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On the Capacity Region of the Two-User Interference
Channel With a Cognitive Relay

Alex Dytso, Stefano Rini, Natasha Devroye, and Daniela Tuninetti

Abstract—This paper considers a variation of the classical
two-user interference channel where the communication of two
interfering source-destination pairs is aided by an additional node
that has a priori knowledge of the messages to be transmitted,
which is referred to as the cognitive relay. For this interference
channel with a cognitive relay (ICCR), novel outer bounds and
capacity region characterizations are derived. In particular, for
the class of injective semi-deterministic ICCRs, a sum-rate upper
bound is derived for the general memoryless ICCR and further
tightened for the linear deterministic approximation (LDA) of
the Gaussian noise channel at high SNR, which disregards the
noise and focuses on the interaction among the users’ signals. The
capacity region of the symmetric LDA is completely characterized
except for the regime of moderately weak interference and weak
links from the CR to the destinations. The insights gained from
the analysis of the LDA are then translated back to the symmetric
Gaussian noise channel (GICCR). For the symmetric GICCR,
an approximate characterization (to within a constant gap) of
the capacity region is provided for a parameter regime where
capacity was previously unknown. The approximately optimal
scheme suggests that message cognition at a relay is beneficial for
interference management as it enables simultaneous over the air
neutralization of the interference at both destinations.

Index Terms—Cognitive relay, interference channel, interfer-
ence neutralization, capacity region, constant gap.

I. INTRODUCTION

IN the last two decades the wireless industry has grown at
such a rapid rate that it has started to exhaust much of the

precious frequency spectrum [3]. As a response, new technolo-
gies have emerged to improve spectrum management. Pico and
femto cells technologies [4], [5], for example, use many small
base-stations with relatively small coverage areas (as opposed
to and in addition to standard macro base-stations with larger
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Fig. 1. Network model under investigation. (a) Network aided by a small cell.
(b) The two-user GICCR.

coverage areas) to achieve higher throughputs through aggres-
sive spatial reuse. When the small cells have knowledge of the
messages to be transmitted by the macro base-stations, they
may act as relays to help other devices on the network, as shown
in Fig. 1(a), by providing an additional communication path for
a message to the desired destination, and by allowing the small
cell to better manage/combat the interference. In this work
we seek to obtain insights into the performance of such small
cell inspired systems. We take an information theoretic ap-
proach to the study of such architectures to obtain technology-
independent characterizations on the possible performance of
the system, measured here in terms of capacity regions.

We study the interference channel with a cognitive relay
(ICCR) shown in Fig. 1(b). In this simple model, the ICCR
has two independent sources (macro base stations) that send
information to their respective destinations by sharing the same
channel, i.e., interfering with each other. In addition, a relay
(small cell base station) that is non-causally aware of both
messages before transmission starts, aids the two sources. Since
the relay knows both messages, we term it the Cognitive Relay
(CR) following [6]. Non-causal message knowledge at the
relay may be possible when the relay backhauls to the other
transmitting nodes. Alternatively, if no backhauls are possible,
the relay may learn the messages of the other transmitters over
the air in a causal fashion—in this case the model studied may
provide a useful outer bound to the performance of any causal
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system. Non-causal message knowledge could also be the result
of a failed transmission in systems employing retransmission
protocols. Besides its practical motivations, the ICCR is also in-
dependently interesting from a theoretical perspective as it gen-
eralizes several channel models: the Interference Channel (IC)
[7], when the relay is not present, the Broadcast Channel (BC)
[8], when both transmitters are not present, and the Cognitive
Interference Channel (CIC), when one source is not present [6].

Past Work: In this work we focus on the case where the relay
has non-causal message knowledge and is in-band, that is, the
CR shares the same channel as the two source-destination pairs.
We note however that significant work exists on models with
causal cognition at the relay (where the relay is in-band [9],
or out-of-band [10], or out-of-band with noiseless rate-limited
links from the CR to the destinations [11], and others variations
such as those investigated in [12], [13]). If only one message
is available non-causally we obtain a MIMO CIC studied in
[14]. Finally, if only portions of the messages are available, the
techniques developed in this paper would apply to the portion
of the messages known at the relay, but decoding rates would
differ (as for example, partial message knowledge does not
allow for complete neutralization of the interference) and might
more resemble that of an IC.

To the best of our knowledge, the ICCR was first considered
in [15], where an achievable rate region was proposed. This rate
region was improved upon in Gaussian noise in [16], and again
for a general discrete memoryless channel in [17]. The authors
of [16] first proposed a sum-rate outer bound for the Gaussian
channel. In our conference work [1], we derived the first outer
bound for a general memoryless channel, which we further
tightened for a class of semi-deterministic channels subject
to injectivity conditions in the spirit of [18]. The tightened
outer bound was shown in [1] to be capacity for the class
of linear deterministic approximation (LDA) of the Gaussian
noise channel at high SNR (first introduced in [19]) in the
absence of interfering links and in several other special cases.
In [20], [21] general inner and outer bounds were obtained,
and shown to match for a class of ICCRs with “very strong
interference at one destination.” In our conference work [2], the
capacity of the symmetric ICCR LDA was shown for almost
all channel parameters with a tighter outer bound than that in
[1]. The insight from the capacity achieving schemes were used
to show capacity to within 3 bits/s/Hz in the Gaussian ICCR
(GICCR) without interfering links in [22], which was recently
improved upon by [23], where capacity was shown for this
channel through the derivation of a new outer bound tailored
to the channel without interfering links.

Contributions: The general ICCR is a complex channel
model that generalizes many classical channel models for
which capacity is open, including the IC and the BC. As such,
deriving its capacity region is a challenging and ambitious task.
We approach this task by first focusing our attention on the
LDA, which highlights the interplay between users’ signals by
eliminating the randomness of the noise [19]. The LDA models
the Gaussian channel at high SNR, and as such, schemes devel-
oped for the LDA can often be translated into “good” achievable
strategies for the Gaussian noise channel at any finite SNR, that
is, although not optimal in the sense of exactly achieving an

outer bound, they lie within a bounded distance of the outer
bounds regardless of the channel parameters. This approach has
allowed for progress on long standing open problems; for exam-
ple, the capacity of the IC [24] and of the CIC [25] are known to
within 1 bit/s/Hz. In this work, we first analyze the symmetric
LDA by determining its capacity region in almost all parameter
regimes (roughly speaking, the case of weak links from the CR
to the destinations and of moderately weak interference at a des-
tination from the non-intended source is excluded). We present
new achievable techniques that are sum-capacity optimal for
the LDA model that were not presented in our conference work
[2]. Then, with the insight gained from the study of the LDA,
we move back to the symmetric Gaussian noise channel and
show capacity to within a constant gap in several parameter
regimes that mimic the capacity results for the LDA, which has
not appeared in any conference version of our work.

Our central contributions are: (1) Deriving novel (non cut-
set) outer bounds for the class of injective semi-deterministic
ICCRs; (2) Further tailoring and tightening of the outer bounds
for the LDA and GICCR; (3) Deriving optimal achievability
schemes in almost all parameter regimes for the symmetric
LDA and providing insight into what might be missing in the
parameter regime for which we do not have capacity; (4) De-
riving the capacity to within a constant gap for the symmetric
Gaussian channel in regimes where it was open; (5) Numeri-
cally comparing the proposed inner and outer bounds with other
achievability schemes.

We note that the central contribution of this work lies in
considering a general ICCR for the outer bound, rather than
models where the assumptions of strong interference [21] or
the absence of interfering links [23] significantly simplify the
problem. For sake of space, and to convey the key contributions
of this work, we focus here only on symmetric channels for
achievability results, that is, ICCRs in which the capacity is
the same when the role of the sources is swapped. This is
done so as to reduce the number of parameters and obtain
insightful analytically tractable results. Nevertheless, our outer
bounds and achievable scheme apply to general non-symmetric
LDAs and GICCRs. We expect that the extension of the pre-
sented analysis to the fully general ICCR may follow the same
approach used here for the symmetric case, albeit with more
involved analytical computations.

Paper Organization: We introduce the channel model in
Section II. In Section III we present our novel outer bounds. In
Section IV we determine the capacity region for the LDA in al-
most all parameter regimes. In Section V we derive the capacity
to within a constant gap for some parameter regimes of the Gaus-
sian channel which were open, and numerically compare the
inner and outer bounds with other relaying schemes. Section VI
concludes the paper. Some proofs are found in the Appendix.

Notation: We use the notation convention of [26]: [n1 : n2]
is the set of integers from n1 to n2 ≥ n1; [x]+ := max{0, x}
for x ∈ R; xn denotes a vector of length n with components
(x1, . . . , xn); lower case x is an outcome of random variable
in upper case X which lies in calligraphic case alphabet X ;
N (μ, σ2) denotes a proper-complex Gaussian random variable
with mean μ ∈ C and variance σ2 ∈ R+; δ(·) denotes the Dirac
delta function.
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II. CHANNEL MODELS

A. The General Memoryless ICCR

The general two-user memoryless ICCR is character-
ized by three input alphabets (X0,X1,X2), two output al-
phabets (Y1,Y2), and a memoryless transition probability
PY1,Y2|X0,X1,X2

. Source i, i ∈ [1 : 2], encodes the message
Wi, assumed independent of everything else and uniformly
distributed on [1 : 2nRi ], into a codeword Xn

i ∈ Xn
i , where

n ∈ N denotes the codeword length and Ri the rate in bits
per channel use. Message Wi is intended for receiver i, i ∈
[1 : 2], which forms the estimate Ŵi from channel output
Y n
i ∈ Yn

i . The two sources are aided by a cognitive relay
that has knowledge of and encodes W1 and W2 into the
codeword Xn

0 ∈ Xn
0 . A non-negative rate pair (R1, R2) is said

to be achievable if there exists a sequence of encoding func-
tions Xn

1 (W1), X
n
2 (W2), X

n
0 (W1,W2), and decoding func-

tions Ŵ1(Y
n
1 ), Ŵ2(Y

n
2 ), such that the maximum probability

of error satisfies maxi∈[1:2] P[Ŵi �= Wi] → 0 as n → +∞. The
capacity region is the convex closure of all achievable rate pairs
(R1, R2) [26].

Since the destinations do not cooperate, the channel ca-
pacity only depends on the conditional marginal distributions
PY�|X0,X1,X2

(y�|x0, x1, x2), � ∈ [1 : 2]. In other words, all
ICCRs that share the same conditional marginal distributions
have the same capacity region, as for the BC [26, Lemma 5.1].
Note that the ICCR contains three important channels as special
cases: (a) the IC if X0 = ∅, (b) the BC if X1 = X2 = ∅, (c) the
CIC if either X1 = ∅ or X2 = ∅.

B. The Injective Semi-Deterministic ICCR

The injective semi-deterministic ICCR was introduced in
[18] and corresponds to the special case when the transition
probability satisfies

PY1,Y2|X0,X1,X2
(y1, y2|x0, x1, x2)

=
∑
v1,v2

PV1|X1
(v1|x1)PV2|X2

(v2|x2)

· δ (y1 − f1(x1, x0, v2)) δ (y2 − f2(x2, x0, v1)) , (1)

for some memoryless transition probabilities PV1|X1
and

PV2|X2
, and some deterministic functions f1 and f2 that

are injective when (X1, X0) and (X2, X0), respectively, are
held fixed, which implies that for all PX0,X1,X2

one has
H(Y1|X1, X0) = H(V2|X1, X0) = H(V2|X0), and similarly
for the other source. Injective semi-deterministic channels are
important because approximate capacity results for this class of
channels are available while those of their more general coun-
terpart are still open. For example, the injective deterministic
IC (where PV1|X1

and PV2|X2
are noiseless) was completely

solved in [27] and the injective semi-deterministic IC capacity
was characterized to within a constant gap in [18]. Intuitively,
it is easier to characterize the capacity of an injective semi-
deterministic IC, compared to the general IC, as one knows
exactly what the interference signals are through the random
variables V1 and V2 [18]. We also note that the important

Gaussian channel is a special case of the injective semi-
deterministic model. For continuous alphabets, the summations
in (1) must be replaced with integrals.

C. The GICCR

The complex-valued single-antenna power-constrained
GICCR in a standard form [21] is shown in Fig. 1(b) and is
described by the input-output relationships

Y1 = |h11|X1 + |h10|X0 + h12X2 + Z1, (2a)

Y2 =h21X1 + |h20|X0 + |h22|X2 + Z2, (2b)

where, without loss of generality, the input Xi ∈ C is subject
to power constraint E[|Xi|2] ≤ 1, i ∈ [0 : 2], the noise Zj ∼
N (0, 1), j ∈ [1 : 2], and the channel gains hij , i ∈ [1 : 2], j ∈
[0 : 2], are complex-valued, fixed and known to all nodes. With-
out loss of generality, some channel gains can be taken to be
real-valued and non-negative [21, Appendix M]. The Gaussian
GICCR is a special case of the injective semi-deterministic
ICCR in (1), where V1 := h21X1 + Z2, V2 := h12X2 + Z1,
and f1 and f2 are complex-valued linear combinations.

The capacity region of the GICCR is open. Progress towards
understanding its fundamental limits is possible by providing
an approximate characterization of its capacity as pioneered in
[19]. The capacity is said to be known to within GAP bits if one
can show an inner bound region I and an outer bound region O
such that (R1, R2) ∈ O =⇒ ([R1 − GAP]+, [R2 − GAP]+) ∈
I. The GAP upper bounds the worst-case distance between the
inner and outer bounds [24].

D. The LDA

The linear deterministic approximation (LDA) of the GICCR
is a model that captures the behavior of the GICCR in (2) at high
SNR. The LDA is a fully deterministic model described by [19]

Y1 =Sm−n11X1 ⊕ Sm−n10X0 ⊕ Sm−n12X2, (3a)

Y2 =Sm−n21X1 ⊕ Sm−n20X0 ⊕ Sm−n22X2, (3b)

where S is the binary down-shift matrix of dimension
m := max{n11, n12, n10, n21, n22, n20}, for {nij ∈ N, i ∈ [1 :
2], j ∈ [0 : 2]}, all inputs and outputs are binary column vec-
tors of dimension m, and where the symbol ⊕ denotes the
component-wise modulo-2 addition of the binary vectors. The
LDA is a special case of injective semi-deterministic ICCR
in (1) where V1 := Sm−n21X1, V2 := Sm−n12X2, and f1 and
f2 are modulo-2 additions. The LDA in (3) may be related to
the GICCR in (2) by taking nij = �log(1 + |hij |2) [24]. The
capacity of the LDA often gives insight into strategies that are
optimal to within a constant gap for the GICCR [28].

III. OUTER BOUNDS

We start off stating a known outer bound for the general
memoryless ICCR, and then deriving new outer bounds for the
injective semi-deterministic ICCR, the LDA and the GICCR.
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Theorem 1. (Outer bound to the capacity of the general
memoryless ICCR [21, Thm. III.1]): If (R1, R2) lies in the
capacity region of the general memoryless ICCR, then

R1 ≤ I(Y1;X1, X0|Q,X2), (4a)

R2 ≤ I(Y2;X2, X0|Q,X1), (4b)

R1 +R2 ≤ I(Y2;X1, X2, X0|Q)

+ I(Y1;X1, X0|Q, Ȳ2, X2), (4c)

R1 +R2 ≤ I(Y1;X1, X2, X0|Q)

+ I(Y2;X2, X0|Q, Ȳ1, X1), (4d)

for some input distribution that factors as PQ,X1,X2,X0
=

PQPX1|QPX2|QPX0|X1,X2,Q, where Ȳ1 and Ȳ2 have the same
conditional marginal distributions of the channel outputs Y1

and Y2 given the inputs (X1, X2, X0), respectively, but are
otherwise arbitrarily jointly distributed. �

The region in Theorem 1 is not the tightest in general. For
example, [21] reports other outer bounds that can actually be
used to prove capacity in some regimes. However, these other
outer bounds depend on auxiliary random variables for which
no cardinality bound is known on the corresponding alphabets.
The advantage of Theorem 1 is that it only contains random
variables defined in the channel model (with the exception
of the time-sharing random variable Q) and it is therefore in
principle computable. Note that the correlation among Ȳ1 and
Ȳ2 in Theorem 1 may be chosen to tighten the bound since the
capacity region of the ICCR is only a function of the output con-
ditional marginal distributions, as for the BC [26, Lemma 5.1]
and the CIC [21].

Theorem 1 reduces to: (a) the capacity region of a deter-
ministic BC when X1 = X2 = ∅ [26], and (b) the capacity
region of a deterministic CIC when either X2 = ∅ or X1 = ∅
[29]. However, it does not reduce to the capacity region of the
class of fully deterministic IC when X0 = ∅ [27]. Hence, in
the following we develop additional rate bounds that reduce to
the bounds for the injective semi-deterministic IC developed in
[18], which includes the fully deterministic IC studied in [27],
when X0 = ∅.

A. Novel Outer Bounds for the Injective
Semi-Deterministic ICCR

The outer bound of Theorem 1 may be tightened for the
injective semi-deterministic ICCR defined in (1) as follows,
whose proof can be found in the Appendix A.

Theorem 2: If (R1, R2) lies in the capacity region of the in-
jective semi-deterministic ICCR, then in addition to the bounds
in (4), the following must hold

R1+R2≤H(Y1|Ṽ1, Q)−H(Ṽ2|X2)+H(Y2|Ṽ2, Q)

−H(Ṽ1|X1)+MLP1, (5a)

2R1+R2≤−H(Ṽ1|X1)−2H(V2|X2)+H(Y1|Q)

+H(Y1|Ṽ1, X2, Q)+H(Y2|Ṽ2, Q)+MLP1, (5b)

R1+2R2≤−H(Ṽ2|X1)−2H(V1|X2)+H(Y2|Q)

+H(Y2|Ṽ2, X1, Q)+H(Y1|Ṽ1, Q)+MLP1, (5c)

where the multi-letter portion (MLP) MLP1 is given by

MLP1 := sup
n∈N

1

n
(I (V n

1 ;Xn
0 |W2) + I (V n

2 ;Xn
0 |W1)) , (5d)

and where the random variables Ṽ1 and Ṽ2 are conditionally
independent copies of V1 and V2, respectively, that is, they are
jointly distributed with (Q,X1, X2, X0) as

P
Ṽ1,Ṽ2|Q,X1,X2,X0

(v1, v2|q, x1, x2, x0)

= PV1|X1
(v1|x1)PV2|X2

(v2|x2), (5e)

where PV1|X1
and PV2|X2

are part of the channel model defini-
tion in (1). �

The auxiliary random variables Ṽ1 and Ṽ2 are provided as
“genie side information” at receivers 1 and 2, respectively, as
a mathematical tool to enable the derivation of “single letter”
outer bounds; they are identical to those used in [18], and thus
with this choice Theorem 2 reduces to [18, Theorem 1], which
is tight for the LDA [28] and is optimal to within 1 bit for the
Gaussian IC [24], when X0 = ∅. Theorem 2 is however not in
the desirable “single-letter” format, as it contains the MLP in
(5d). We discuss how to “single-letterized” the MLP in (5d) for
the LDA and the GICCR in the rest of the section.

Note that the step of tightening the bound used in the proof
of Theorem 2 (i.e., conditioning on the interference function
Vj rather then on the interfering codeword Xj , j ∈ [1, 2]) high-
lights a stumbling block in deriving outer bounds for general
IC and BC: in general we do not know the exact form of
the interfering signal(s) at a receiver for any possible input
distribution. Assuming that the channel is deterministic and
in a certain way invertible, allows one to exactly determine
the interference. Notice that “conditioning” on the interference
functions V1 or V2 may be interpreted as if the interference has
been removed without necessarily decoding the corresponding
messages. On the other hand, conditioning on X1 or X2 may be
interpreted as if the message carried by X1 or X2 were known
through decoding.

B. Outer Bounds for the LDA

For a discrete-valued channel (for which the entropy is non-
negative), one may turn the MLP in (5d) into a single-letter
expression as

MLP1≤ sup
n∈N

1

n
(min {H (V n

2 ) , H (Xn
0 )}

+min {H (V n
1 ) , H (Xn

0 )})
≤min {H(V2), H(X0)}+min {H(V1), H(X0)} . (6)

For the LDA we next provide a tighter bound than that in (6).
The LDA belongs to a special class of injective deterministic
channels whose outputs are described by

Y1 = f1 (X1, q1(X0), V2) , V2 = g2(X2), (7a)
Y2 = f2 (X1, q2(X0), V1) , V1 = g1(X1), (7b)

where q1, q2, g1, g2, f1, f2 are deterministic functions. The dif-
ference between (7) and (1) is that in the former the output at
receiver i ∈ [1 : 2] depends on a function qi(X0) rather than on
X0; this distinction is important when the function qi(·) is not a
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bijection, as it may be the case in the LDA. We further require
the function f1 to be injective when its first two arguments
are known, that is, H(Y1|q1(X0), X1) = H(V2|q1(X0)), and
analogously for f2.

For the LDA, Theorem 2 may be tightened as follows, whose
proof may be found in Appendix B.

Theorem 3: For the LDA the term MLP1 in (5d) can be
tighten by using instead

MLP2 := min{n20, n21}+min{n10, n12}, (8)

and the resulting region in (5) is exhausted by considering i.i.d.
Bernoulli(1/2) inputs. �

C. Outer Bounds for the GICCR

The proof of Theorem 3 inspired the following bound on
the MLP for the Gaussian noise channel. For the GICCR,
Theorem 2 may be tightened as follows, whose proof may be
found in Appendix C.

Theorem 4: For the GICCR the term MLP1 in (5d) can be
tighten by using instead

MLP2 := log
(
1 + min

{
|h12|2, |h10|2

})
+ log

(
1 + min

{
|h21|2, |h20|2

})
+ 2 log(2), (9)

and the resulting region in (5) is exhausted by considering
jointly Gaussian inputs. �

IV. CAPACITY FOR THE SYMMETRIC LDA

In this section we propose achievable schemes that match the
outer bound in Theorem 3 for almost all channel parameters,
where channel gains and the rates are parametrized as

n11 =n22 = nS > 0, (10a)
n12 =n21 = nI = α nS, α ≥ 0, (10b)
n10 =n20 = nC = β nS, β ≥ 0, (10c)
Ri = ri nS, ri ≥ 0, i ∈ [1 : 2]. (10d)

The focus on the symmetric case is not for lack of gener-
ality of the developed theory but for simplicity of exposition
(the symmetric model is specified by three parameters rather
than six).

Under the symmetric condition in (10), the outer bound in
Theorem 3 simplifies to

r1 ≤ max{1, β}, r2 ≤ max{1, β}, (11a)
r1 + r2 ≤ [1−max{α, β}]+ + β +max{1, α}, (11b)
r1 + r2 ≤ max{1, β}, apply for α = 1 only, (11c)
r1 + r2 ≤ 2max{1− α, α, β}+ 2min{α, β}, (11d)

2r1 + r2 ≤ max{1, β, α}+max{1− α, α, β}
+max{1− α, β}+ 2min{α, β}, (11e)

r1 + 2r2 ≤ max{1, β, α}+max{1− α, α, β}
+max{1− α, β}+ 2min{α, β}. (11f)

The outer bound in (11) naturally leads to the division of the
channel parameter space (α, β) in (10) into the six regimes
illustrated in Fig. 2 based on the different values of the
max /min terms in (11).

Theorem 5: For the symmetric LDA, capacity is known
for the following regimes (see Fig. 2): Regimes I to V (1 ≤

Fig. 2. Parameter regimes for the LDA and the GICCR at high SNR. Regimes I
to VI.1: capacity is known for the LDA and to within a constant gap for the
GICCR. Regimes VI.2 to VI.4: capacity is open for both models (but sum-
capacity is known in some cases for the LDA).

max{α, β}) and Regime VI.1 (β ≤ α ≤ 1
2 ). For the remaining

regimes the sum-capacity is known for 4α− 3 ≤ β ≤ 3α− 2,
2/3 ≤ α ≤ 1, which in Regime VI.4 implies that the whole
capacity region is known. �

Proof: We now prove Theorem 5 for different cases and
regimes.

a) Case nS > 0 and α = 1 (line α = 1 in Fig. 2): The
outer bound in (11) when α = 1 is simply the triangle formed
by r1 + r2 ≤ max{1, β}, from (11c) only, which is trivially
achieved by time division between the cases where one source
is silent and the cognitive relay fully helps the other source.
In particular, to prove capacity, it suffices to show the achiev-
ability of (r1, r2) = (max{1, β}, 0), which can be attained as
follows. Case 1) If 1 ≥ β: X2 = X0 = 0, i.e., the information
bits for destination 1 are carried by X1. The achievable rate
is r1 = 1, r2 = 0. Case 2) If 1 < β: X2 = X1 = 0, i.e., the
information bits for destination 1 are carried by X0. The achiev-
able rate is r1 = β, r2 = 0. The other corner point (r1, r2) =
(0,max{1, β}) is achieved by swapping the role of the users.
By time-sharing, the whole dominant face of the outer bound
region is achievable, thus proving capacity.

Remark 1: The points (r1, r2) = (max{1, β}, 0) and (r1,
r2) = (0,max{1, β}) are always corner points of the capacity
region, but are not the dominant ones in general.

b) Case nS > 0, α �= 1 and max{α, β} > 1 (Regimes I to
IV in Fig. 2): When (11e), (11f), and (11d) are redundant, that
is, for max{α, β} > 1 (all but Regimes V and VI in Fig. 2), the
region in (11) simplifies to the pentagon region

r1 ≤ max{1, β}, r2 ≤ max{1, β}, (12a)
r1 + r2 ≤β +max{1, α}. (12b)

We show achievability with two different strategies.
b.1) Regimes II, III, and IV in Fig. 2: For β ≥ 1, to

prove capacity, it suffices to show the achievability of the cor-
ner point (r1, r2) = (β,min{β,max{1, α}}). The other cor-
ner point (r1, r2) = (min{β,max{1, α}}, β) is achieved by
swapping the role of the users. By time-sharing between the
corner points, the whole dominant face of the outer bound
region is achievable, thus proving capacity. Let U0, U1p, U2p be
independent vectors. Consider the following strategy

X1 =Sm−nCU1p, X2 = Sm−nCU2p, (13a)
X0 =Sm−nI(U1p + U2p) + U0, (13b)
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where X0 is so as to neutralize over the air the interference at
the destinations. The received signal at destination 1 is

Y1 = (Sm−nSSm−nC + Sm−nCSm−nI)︸ ︷︷ ︸
�=0 if nS �=nI ⇐⇒ α �=1

U1p

+ (Sm−nCSm−nI + Sm−nISm−nC)︸ ︷︷ ︸
=0, interference neutralized

U2p

+ Sm−nCU0

=Sm−nC
(
(Sm−nS + Sm−nI)U1p + U0

)
, (14)

and similarly for the received signal at destination 2. Let the top
m−max{nS, nI} bits of U0, which are received clean on top
of the bits of (Sm−nS + Sm−nI)Uip at each destination i ∈ [1 :
2], be i.i.d. Bernoulli(1/2) bits dedicated to user 1 and the rest
of U0 be set to zero. U1p and U2p are i.i.d. Bernoulli(1/2) bits.
Hence, R1 = nC and R2 = min{nC,max{nS, nI}} (note that
the rates cannot be larger than nC because of the multiplication
by Sm−nC of the signals at each receiver (14)). By normalizing
the rates by nS the claim follows.

Notice that by setting U0 = 0 and by using the “neutralize
over the air” technique in (13), it is always possible to achieve
the normalized private rates r1 = r2 = min{β,max{1, α}},
where we use the qualifier “private” to follow the nomenclature
convention for the classical IC: a message that is decoded only
at an intended destination is referred to as a “private message.”
A message also decoded at a non intended destination is
referred to as a “common message.” In Regimes II to IV, a
“common message” for user 1 is sent by the CR through the
top bits of U0 whenever β > max{1, α}.

Remark 2: The achievability in this case can also be used
to show the achievability of the region in (15) when nS = 0,
in which case the region in (11) simplifies to (here we do not
normalize by the strength of the direct link as this link does not
exist)

R1 ≤ nC, R2 ≤ nC, R1 +R2 ≤ nC + nI. (15)

Clearly this is a special case of 1 < max{α, β} since 0 = nS ≤
max{nI, nC}.

b.2) Regime I in Fig. 2: For β < 1 (and as a conse-
quence of max{α, β} > 1 we must have α > 1), to prove
capacity, it suffices to show the achievability of (r1, r2) =
(1,min{1, β + α− 1}). Here we build on the observation
made for the achievable scheme in Regimes II to IV and
develop a scheme that in addition to the “private rates”
r1p = r2p = min{β,max{1, α}} = β also conveys common
rates r1c = 1− β and r2c = min{α− 1, 1− β}. In this regime
some interfering bits can be decoded because the interference
is strong (α > 1) at the non-intended destination. As opposed
to Regimes II to IV where the “common bits” were carried by
the CR though U0, here they will be carried by X1 and X2, i.e.,
cooperation through the CR in this regime is too weak and it is
better used to neutralize the interference rather than to deliver
common bits. Let U1c, U1p, U2c, U2p be independent vectors.
Consider

X1 =Sm−nCU1p + U1c, X2=Sm−nCU2p + U2c, (16a)
X0 =Sm−nI(U1p + U2p). (16b)

The received signal at destination 1 is

Y1=Sm−nSU1c+ Sm−nIU2c+ Sm−nC(Sm−nS+ Sm−nI)U1p,
(17)

and similarly for destination 2. Clearly, if only the top nS(1−
β) bits of U1c are non-zero and the top nS min{α− 1, 1−
β} bits of U2c are non-zero, then destination 1 can decode
U2c, U1c, U1p in this order and destination 2 can decode
U1c, U2c, U1p in this order, thus achieving the desired rates.

Remark 3: Interestingly, the region in (12) is equivalent to
the capacity region under “strong interference at both receivers”
in [21, Theorem V.2], defined as the channel parameters for
which

I(Y2;X2, Xc|X1) ≤ I(Y1;X2, X0|X1), (18a)
I(Y1;X1, Xc|X2) ≤ I(Y2;X1, X0|X2), (18b)

hold for all distributions that factor as PX1,X2,X0
=

PX1
PX2

PX0|X1,X2
. Evaluation of the condition of “strong in-

terference at both receivers” in (18) is difficult because all
possible input distributions must be tested—or an argument
must be found that allows restriction to a specific subset of
input distributions without loss of generality. For the LDA, it
was not clear that i.i.d. Bernoulli(1/2) input bits at all nodes
would exhaust all possible input distributions, as this does not
capture the possible correlation between X0 and (X1, X2).
It is interesting to notice that, with i.i.d. Bernoulli(1/2) input
bits at all terminals, that the condition of “strong interference
at both receivers” in (18) gives max{α, β} ≥ max{1, β}, or
equivalently, max{α, β} ≥ 1.

c) Case nS > 0, α �= 1 and max{α, β} ≤ 1: sub-case 0 ≤
α ≤ β ≤ 1 (Regime V in Fig. 2): In Regime V the outer bound
region is a square and has only one dominant corner point given
by r1 = r2 = 1. Let U1p, U2p be independent vectors and set

X1 = U1p, X2 = U2p, X0 = SnC−nI(U1p + U2p), (19)

so as to neutralize the interference at the destinations (note the
different shifts of the “private codewords” as compared to the
scheme for Regimes I to IV in Fig. 2). In this regime m =
max{nS, nC, nI} = nS. The received signal at destination 1 is

Y1 = (Sm−nS + Sm−nCSnC−nI)U1p, (20)

and similarly for the received signal at destination 2. Hence
R1 = R2 = nS max{1, α} = nS · 1. By normalizing the rates
by nS the claim follows.

Remark 4: Notice that X0 in (19) is obtained by downshift-
ing U1p + U2p by nC − nI positions, or in other words, the top
nC − nI bits of X0 are zero. This strategy is slightly counter-
intuitive as the cognitive relay, with knowledge of all messages,
should be able to use all its bits without harm. However, includ-
ing bits here would not improve rates as the direct link is already
able to convey these bits directly, and the cognitive relay is only
really needed to simultaneously cancel the interference at both
receivers. The desired signal can be obtained by multiplying
the received signal by the inverse of Sm−nS + Sm−nI , which is
well defined as long as nS �= nI ⇐⇒ α �= 1.

d) Case nS > 0, α �= 1 and max{α, β} ≤ 1: sub-case 0 ≤
β ≤ α < 1 (Regime VI in Fig. 2: In Region VI in Fig. 2, the
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Fig. 3. Achievability strategies for portions of Regime VI of Fig. 2. (a) Optimal strategy for Regime VI.I. (b) Sum-capacity optimal strategy for parts of
Regimes VI.3 and VI.4.

region in (11) simplifies to

r1 ≤ 1, r2 ≤ 1, (21a)
r1 + r2 ≤ 2− α+ β, (21b)
r1 + r2 ≤ 2max{1− α, α}+ 2β, (21c)
2r1 + r2 ≤ 1 + max{1− α, α}+max{1− α, β}

+ 2β, (21d)
r1 + 2r2 ≤ 1 + max{1− α, α}+max{1− α, β}

+ 2β. (21e)

Due to the complexity of the outer bound region in (21),
Regime VI is further divided into four sub-regimes, which also
correspond to a generalization of the division of the W-curve
in [24] as β is relatively small in this regime. The boundary
between Regimes VI.1 and VI.2 occurs at 2α = 1, that be-
tween Regimes VI.2 and VI.3 at β + 3α = 2, and that between
Regimes VI.3 and VI.4 at β + α = 1. These boundaries reduce
to those of the W-curve in weak interference for β = 0. So far
we were unable to show capacity for the whole Regime VI.
We propose next a capacity achieving scheme Regime VI.1 and
discuss strategies for the remaining cases.

In Regime VI.1 (0 ≤ β ≤ α ≤ 1/2) capacity can be proved
by showing the achievability of the corner point (r1, r2) =
(1, 1− 2α+ 2β) from (21), because in this regime the bounds
in (21b), (21d), and (21e) are redundant. We will demonstrate
our achievable scheme by using the graphical representation
proposed in [28]. Fig. 3(a) shows such a strategy. The blocks
represent the signals arriving at each destination, where block
lengths has been normalized by nS. Due to the channel down-
shift operation, the desired signal at a destination has normalized
length of 1, the signal from a cognitive relay has normalized
length β, and the interfering signal has normalized length α.
Bits intended for destination 1 are denoted by Ai, and those
destined to destination 2 by Bi, i ∈ [1 : 3]. In our example, the
relay sends C := A2 ⊕B1, where A2 and B1 play the role of
U1p and U2p, respectively, in the previous regimes, i.e., they
are “private bits” whose effect is “neutralized over the air” by
the relay. Source 1 sends the block of bits indicated as A1 “on
top” of A2; here A1 plays role of U1c in the previous regimes,
i.e., they are “common bits” decodes at both destination; as
for the classical IC, bits A2 can be decoded at destination 2 if
they are received interference-free at destination 2 [28], which
is possible thanks to the fact that a portion of the signal sent
by source 2 contains zeros (in between blocks B2 and B3).
Blocks A3, B2, and B3 are “private bits” too. However these

bits do not require “neutralization” by the relay as they appear
“below the noise floor” at the non-intended receiver (similarly
to the classical IC [28], these bits are actually not received at
the non-intended destination). Notice that the top portion of
the signal sent by source 2 is also populated by zeros (above
block B1); this is needed to allow destination 1 to decode A3.
Destination/Rx1 decodes A1, A2, A3 in this order, as does not
suffers any interference from user 2, and achieves normalized
rate r1 = 1. Destination/Rx2 decodes B1, B2, A1, B3 in this
order, and achieves normalized rate r2 = 1− 2α+ 2β.

e) On capacity and sum-capacity for parts of Regimes VI.3
and VI.4 in Fig. 2: Fig. 3(b) shows an achievable scheme
for the case 4α− 3 ≤ β ≤ 3α− 2, 2/3 ≤ α ≤ 1, where the
restriction of the possible values of (α, β) is due to the fact that
certain pieces of X2 must have non-negative length. The corner
point we aim to achieve is (r1, r2) = (1, 1− α+ β). Because
the outer bound region in Regime VI.4, described by

r1 ≤ 1, r2 ≤ 1, r1 + r2 ≤ 2− α+ β, (22a)

has only two corner points, achieving one of them implies the
achievability of the entire capacity region by a time sharing
argument. In contrast, Regime VI.3 described by

r1 ≤ 1, r2 ≤ 1, (23a)
r1 + r2 ≤ 2− α+ β, (23b)

2r1 + r2 ≤ 1 + α+max{1− α, β}+ 2β, (23c)
r1 + 2r2 ≤ 1 + α+max{1− α, β}+ 2β, (23d)

has four corner points and thus achieving (r1, r2) = (1, 1−
α+ β) does not suffice to show capacity. The other dominant
corner point in Regime VI.3 is determined by the intersection
of the r1-bound in (23a) with the (2r1 + r2)-bound (23c). Thus,
the strategy in Fig. 3(b) is only sum-rate optimal and works in
the following way. Destination/Rx1 decodes the desired vector
A1 and the undesired vectors B1 and B2. Now, since B2 has
been decoded, it can be subtracted at the points where its
repetition interference with A2 and A3. Thus, A2 and A3 are
decoded too (note that the effect of B3 has been “neutralized”
by the relay and the block A2 is decoded before decoding
A3 so its effect can be removed from A3). Destination/Rx2
first decodes B1. Next, because vectors B2, B3, and B4 do
not experience any interference, they can be decoded as well.
Finally, since B2 has been already decoded, the portion where
A1 interferes with B2 can be ignored. This achieves r1 + r2 =
2− α+ β. �
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It would be interesting to know what could be missing for
Regimes VI.2 to VI.4. The capacity region for Regimes VI.2
to VI.4 remains unknown. These regimes are related to the
most involved region of the W-curve in [24] for the IC in
moderately weak interference (i.e., for α ∈ [1/2, 1]) and as
such it is not surprising that these are also the most difficult
cases for the ICCR. At this point we conjecture that the way
we have bounded the multi-letter portion (MLP) in (6) is too
loose. We note that the entropy of a discrete random variable is
non-negative and is not decreased by removing conditioning.
Possibly the bound in (6) does not accurately capture the
correlation between X0 and (X1, X2). Essentially the bound
in (6), which for the symmetric LDA is given in (8), appears
to assert that X0 can be simultaneously maximally correlated
with both X1 and X2. However, if X0 is maximally correlated
with X1, i.e., X0 = X1, then it is independent of X2 (recall that
X1 and X2 are independent because carry independent mes-
sages); in this case the MLP expression would be min{α, β}
rather than 2min{α, β}. Tightening the bounds in (11d), (11e),
and (11f) so as to capture the correlation among transmitted
signals, and/or to derive another bound of the form 2R1 +R2

or R1 + 2R2 (such a bound was needed for the IC with rate-
limited receiver cooperation [30]) is the subject of ongoing
investigation.

V. APPROXIMATE CAPACITY FOR

THE SYMMETRIC GICCR

We now concentrate our attention on the symmetric GICCR.
We will use the insights gained from the symmetric LDA to
prove a constant gap result in those regimes where capacity is
not known [21]. The symmetric GICCR is parameterize as

|h11|2 = |h22|2 = |hS|2 := SNR1, (24a)
|h12|2 = |h12|2 = |hI|2 := SNRα, α ≥ 0, (24b)
|h20|2 = |h10|2 = |hC|2 := SNRβ , β ≥ 0 (24c)

where here α and β have meaning similar to the parameters
used in the LDA model in (10), in particular α is the ratio of
the received power on the interference link expressed in dB
over the received power on the direct link expressed in dB,
and β is the ratio of the received power on the relay-destination
link expressed in dB over the received power on the direct link
expressed in dB. The normalization of the SNR-exponent of
the direct link to 1 is without loss of generality and parallels the
normalization by nS in the LDA. The following results parallel
Theorem 5.

A. Capacity in Regimes I to IV in Fig. 2

Recently, the capacity of (18) was characterized in the
“strong interference at both receivers” [21], which in the sym-
metric GICCR reduces to [21, eq. (27)]1

||hS|+|hC||2≤
∣∣|hI|e+jθ+|hC|

∣∣2 , θ∈{∠h12,∠h21}, (25)

1The detailed proof is rather involved and uses the so called extremal
inequality [31]. The main difficulty arises from the fact that X1 and X2 are
correlated with X0 and a more elaborate argument to show that Gaussians
are optimal is needed. For interested readers the proof may be found in [21,
Theorem VI.1].

where ∠h21,∠h12 are the phases of the cross-link channel
gains (the ones that could not be taken to be real-valued and
non-negative without loss of generality in (2)). Using (24)
and taking SNR → ∞ the condition in (25), by assuming that
|hI|e+j∠hij + |hC| �= 0, reduces to

max{SNR, SNRβ}≤max{SNRα, SNRβ}⇐⇒1≤max{α, β}.
(26)

The high-SNR regime of (26) coincides with Regimes I to IV
in Fig. 2 for the LDA (see also Remark 3). In [21] it was
shown that joint decoding of all messages at both receivers is
optimal or capacity achieving when the “strong interference at
both receivers” condition is satisfied. We therefore concentrate
here on mimicking, in the Gaussian case, those regimes for
which we could prove capacity in the LDA, namely Regimes V
and VI.1.

B. Capacity to Within a Constant Gap in Regime V in Fig. 2

Regime V in the LDA is characterized by α ≤ β ≤ 1, which
we try to match with something of the form |hI|2 ≤ |hC|2 ≤
|hS|2 for the GICCR. We now build on the intuition developed
for the LDA and propose a simple scheme that is optimal to
within an additive gap.

Theorem 6: For the symmetric GICCR, the capacity outer
bound in Theorem 1 is achievable to within log2(4/(1−
(1/

√
2))2) ≈ 5.5 bits per user for 2|hI|2 ≤ |hC|2 ≤ |hS|2. �
Proof: In Regime V for the LDA, the cognitive relay

simultaneously neutralizes over the air the interference at both
receivers. This mode of operation is reminiscent of zero forcing.
We therefore propose: let U1p and U2p be two independent
Gaussian random variables with zero mean and unit variance
and define for some (ρ1, ρ2) such that |ρ1|2 + |ρ2|2 ≤ 1

X1 = U1p, X2 = U2p, X0 = ρ1U1p + ρ2U2p. (27)

Next we choose ρ1 and ρ2 so as to simultaneously neutralize the
contribution of U2p at destination 1 and of U1p at destination 2.
This is possible if

ρ1 = −|hI|e+j∠h21

|hC|
, ρ2 = −|hI|e+j∠h12

|hC|
, (28)

which requires 2|hI|2 ≤ |hC|2. With this assignment the chan-
nel outputs become

Y1 =
(
|hS| − |hI|e+j∠h21

)
U1p + Z1, (29a)

Y2 =
(
|hS| − |hI|e+j∠h12

)
U2p + Z2, (29b)

and thus the following rates are achievable:

R1 ≤ log
(
1 +

∣∣|hS| − |hI|e+j∠h21
∣∣2) , (30a)

R2 ≤ log
(
1 +

∣∣|hS| − |hI|e+j∠h12
∣∣2) . (30b)

From the outer bound we have

R1 ≤ I(Y1;X1, X0|Q,X2) ≤ log
(
1 + (|hS|+ |hC|)2

)
≤ log

(
1 + 4max

{
|hS|2, |hC|2

})
, (31)
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and similarly for R2. Next, the argument of the log-function
in (30) can be lower bounded by (|hS| − |hI|)2. Imposing
|hC|2 ≤ |hS|2, to mimic Regime V of the LDA, and 2|hI|2 ≤
|hC|2, implies |hI|2 ≤ |hS|2/2, so that (|hS| − |hI|)2 ≥ (1−
(1/

√
2))2|hS|2. Finally, by taking the difference between the

upper bound in (31) and the lower bound in (30) we arrive at
the claimed gap result. �

It is pleasing to see that a simple interference management
technique reminiscent of zero-forcing is optimal to within a
constant gap for the GICCR. Notice that in this regime the
channel behaves effectively as two non-interfering point-to-
point links.

C. Capacity to Within a Constant Gap in Regime VI.1 in Fig. 2

Regime VI.1 for the LDA is characterized by β ≤ α ≤ 1/2,
which we try to match with something of the form |hC|2 ≤
|hI|2 ≤

√
|hS|2 for the GICCR. Next, we build on the intuition

developed in the LDA and propose a scheme that is optimal to
within an additive gap.

Theorem 7: For the symmetric GICCR, the capacity outer
bound in Theorem 4 is achievable to within 11.7 bits per user
if the channel gains satisfy the following three conditions:
(c1) |hC|2 ≤ |hI|2(|hI|2/(1 + |hI|2)), (c2) |hC|2 ≤ (1/2)((1 +
|hS|2)/(1 + |hI|2)), (c3) |hI|2(1 + |hI|2) ≤ |hS|2, (c4) 1 ≤
min{|hS|2, |hI|2}, (c5) (|hS|2/(1 + |hI|2)) ≥ 9. �

Proof: The conditions (c1)–(c3) at high SNR are equiv-
alent to β ≤ α ≤ 1/2; conditions (c4)–(c5) are convenient for
gap computation. In Regime VI.1 for the LDA, the CR simulta-
neously neutralizes interference at destination 1 and part of the
interference at destination 2, see Fig. 3(a). We therefore pro-
pose the following choice of inputs: for XA1

, XA2
, XA3

, XB1
,

XB2
, XB3

i.i.d. Gaussian random variables with zero mean and
unit variance, let

X1 = a1XA1
+ a2XA2

+ a3XA3
,

X2 = b1XB1
+ b2XB2

+ b3XB3
,

X0 = �1XA2
+ �2XB1

,

�1 =
1√
2
ej∠�1 , �2 =

1√
2
ej∠�2 ,

a1 =
|hI|2

1 + |hI|2
− |hC|2

2|hI|2
, b1 =

−|hC|ej∠�2

√
2|hI|ej∠h21

,

a2 =
−|hC|ej∠�1

√
2|hI|ej∠h12

, |b2|2 =
1

1 + |hI|2
− |hC|2

1 + |hS|2
,

|a3|2 =
1

1 + |hI|2
, |b3|2 =

|hC|2
1 + |hS|2

, (32)

Under the channel conditions |hC|2 ≤ 2|hI|2(|hI|2/(1 +
|hI|2)) so that |a1|2 ≥ 0, and |hC|2 ≤ ((1 + |hS|2)/(1 +
|hI|2)) so that |b2|2 ≥ 0, the transmitter power constraints are
satisfied; these conditions are true by (c1) and (c2), respectively.
Note that transmitter 2 does not fully utilize its power. With

this choice of coefficients/power allocation, the channel outputs
become

Y1 = |hS| (a1XA1
+ a3XA3

)

+
|hC|√

2

(
|hS|
|hI|

e−j∠h21 − 1

)
XA2

+ |hI| (b2XB2
+ b3XB3

) e+j∠h12 + Z1,

Y2 = |hI| (a1XA1
+ a3XA3

) e+j∠h21

+
|hC|√

2

(
|hS|
|hI|

e−j∠h12 − 1

)
XB1

+ |hS| (b2XB2
+ b3XB3

) + Z2,

since XB1
has been zero forced at Y1, and XA2

at Y2, similarly
to the scheme in Fig. 3(a) for the LDA. By mimicking the
corresponding scheme for the LDA, destination 1 successively
decodes XA1

, XA2
, XA3

in this order, and destination 2 suc-
cessively decodes XB1

, XB2
, XA1

, XB3
in this order; with this

decoding procedure the following rates are achievable (see
Appendix E)

RA1
= log

(
1 +

|hI|2
4 (3 + |hC|2)

)
,

RA2
= log

(
1 +

|hC|2
10

)
,

RA3
= log

(
1 +

|hS|2
1 + 2|hI|2

)
,

RB1
= log

(
1 +

|hC|2
10

)
,

RB2
= log

(
1 +

|hS|2

4 (1 + |hI|2)2
)
,

RB3
= log

(
1 +

|hC|2
4

)
.

We next compare this lower bound with the outer bound ob-
tained by intersecting the sum-rate upper bound in (5a) with
the MLP tightened as in Theorem 4 (see Appendix D) and the
single-rate upper bound in (4a) (see (31)), that is, the corner
point outer bound with coordinates

R1 = log
(
1 + 4|hS|2

)
, (33a)

R2 =2 log

((
1 + |hI|2 +

|hS|2
1 + |hI|2

)
·
(
1 + |hC|2

)
2(1 + 1/

√
2)2
)

− log
(
1 + 4|hS|2

)
. (33b)

In Appendix E we show that the gap between the inner and
outer bound is at most 11.7 bits per user. By swapping the role
of the users, the other sum-capacity achieving corner point of
the capacity region outer bound can be attained to within the
same gap.
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Fig. 4. Numerical comparison of various strategies for the GICCR for α =
0.5, β = 0.7. No relay: the relay is not used and the rates are given by the
optimal interference channel strategy. For the other curves the relay uses a linear
strategy and the receivers apply JD (jointly decode both messages), or IaN (treat
interference as noise), or Mix (one receiver decodes both messages and the
other only its intended one), or ZF (relay performs zero forcing as in (30),
which is special case of IaN). The outer bound is from (31).

By setting R2 = 0 and not using the CR we can achieve
R1 = log(1 + |hS|2), which is at most 2 bits away from the
corner point where R1 is upper bounded by (33a) and R2 = 0.
The same reasoning holds with the role of the users swapped.
This shows that all corner points of the outer bound region can
be achieved to within 11.7 bits per user. Therefore, by time
sharing, the whole capacity region outer bound can be achieved
to within a constant gap. This concludes the proof. �

The gap in this regime is fairly large; we believe that this is
due to the crude lower bounding steps for the achievable rates
and to the simplicity of the proposed interference zero-forcing
scheme. Numerical evaluations show that the actual gap when
optimizing the power splits in the proposed scheme is actually
lower.

D. Numerical Comparisons

We conclude this section with some numerical examples.
Figs. 4 and 5 compare the performance of different achievable
strategies as a function of the SNR (in dB) in Regime V,
where the new constant gap result is obtained from Theorem 6.
We note that the purpose of this paper is to provide simple
achievable schemes for the Gaussian channel that are prov-
ably optimal to within a constant gap, rather than focussing
on finding the parameters that optimize the largest known
(quite involved) achievable rate region for the ICCR derived in
[21, Theorem IV.1]. To this end, we compare several simple
achievability schemes, including the constant gap to capacity
scheme in (30) and the outer bound in (4).

In Fig. 4, we increase the SNR with fixed α = 0.5 and
β = 0.7 in (24) and compare the following strategies. In the
first strategy the relay stays silent and we use a well-known
achievability strategy for the Gaussian IC (a version of the
Han and Kobayashi strategy [24]). For the second achievabil-

ity scheme, the relay is used and performs the simple linear
combination scheme (rather than more complex schemes such
as dirty paper coding) X0=a1X1+a2X2 : |a1|2+|a2|2≤1,
where we optimize over a1 and a2. We consider the following
strategies at the receivers:

1) JD (Joint Decoding): both transmitters use common mes-
sages only, which are decoded at both destinations—the
region thus looks like a compound multiple access chan-
nel with each message amplified at the receiver due to the
relay’s transmission.

2) IaN (Interference as Noise): destinations treat non-
desired interference as noise. All messages are therefore
private.

3) Mix: one of the transmitters uses a common message and
the other uses a private message; the common message is
decoded at both receivers and the private is decoded at the
appropriate receiver only and treated as noise at the other.

4) ZF (Zero Forcing): use a1 = −(|hI|e+j∠h21/|hC|) and
a2 = −(|hI|e+j∠h12/|hC|) as in Theorem 6 (when
possible).

Finally, the sum-rate outer bound from (31) is plotted (i.e., in
this case the whole capacity region is a square).

From Fig. 4 we see that as the SNR increases, the IaN and
ZF schemes (ZF is actually one very specific choice of the
IaN scheme where a1, a2 are specified explicitly) essentially
overlap with the outer bound, which verifies the constant gap to
capacity claim numerically. This scheme significantly outper-
forms (diverging slopes means the gap can be arbitrarily large)
not using a relay at all, even with an optimizing transmission
strategy, or using a JD or Mix strategy where the relay uses
a simple linear combination scheme. Fig. 5 shows the actual
regions, rather than sum-rates, for the same settings and con-
ventions as in Fig. 4 for two different SNRs. We note that our
goal is not to derive the best achievability scheme at any SNR,
but rather to derive a simple, constant gap to capacity scheme
and compare it to other, simple schemes.

VI. CONCLUSION

We considered an interference channel in which a cognitive
relay aids in the transmission of the two independent messages.
We obtained the capacity region in almost all regimes for the
symmetric LDA and translated these insights into a constant
gap to capacity result for the corresponding Gaussian model.
The capacity achieving schemes for the symmetric LDA use a
variety of techniques at the cognitive relay, which both aid in
the transmission of the messages to the receivers, and simulta-
neously neutralize interference at the two receivers. Given the
generality of this challenging channel model, it is not surprising
that a number of open questions remain: capacity is missing in
a parameter regime of the symmetric LDA which has typically
been the most challenging one for the interference channel as
well (the moderately weak interference regime). Constant gap
to capacity results for the corresponding regime in the Gaussian
channel are also missing and are an interesting topic for further
investigation.



6834 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 12, DECEMBER 2014

Fig. 5. Achievable and outs bound regions for the GICCR with α = 0.5, β = 0.7. Same settings and conventions as in Fig. 4. (a) SNR = 30 dB.
(b) SNR = 60 B.

APPENDIX

A. Proof of Theorem 2

Given the random variables (Q,X1, X2, X0, V1, V2, Y1, Y2)
with joint distribution

PQ,X1,X2,X0,V1,V2,Y1,Y2

= PQPX1|QPX2|QPX0|Q,X1,X2
PV1|X1

PV2|X2

· δ (Y1 − f1(X1, X0, V2)) δ (Y2 − f2(X2, X0, V1))

let Ṽ1 and Ṽ2 be conditionally independent copies of V1 and V2,
that is, distributed jointly with (Q,X1, X2, X0) as

P
Ṽ1,Ṽ2|Q,X1,X2,X0

(v1, v2|q, x1, x2, x0)

= PV1|X1
(v1|x1)PV2|X2

(v2|x2).

Similar arguments to those in [18] yield:

n(R1 +R2 − 2εn)
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)
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)
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(
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where the inequality in “(a)” follows from further conditioning
on X0 (and because condition on Xn

i we have that V n
i is

independent of everything else, so that in particular we can drop
the message Wi from the conditioning, i = 1, 2), the equality in
“(b)” follows from the the assumed determinism, the equality in
“(c)” follows from the since V n

1 is independent of (Ṽ n
2 , Xn

2 ) so
it can be dropped from the conditioning (however Xn

0 depends
on (W1,W2) so we must keep the messages in the conditioning)
and similarly for user 2.

B. Proof of Theorem 3

For the channels in (7), instead of conditioning on X0 in the
step marked by (a) in Appendix A, we condition on the qi(X0),
i ∈ [1, 2], to obtain the tighter bound
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0 ))

= I (V n
2 ; q1 (X

n
0 ) |W1)

≤ min {H (V n
2 ) , H (q1 (X

n
0 ))}

≤ nmin {H(V2|Q), H (q1(X0)|Q)} ,
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and similarly for the other users. The fact that the resulting
region is exhausted by i.i.d. Bernoulli(1/2) bits for the input
vectors follows by arguments similar to [19].

C. Proof of Theorem 4

Inspired by the proof of Theorem 3—where the term
H(Y n

i |Ṽ n
i ,Wi, X

n
i ), i ∈ [1 : 2], was further conditioned on

qi(X
n
0 ) rather than on Xn

0 (i.e., compare step marked by (a)
in Appendix A with step marked by (a′) in Appendix B)—we
mimic here the function qi(X

n
0 ) for the LDA with |hi0|Xn

0 −
Zn
0 for the GICCR, where Z0 i.i.d. N (0, 1) independent of

(Z1, Z2, Z̃1, Z̃2,W1,W2). Recall that

V2 = h12X2 + Z1 ∼ Ṽ2 = h12X2 + Z̃1

: Z2 independent of Z̃1 ∼ Z1,

V1 = h21X1 + Z2 ∼ Ṽ1 = h21X1 + Z̃2

: Z1 independent of Z̃2 ∼ Z2.

Then, we replace the step marked with (a) in Appendix A with
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We can also trivially upper bound MLP1 in (5d) as
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Therefore, we conclude that
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n

≤ log
(
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{
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+ log(2).

By repeating the same reasoning for the other receiver, we
conclude that for the GICCR Theorem 2 holds with MLP1 in
(5d) replaced by

MLP2 := log
(
1 + min

{
|h12|2, |h10|2

})
+ log

(
1 + min

{
|h21|2, |h20|2

})
+ 2 log(2).

The resulting region is exhausted by jointly Gaussian inputs by
arguments similar to [21].

D. Evaluation of the Sum-Rate Upper Bound in (5a)
for the GICCR

By Theorem 4 we can restrict attention to jointly Gaussian
inputs. Let parameterize the possible jointly Gaussian inputs as⎡⎣X1

X2

X0

⎤⎦ ∼ N

⎛⎝0,

⎡⎣ 1 0 r∗1
0 1 r∗2
r1 r2 1

⎤⎦⎞⎠ : |r1|2 + |r2|2 ≤ 1,

that is, X0=r1X1+r2X2+X′
0 with X′

0∼N (0, 1−|r1|2−|r2|2)
and independent of everything else. In (5a), consider the term
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where clearly the last expression, for any r1 such that 1−
|r1|2 ≥ 0, is maximized by |r2| =

√
1− |r1|2 (recall that the

bound must be optimized over |r1|2 + |r2|2 ≤ 1); this implies
that for some |r1|2 + |r2|2 = 1
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≤ log
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. (35)

By a similar reasoning for the other receiver, we have that for
some |r1|2 + |r2|2 = 1

h(Y2|Ṽ2, Q)− h(Ṽ1|X1)

≤ log((|h21|+ |r1||h20|)2 +
(|h22|+ |r2||h20|)2

1 + |h12|2
+ 1 (36)
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Finally, by summing (35) and (36), the sum-rate upper bound
from Theorem 2 with the MLP from Theorem 4 reads

R1 +R2

≤ max
|r1|2+|r2|2=1

log
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})
+ 2 log(2). (37)

In the symmetric case in (24), by the symmetry of the prob-
lem, it is easy to see that the maximizing (r1, r2) is such that
|r1|2= |r2|2=1/2; hence the sum-rate upper bound in (37) reads

R1 +R2

≤ 2 log
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}
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+ 2 log

(
2(1 + 1/

√
2)2
)

(38)

where 2 log(2(1 + 1/
√
2)2) ≤ 2 log(6) < 5.17 bits.

E. Lower Bounds on the Achievable Rates for the Scheme
in Section V-C

The achievable scheme in Section V-C attains the following
rates (where the further lower bonds follow from straightfor-
ward but tedious algebraic manipulations by using the condi-
tions (c1)–(c5) of Theorem 7), see (39a)–(39g) (shown at the
bottom of the page) and, because XA1

is a “common message”
decoded at both destinations, we finally choose

RA1
=min {eq. (39a), eq. (39f)}≥ log

(
1 +

|hI|2
4 (3 + |hC|2)

)
.

(39h)

As outer bound consider the corner point obtained by inter-
secting the sum-rate upper bound in (38) with the single-rate
upper bound in (4a) (see (31)) whose coordinates are given in
(33) (note that in this regime the channel gains satisfy |hC|2 ≤
|hI|2 ≤ |hS|2). We next compare the lower bound in (39) with
the corner point outer bound in (33). It can be easily seen that
the gap for R1 is, for nA2

≥ 3, nB1
≥ 4,
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gapR1
≤ eq. (33a) − eq. (39h) − eq. (39b) − eq. (39c)
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) (3 + |hC|2 + |hI|2/4)
≤ log (4 · nA2

· 8) , (40)
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see (41) for the proof, shown at the top of the page. Thus the
proposed scheme achieves a corner point of the capacity region
outer bound to within at most gap = max{eq. (40), eq. (41)}.
For example, for nA2

= nB1
= 10, we have t0 = 9 and gap =

11.7 bits per user. The gap can be reduced by increasing the
value of t0.
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