −RL ≤
1

2
log(1 + I)− log(N2)︸ ︷︷ ︸

≤2 for I ≥ 0

+1 + log
( e
2

)

+ 2 log

(
1 + (N2 − 1)e−

d2
min(S)

4

)
,

where the last term is not bounded for α = 2/3 or α = 2
because at these points dmin does not increase with S. We
remedy this by slightly changing the number of points of the

discrete part of the input to N = b
√

1 + (
√
I)1−εc and pick

ε =
[

2
log(I) log(

2
√
2 ln(I)

3min(1,γ2) )
]+

to ensures that log(1 + (N2 −
1) exp(−d2min(S)/4)) ≤ 1. With this we can show

RU −RL ≤
1

2
log(1 + I)− log

(
b
√
1 +
√
I
1−ε
c2
)

+ log (4e)

≤

[
log

(
2
√
2 ln(
√
I)

3min(1, γ2)

)]+
+ 3.5 + log

( e
2

)
. (16)



We note however, in strong interference for 4
√
I ln(
√
I)

3min(1,γ2) ≤ S,

and in moderate interference for S ln(I)
3min(1,γ2) ≤ I

3
2 , we have

that log(1 + (N2 − 1) exp(−d2min(S)/4)) ≤ 1; therefore ε is
not needed and the gap is RU −RL ≤ 5 + log

(
e
2

)
.

VI. APPLICATIONS OF OUR RESULTS

We have evaluated a very simple, generally applicable lower
bound to the capacity of any IC with a mixture of discrete
and Gaussian inputs and shown that, through careful choice
of the discrete input (where the number of points may depend
on the SNR), that such an input may achieve to within an
approximately constant gap of the capacity of a classical IC.
This result is of interest in several channels, as outlined next.

In [5] the authors studied the block asynchronous IC, whose
sum-capacity is denoted by CAC-IC. It was shown in [5] that
RL(S, I) ≤ CAC-IC ≤ RU (S, I). Hence, our results apply
directly and imply that using mixed inputs of the type proposed
here we may approximately (in the sense of Theorem 3)
achieve the capacity of the classical, synchronous IC.

Another application is to the IC with oblivious receivers
introduced in [4], where both receivers lack knowledge of
the codebook of the interfering transmitter. Lack of codebook
knowledge of the interfering signal prevents the decoders from
using joint decoding of messages and successive interference
cancellation, which are known to be capacity achieving in a
classical IC (where all codebooks are available to all nodes).
Denote the sum-capacity of the oblivious IC by COB-IC. [4]
demonstrated that RL(S, I) = COB-IC is indeed the capac-
ity of the oblivious IC, however, the input distribution that
maximizes RL(S, I) was not found. Our results again directly
apply and demonstrate the surprising fact that, even if receivers
do not know the interfering codebooks and cannot perform
joint decoding of messages, using a mixture of discrete and
Gaussian inputs, one can overcome this lack of codebook
knowledge and “approximately” achieve the capacity of the
IC where all codebooks are known.

VII. CONCLUSION

We studied the performance of mixed inputs on the Gaussian
IC. Its application to oblivious and asynchronous ICs some-
what surprisingly implies that much less “global coordination”
between nodes is needed than one might expect: synchronism
and codebook knowledge might not be critical if one is happy
with “approximate” capacity results. We showed that TIN is
gDoF optimal and within O(log log(S)) of capacity.

APPENDIX

Let S = hxX + hyY and z∗ ∈ Z. We want to find
dmin(S) := mini 6=j{|si − sj | : si, sj ∈ S} with |si − sj | =
|hxxi + hyyi − hxxj − hyyj |.
Case 1) xi = xj and yi 6= yj , or xi 6= xj and yi = yj :

|si − sj | = |hy|dmin(Y ) |zi − zj | ≥ |hy|dmin(Y ), or
|si − sj | ≥ |hx|dmin(X).

Case 2) xi 6= xj and yi 6= yj :

|si − sj | = |hydmin(Y )|
∣∣∣∣hxdmin(X)

hydmin(Y )
(zxi − zxj)− (zyj − zyi)

∣∣∣∣ .
Next, we lower bound |hz1 − z2| where h := hxdmin(X)

hydmin(Y ) . Let
E = {h : |hz1 − z2| ≥ γ} for some γ > 0. The Lebesque
measure of Ec (this will be our outage set) is

m(Ec) = m({h :
−γ + z2
z1

< h <
γ + z2
z1
}) = 2γ

|z1|
< 2γ.

Hence, on a set E we have the following lower bound |si −
sj | ≥ |hydmin(Y )|γ. By symmetry, |si−sj | ≥ |hxdmin(X)|γ.
Putting all the cases together we have:

dmin(S)≥min (|hy|dmin(Y ), |hx|dmin(X))min(1, γ).

Now, assume |X| = |Y | = N and dmin(Y ) = dmin(X).
If |S| 6= N2, then there exists si = hxxi + hyyi and sj =
hxxj + hyyj , such that si = sj for some i 6= j, which in turn
implies that ∃xi, yi, xj , yj such that

hx
hy

=
yj − yi
xi − xj

=
|zyi − zyj |dmin(Y )

|zxi − zxj |dmin(X)
=
|zyi − zyj |
|zxi − zxj |

, (17)

i.e., hx
hy
∈ Q in order for |S| 6= N2. Since, rationals have

measure zero this implies that |S| = N2 a.e..
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