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Abstract—We consider a K-user interference channel in which
the channel gains from transmitter i to receiver j > i are 0,
resulting in a type of Z interference channel which we term
the Complete K-user Z Interference Channel which has not
been explicitly studied. We first consider the symmetric linear
high SNR deterministic approximation of the Gaussian noise
channel. For this model, we provide an outer bound which
may be achieved, thereby obtaining the sum-capacity. The outer
bound is obtained by providing two types of side-information:
the first reduces the channel model to one in which each receiver
sees a sum of the direct and interference terms, the second
is reminiscent of the Etkin-Tse-Wang side-information for the
interference channel. It is noted that the sum-capacity is a
function of the number of users K and is larger than the “W”
curve for the fully connected K-user interference channel, but
reduces to it as K →∞.

I. INTRODUCTION

The demand for higher data rates appears to be ever
increasing. Smart phones and tablets, in conjunction with
social network and multimedia applications, have finally given
communication engineers a “killer application”. As such, the
motivation to determine the ultimate limits of many long
standing network models, such as the interference and relay
channels, is strong. However, even what appears to be a simple
problem at first glance, such as the capacity of the 2-user
Interference Channel (IC), has been a formidable challenge
for the community for over thirty years.

Recently, in order to make progress in the understanding of
networks in general, it has been advocated that approximations
of – as opposed to the exact characterizations of – the whole
capacity region might be an alternative relevant metric [1].
With this approach, the capacity of the Gaussian 2-user IC
was determined to within 1 bit [2]. The ingredients of this new
powerful approach are to develop insights from rather simple
deterministic models (where the noise is neglected and the
interaction of signals is the main concern, such as in [3]) and
then translate them to the Gaussian noise network at high SNR
(where the impact of the noise is of secondary importance as
compared to the interference). This has led to the important
and insightful metric – the generalized degrees of freedom
(gDoF) of a network, i.e., the pre-log of the sum-capacity in
the regime where both INR and SNR are large and their ratio is
dB is kept constant. In this paper we follow the same approach
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Fig. 1. An example of layered network with 3 users/cells. Transmitter i,
denoted as Txi, communicates with receiver i, denoted as Rxi, i ∈ [1 : K],
and is interfered by users/cells with higher index only. Circles represents the
coverage area of the corresponding transmitter.

and we find the sum-capacity of a deterministic channel which
in turn will hopefully offer insight into the gDoF and capacity
for the Gaussian channel.

In this work we deal with the K-user IC. Instead of
considering the most general problem, which is characterized
by K2 channel gains/parameters, we focus on what we term
the K-user complete Z-IC (we drop the K-user from now
on for brevity). The complete Z-IC is a channel where the
receiver with index k ∈ [1 : K] only suffers interference from
its “downstream” users, that is, transmitter with higher index.
Motivation for this model comes from the communication
scenario depicted in Fig. 1. Often a transmitter-receiver pair
must be introduced inside of the coverage area of an existing
system. In Fig. 1 the smallest user/cell 3 falls inside of the
coverage area of larger cells 1 and 2, while cell 2 falls
inside of the coverage are of cell 1. Because of the relative
radii of the cells, receiver 3 experiences interference from all
transmitters, receiver 2 only from receiver 1 (because outside
the communication range of transmitter 3) and receiver 1 in
not interfered at all. This cell arrangement makes sense in
pico-cell networks [4].

Past Work. Recently, a large body of work has focused on
the K-user IC with K > 2 [5]–[12]. In [5] it was shown that
the gDoF the symmetric K-user IC (a fully connected IC where
all the direct links have strength SNR and all interfering links
have strength INR) is the same as for the 2-user case and is



given by the so-called W-curve of [2]. In [6] it was shown that
the gDoF of the cyclic symmetric Z-channel (a very sparse
IC where all the direct links have strength SNR and each
receiver experiences interference from one transmitter only
with strength INR; the channel is completely symmetric with
respect to the users) is given by the W-curve of [2] and does
not depend on K. The model of [6] was analyzed with output
feedback from a receiver to its intended transmitter in [8] and
it was shown that the gDoF is non-increasing in K and goes
from the V-curve of [13] for K = 2 to the W-curve of [2]
for K →∞. The sum-capacity of the generalization of [6] in
a deterministic 3-user setting was studied in [12] where the
sum-capacity was determined for certain ranges of parameters.
The K-user cascade Z-channel (where the circular symmetry
of the cyclic symmetric Z-channel is broken by removing one
interfering link) was studied in [11], where sum-capacity is
obtained for most channel parameters; constant gaps are shown
otherwise. In [9] a general capacity outer bound was derived,
which was shown to be tight for the sum-capacity of certain
complete Gaussian Z-ICs.

Contributions. The main contribution of this paper is to
determine the sum-capacity for the linear high SNR deter-
ministic approximation of the complete K-user Z-IC (the
linear deterministic channel or LDC), which is shown to be
a function of K. We provide outer bound for this channel
model which may be extended to general K-user interference
channels. For the symmetric scenario we show that the sum-
capacity is non-increasing in K and goes from the V-curve
of [13] for K = 2 to the W-curve of [2] for K → ∞. We
note that our channel is not cyclic and hence the results of [6]
do not immediately apply.

Paper Organization. The remainder of the paper is or-
ganized as follows. In Section II we formally introduce our
channel model. In Section III we derive a new sum-rate outer
bound and show schemes that achieve this outer bound for
the LDC symmetric K-user Complete Z-IC. In Section IV
we make some remarks. In Section V we conclude our results
and point out future directions.

II. CHANNEL MODEL

The Linear Deterministic approximation of the Gaussian
noise Channel (LDC) at high SNR was first introduced in [14]
and allows one to focus on signal interactions rather than on
the additive noise. This framework has been very powerful
in revealing the behavior of interference networks, and the
insights gained for the LDC have often been translated into
capacity results to within a constant gap for any finite SNR [2],
[13], [15]. In light of these success stories we also start our
investigation from the LDC.

The LDC Complete Z-IC is shown in Fig. 2. The channel is
characterized by K transmitter-receiver pairs. Transmitter i has
input Xi and intends to communicate message Wi, uniformly
distributed over [1 : 2NRi ] and independent of everything else,
to receiver i with output Yi, i ∈ [1 : K]. In the LDC channel
model, the input-output relationship is given by, for u ∈ [1 :
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Fig. 2. Deterministic Complete Z-Interference Channel with K users.

K]

Yu =
∑

i∈[u:K]

Sm−nuiXi, m := max{nij} (1)

where S is the binary shift matrix of dimension m, all inputs
and outputs are binary column vectors of dimension m, and
the summation is bit-wise over the binary field. We will be
interested in a symmetric model in which nii = nS , nij = 0
for j < i, and nij = αnii for j > i and α ≥ 0, ri = Ri/nS ,
and dK(α) = 1

K

∑K
i=1 ri. Define [x]+ := max{0, x}.

Transmitter i takes message Wi and encodes it into a
codeword XN

i which is then sent over the channel in N

channel uses. Receiver i uses the decoding function θ
(N)
i to

map its channel output Y Ni into an index Ŵi ∈ [1 : 2NRi ].
The probability of error is defined as

P (N)
e := max

i∈[1:K]
P[θ(N)

i (Y Ni ) 6= Wi]. (2)

The rate-tuple (R1, R2, . . . , RK) is achievable if one may
demonstrate a sequence of encoding and decoding functions
such that P (N)

e → 0 as the blocklength N →∞. The capacity
region is the closure of the set of all achievable rate tuples.

III. MAIN RESULTS

In this section we present and derive our main results. We
first present an outer bound on the sum-rate of K-user LDC
Complete Z-IC. We then achieve this sum-rate for general K.

A. Sum-rate upper bound

We now present an outer bound for the LDC channel which
is based on two key ideas:
• providing additional genie message information to reduce

the Complete Z-IC into a Cascade-IC as in [11]. This
ensures that at each receiver i, instead of seeing a sum of
its own signal and K− i interference terms, it sees a sum
of two terms: its desired signal and one interference term.
This alleviates the problem of evaluating the entropy of
vectors conditioned on a sum of interference terms.



• providing additional side-information of the form seen in
Etkin-Tse-Wang [2] which allows one to reduce the outer
bound by canceling a portion of one’s own information.

We note that while we present the outer bound for the LDC
channel model, this may be extended to the general K-user
interference channel and amounts to reducing it to a Cascade
Z-IC. For each Cascade Z-IC contained in the original K-user
channel one may obtain a new outer bound in this fashion, as
long as certain invertibility constraints of the type first seen in
[3] are met, i.e. in the following we need TNi = f(XN

i , L
N
i )

to be invertible given XN
i , where we select and provide certain

receivers with the side-information LNi .

Theorem 1. The sum-rate is upper-bounded by
K∑
i=1

ri ≤ max{1, α}+ (K − 2) max{1− α, α}+ [1− α]+.

(3)

Proof: Let TNk := Sm−nk,kXN
k + Sm−nk,k+1XN

k+1,
i.e. TNk is the sum of the desired signal (at receiver k)
and the interference created by transmitter k + 1 (modulo
k). Furthermore, let SNk := Sm−nk−1,kXN

k , i.e. this is the
interference transmitter k generates at receiver k − 1. Note
that TNk = Sm−nk,kXN

k + SNk+1. Then,

N

K∑
k=1

Rk =
K∑
k=1

H(Wk) =
K∑
k=1

H(Wk|Wk+2, . . . ,WK)

≤
K∑
k=1

I(Wk;Y Nk |Wk+2, . . . ,WK) +NεN

≤
K∑
k=1

I(XN
k ;Y Nk |XN

k+2, . . . , X
N
K ) +NεN

= I(XN
1 ;TN1 ) +

K−1∑
k=2

I(XN
k ;TNk ) + I(XN

K ;TNK ) +NεN

≤ I(XN
1 ;TN1 ) +

K−1∑
k=2

I(XN
k ;TNk , S

N
k ) + I(XN

K ;TNK ) +NεN

= H(TN1 )−H(TN1 |XN
1 )+

+H(SN2 ) +H(TN2 |SN2 )−H(TN2 |XN
2 )

+ ...

+H(SNK−1) +H(TNK−1|SNK−1)−H(TNK−1|XN
K−1)

+H(TNK )−H(TNK |XN
K ) +NεN

(a)
= H(TN1 ) +

K−1∑
k=2

H(TNk |SNk )

+H(TNK )−H(TNK−1|XN
K−1) +NεN

where we note that for (a) H(SNi |TNi , XN
i ) = 0 by def-

inition of SNi , H(SNi+1) = H(TNi |XN
i ), which leads to

much cancelation. For the LDC model, note that H(TN1 ) ≤
NnS max{1, α}, H(TNk |SNk ) ≤ NnS max{1 − α, α} (the
utility of the Etkin-Tse-Wang type side-information). To eval-
uate H(TNK ) − H(TNK−1|XN

K−1) notice that the last user

does not suffer any interference in our channel model and
hence TNK = Sm−nK,KXN

K , and that given XN
K−1, T

N
K−1 =

Sm−nK−1,KXN
K . Then, with some abuse of notation (shift

matrices apply to the vector XN
k at each channel use), we

split XK into a length [nS −αnS ]+ portion Xa, and a length
αnS portion Xb, and write

XN
K = [XN

a , X
N
b ], Sm−αnSXN

K = XN
b ,

we see that

H(TNK )−H(TNK−1|XN
K−1)

= H(Sm−nSXN
K )−H(Sm−αnSXN

K )

= H([XN
a , X

N
b ]|XN

b ) ≤ H(XN
a ) ≤ NnS [1− α]+.

Normalizing by N · nS completes the proof of (3).

Next, by using Theorem 1 and the fact that the capacity of
a K-user IC is contained into the capacity of any 2-user IC
obtained by silencing all but 2 users in the original channel,
the sum-rate outer bound in (3) reduces to:

For α 6= 1

dK(α) ≤ min
{
d2(α),

1
K

(
max{1, α}+ [1− α]+

+ (K − 2) max{1− α, α})}
}

=


1− α+ α/K α ∈ [0, 1/2)
α+ 2−3α

K α ∈ [1/2, 2/3)
1− α/2 α ∈ [2/3, 1)
α/2 α ∈ (1, 2)
1 α ∈ [2,∞)

(4)

where the we also added the sum-rate upper bound for 2-user
Z-IC

ri + rj ≤ min{2,max{2− α, α}} = 2d2(α),

for i 6= j ∈ [1 : K]. This corresponds to an interference
network where all but users i and j have been silenced, i.e.,
d2(α) coincides with the W-curve of [2] for α > 2/3. By
summing all such bounds on pairs of rates we obtain dK(α) ≤
d2(α). For K = 2, the bound in (4) reduces to the V-curve
of [13] for α ≤ 2 and it is equal to the interference free
capacity for α > 2 (the so-called very strong interference
regime).

For α = 1(singularity)

dK(α) ≤ 1
K
. (5)

This corresponds to the special case when all signals are statis-
tically equivalent. Hence, all the messages can be decoded by
each receiver. Thus the sum capacity is the same as capacity
of the K-user multiple-access channel.

B. Achievability

In this section we show how one can achieve the sum-rate
in (4). For each regime we will develop a coding scheme which
we illustrate graphically. In all coding scheme plots, we show
the different linear combinations of the shifted transmit signals



X1, X2, · · ·XK received at the K receivers. Each user uses a
different hatching for its bits. If the same hatch is used in
different places in a block it is meant to represent repetition
of that block of bits. White blocks denote empty blocks of
bits, sometimes accompanied by the letter ‘R’. We note that
the height of the block received on the direct link is always
1 and those of the “interfering” blocks is always α in the
symmetric scenario under consideration. At user i, the length
of the hatched block from transmitter i that may be extracted
from the combination yields the (normalized) achievable rate
ri i ∈ [1 : K].

Very Weak Interference Regime: 0 ≤ α ≤ 1
2 . In this

regime the optimal strategy is to treat interference as noise.
Fig. 3(a) shows the achievable strategy for K users. As seen
from Fig. 3(a), rK = 1 and ri = 1−α for i ∈ [1 : K − 1] are
achievable. Thus the sum rate is dK(α) = 1+(K−1)(1−α)

K =
1 − α + α/K. Note that in this regime the normalized sum-
capacity (with respect to the number of users) is decreasing
with K. For K → ∞ it becomes the “1 − α”-part of the
W-curve [2]. Note also the dK(α) does not represent the
symmetric rate achievable by all users as user K (the one
who does not suffer from interference) may achieve a larger
rate than the other users.

Moderately Weak-I Interference Regime: 1
2 < α ≤ 2

3 . In
this regime treating interference as noise is no longer optimal
and inspired by the 2-user case we use the Han-Kobayashi rate
splitting technique [16]. The sum-capacity achieving strategy
is shown in Fig. 3(b). As it can be seen, rK = 2 − 2α and
ri = α for i ∈ [1 : K − 1] is achievable. Thus dK(α) =
2−2α+(K−1)α

K = α + 2−3α
K . Note that in this regime too the

normalized sum-capacity (with respect to the number of users)
is decreasing with K. For K →∞ it becomes the “1−α”-part
of the W-curve [2].

Moderately Weak-II Interference Regime: 2
3 < α < 1.

We note that for α > 2/3 the sum-capacity does not depend
on K except at the singularity point α = 1 and is the same as
for the case K = 2. In this regime in order to achieve capacity
we may use repetitions. The achievable strategy in this regime
is show in Fig. 3(c). As it can be seen, every user achieves
ri = 1 − α + 2α − 3

2α − 1 = 1 − α
2 . Thus dK(α) = 1 − α

2 .
However, one may worry that for, for example, α ≥ 4

5 the
repeating bits of interfering signals overlap. We illustrate how
to deal with this we consider the example α = 6

7 >
4
5 , shown

of Fig. 4. By flipping around the repeated bits, one may still
achieve 1− α

2 at each user. Consider for example the decoding
at receiver k − 1 (at desires ”b” bits): b1 is cleanly decoded,
as is a1 because of the flipped bits. This a1 is used to decode
b2 from b2 + a1, and b1 is used to decode a2 from b1 + a2.
Then a2 is used to decode b3, and b4 is clean. Thus, Rx k−1
is able to decode 4 bits out of 7 as needed.

Singularity at: α = 1. When α = 1 we have a singularity in
that the channel is rank deficient and all outputs are statistically
equivalent. In this case we achieve dK(α) = 1

K by time-
sharing or by the strategy shown in Fig. 3(f).
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Fig. 4. Strategy for α = 6
7

, overlap strategy. The red blocks show repeated
blocks flipped.

Strong Interference Interference Regime: 1 < α ≤ 2. In
the strong interference regime as well as in the Moderately
Weak-II regime, the achievability schemes require the use of
repetition. As it can be seen from Fig. 3(d), every user achieves
r = α

2 . Thus dK(α) = α
2 .

Very Strong Interference Interference Regime: α > 2.
The Very Strong Interference regime α > 2 in an interference
channel is well understood – one may decode the undesired
interference first and cancel it from the received signal to
obtain a clean channel – each user achieves one degree of
freedom. The strategy is shown in Fig. 3(e)

Fig. 5. Sum-capacity of the Complete Z-IC for different values of K.

IV. DISCUSSION

On Complete Z-IC with Output Feedback. It is curious
to note that the sum-rate for the complete Z-IC for α < 2
is equal to that of for the cyclic symmetric Z-IC with output
feedback [8]. Whether there is a fundamental connection or
just a coincidence remains to be seen.

On the dependence of K. We would like to point out that
the reason that the sum-capacity is dependent on K is due to
the very anti-symmetric topology of the channel. However, as
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Fig. 3. Achievable strategies for the linear deterministic channel.

K →∞ the sum-capacity reduces to the degrees of freedom of
K-User Symmetric Interference Channel in [5]. The reason for
this is interference alignment, where all the interference terms
seen at a given receiver end up aligning, and may be viewed as
interference from a single user. In many cases including the
K-User Symmetric Interference Channel it has been shown
that this strategy corresponds to using lattice codes for the
Gaussian noise case. Fig. 5 shows the normalized sum-capacity
dK(α) for various values of K. It is interesting to note that
for K = 3 region 1

2 ≤ α ≤ 2
3 is flat.

V. CONCLUSION

We have obtained the sum-capacity for the linear deter-
ministic K-user Complete Z interference channel. Central to
proving this result was an outer bound which consisted of
reducing the channel to a Cascade Z interference channel
and providing Etkin-Tse-Wang-type side-information. We may
generalize the bound to provide a new bound for arbitrary K-
user interference channels. The normalized sum-capacity is
seen to depend on K, and as one might intuitively expect,
reduces to the “W” curve as K →∞. It was curious to note
that the sum-capacity was the same as that of the Cyclic Z-



IC with feedback; whether there is a fundamental connection
remains to be seen. Whether the insights obtained here trans-
late to determining the generalized degrees of freedom and
a constant-gap-to-capacity result for the Gaussian Complete
Z-IC is the subject of ongoing work.
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