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Abstract—While a multi-letter limiting expression of the ca-
pacity region of the two-user Gaussian interference channel is
known, capacity is generally considered to be open as this is
not computable. Other computable capacity outer bounds are
known to be achievable to within 1/2 bit using Gaussian inputs
and joint decoding in the simplified Han and Kobayashi (single-
letter) achievable rate region. This work shows that the simple
scheme known as “treating interference as noise” without time-
sharing attains the capacity region outer bound of the symmetric
Gaussian interference channel to within either a constant gap,
or a gap of order O(log log(SNR)), for all parameter regimes.
The scheme is therefore optimal in the generalized Degrees of
Freedom (gDoF) region sense almost surely. The achievability
is obtained by using i.i.d. mixed inputs (i.e., a superposition
of discrete and Gaussian random variables) in the multi-letter
capacity expression, where the optimal number of points in
the discrete part of the inputs, as well as the optimal power
split among the discrete and continuous parts of the inputs, are
characterized in closed form. An important practical implication
of this result is that the discrete part of the inputs behaves as
a “common message” whose contribution can be removed from
the channel output, even though joint decoding is not employed.
Moreover, time-sharing may be mimicked by varying the number
of points in the discrete part of the inputs.

I. INTRODUCTION

The memoryless real-valued additive white Gaussian noise
interference channel (G-IC) has input-output relationship

Y n1 = h11X
n
1 + h12X

n
2 + Zn1 , (1a)

Y n2 = h21X
n
1 + h22X

n
2 + Zn2 , (1b)

where Xn
j := (Xj1, · · ·Xjn) and Y nj := (Yj1, · · ·Yjn) are

the length-n vector inputs and outputs, respectively, for user
j ∈ [1 : 2], the noise vectors Znj have i.i.d. zero-mean unit-
variance Gaussian components, for n the block length. The
input Xn

j is a function of the independent message Wj that is
uniformly distributed on [1 : 2nRj ], where Rj is the rate for
user j ∈ [1 : 2], and is subject to a per-block power constraint
1
n

∑n
i=1X

2
ji ≤ 1. Receiver j ∈ [1 : 2] wishes to recover Wj

from the channel output Y nj with arbitrarily small probability
of error. Achievable rates and capacity region are defined in
the usual way [1].

For sake of simplicity, we shall focus from now on on the
symmetric G-IC only, defined as

|h11|2 = |h22|2 = S ≥ 0, |h12|2 = |h21|2 = I ≥ 0

and denote the capacity region as C(S, I). The restriction to the
symmetric case is just to reduce the number of parameters in
our derivations; we believe that the results of this paper hold
for the general asymmetric case.

Past Work. The general information stable two-user inter-
ference channel was first introduced in [2] and its capacity
may be characterized as

C = lim
n→∞

co
⋃

PXn
1 Xn

2
=PXn

1
PXn

2

{
R1 ≤ 1

nI(X
n
1 ;Y n1 )

R2 ≤ 1
nI(X

n
2 ;Y n2 )

}
(2)

where co(·) denotes the convex hull operation. Unfortunately,
the capacity expression in (2) is considered “uncomputable”
in a sense that it is not known explicitly how to characterize
the input distributions that attain its convex closure. Moreover,
it is not clear whether there exists an equivalent single-letter
form for (2) in general. For the G-IC an equivalent single-letter
form is known in the strong interference region [3] given by
S ≤ I in the symmetric case.

Because of it “uncomputability,” the capacity expression
in (2) has received little attention, except for [4] where it
was shown that jointly Gaussian inputs may not be optimal.
Instead, the field has focussed on finding alternative ways
to characterize single-letter inner and outer bounds. The best
known inner bound is the Han and Kobayashi (HK) achievable
scheme [5], which is capacity achieving in all cases where
capacity is known [1].

Except for the strong interference regime, the sum-capacity
of the G-IC is known exactly only for the Z-channel and in
the noisy interference regime, defined by

√
I
S (1 + I) ≤ 1

2

in the symmetric case, for which i.i.d. Gaussian inputs in
(2) are optimal [1]. So, instead of pursuing exact results,
the community has recently focussed on giving performance
guarantees on approximations of the capacity region. In [6]
the authors showed that the HK scheme with Gaussian inputs
and without time-sharing is optimal to within 1/2 bit/sec/Hz,
irrespective of the channel parameters. This constant gap result
provides an exact characterization of the generalized Degrees
of Freedom (gDoF) region defined as

D(α) :=
{

(d1, d2) : di := lim
S→∞

Ri(S, I = Sα)
1
2 log(1 + S)

, i ∈ [1 : 2],

(R1, R2) is achievable
}
, (3)
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and where

D(α) : d1 ≤ 1, d2 ≤ 1 (4a)
d1 + d2 ≤ [1− α]+ + max(α, 1) (4b)
d1 + d2 ≤ max(1− α, α) + max(1− α, α) (4c)

2d1 + d2 ≤ [1− α]+ + max(1, α) + max(1− α, α) (4d)
d1 + 2d2 ≤ [1− α]+ + max(1, α) + max(1− α, α). (4e)

Contribution. In this work we focus on the following
capacity inner bound obtained by using i.i.d. inputs in (2)

RTIN
in (S, I) =

⋃
PX1X2=PX1PX2

{
R1 ≤ I(X1;Y1)
R2 ≤ I(X2;Y2)

}
, (5)

commonly referred to as the “treating interference as noise”
(TIN) inner bound. Note that the TIN region may not be
convex because a time-sharing / convex-hull operation is
not considered. Our major contribution is to show that i.i.d.
mixed inputs (i.e., a superposition of discrete and Gaussian
random variables) in the TIN region in (5) achieve the capacity
region outer bound to within a gap and thus are optimal for
the whole gDoF region in (4). This work extends our past
work in [7] where we demonstrated that i.i.d. mixed inputs
achieve the symmetric sum-capacity (while here we consider
the whole capacity region) to within a constant gap or to within
O(log log S) up to a outage set whose Lebesgue measure is a
controllable parameter.

We note that a similar result (i.e., optimality of TIN in
all parameter regimes) was pointed out in [1, Remark 6.12].
However, the proof is not constructive and is based on showing
that TIN is optimal for the linear deterministic model (LDA),
and then using a universal gap between the LDA and G-IC
to arrive at the result. Unfortunately, this approach results
in a very large gap and characterization of the inputs for
the G-IC from the LDA is not immediate. On the other
hand, our proof is constructive and provides, in closed form,
the optimal number of points in the discrete part of the
inputs, as well as the optimal power split among the discrete
and continuous parts of the inputs. An important practical
implication of this result is that the discrete part of the inputs
behaves as a “common message” whose contribution can be
removed from the channel output, even though joint decoding
is not employed. Moreover, time-sharing may be mimicked by
varying the number of points in the discrete part of the inputs.

Notation convention. Throughout the paper we adopt the
following notation. Lower case variables are instances of
upper case random variables (r.v.) which take on values in
calligraphic alphabets. We let

Nd(x) :=
⌊√

1 + x
⌋
, (6)

Ig(x) :=
1
2

log(1 + x), (7)

Id(X) :=
[
H(X)− gap(8)

]+
, (8)

gap(8) :=
1
2

log
(

2πe
12

)
+

1
2

log

(
1 +

12
d2
min(X)

)
, (9)

where the subscripts d and g remind the reader that discrete
and Gaussian, respectively, inputs are involved. H(X) is the
entropy of the discrete r.v. X and [x]+ := max{0, x}. [n1 : n2]
is the set of integers from n1 to n2 ≥ n1. If A is a r.v. we
denote its support by supp(A). The symbol | · | denotes: |A| is
the cardinality of the set A, |X| is the cardinality of supp(X)
of the random variable X , or |x| is the absolute value of the
real-valued x. For x ∈ R, bxc is the largest integer not greater
than x. dmin(S) := mini6=j:si,sj∈S |si − sj | is the minimum
distance among the points in the set S . With some abuse of
notation we also use dmin(X) to denote dmin(supp(X)) for a r.v.
X . X ∼ PAM

(
N, dmin(X)

)
denotes the uniform probability

mass function over a zero-mean Pulse Amplitude Modulation
(PAM) constellation with |supp(X)| = N points, minimum
distance dmin(X), and average energy E[X2] = d2

min(X)
N2−1

12 .
m(S) denotes Lebesgue measure of the set S. For i ∈ [1 : 2]
we let i′ ∈ [1 : 2] to be i′ 6= i.

II. MAIN TOOLS

In the rest of the paper, due to space limitations, proofs are
omitted and may be found in [8]. At the core of our proofs is
the following lower bound on the rate achieved by a discrete
input on a point-to-point additive noise channel.

Prop. 1. Let XD be a discrete random variable, whose support
has size N , minimum distance dmin(XD), and average power
E[X2

D]. Let Z be a zero-mean unit-variance random variable
independent of XD (not necessarily Gaussian). Then

Id(XD) ≤ I(XD;XD + Z) ≤ H(XD), (10)

where Id(·) is defined in (8).

Rem. 1. The upper bound in (10) for Z = ZG ∼ N (0, 1)
may be tightened to

I(XD;XD + ZG) ≤ min
(
H(XD), Ig(E[X2

D])
)
, (11)

since a Gaussian input is capacity achieving for the power-
constrained point-to-point Gaussian noise channel.

In the following we shall use a mixed input at each user;
this implies that a receiver sees a linear combination of two
discrete constellations; in order to apply Prop. 1 we need
to lower bound the minimum distance of the resulting sum-
set. The following set of sufficient conditions will play an
important role in evaluating the minimum distance of mixed
input constellations in our TIN inner bound.

Prop. 2. Let (hx, hy) ∈ R2 be two constants. Let X ∼
PAM(|X|, dmin(X)) and Y ∼ PAM(|Y |, dmin(Y )). Then

|hxX + hyY | = |X||Y |,
dmin(hxX+hyY ) = min

(
|hx|dmin(X), |hy|dmin(Y )

)
,

under the following conditions

either |Y ||hy|dmin(Y ) ≤ |hx|dmin(X) (12a)
or |X||hx|dmin(X) ≤ |hy|dmin(Y ). (12b)
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When Prop. 2 is not applicable we shall use:

Prop. 3. Let X ∼ PAM(|X|, dmin(X)) and Y ∼
PAM(|Y |, dmin(Y )). Then for (hx, hy) ∈ R2 we have

|hxX + hyX| = |X||Y | almost surely (a.s.) (13a)

and for any γ > 0 there exists a set E ⊆ R such that for all
(hx, hy) ∈ E we have

dmin(hxX+hyY ) ≥ κγ,|X|,|Y |min
(
|hx|dmin(X),

|hy|dmin(Y ),max
( |hx|dmin(X)

|Y |
,
|hy|dmin(Y )

|X|

))
, (13b)

where the complement of the set E, referred to as the “outage
set,” has Lebesgue measure smaller than γ, and where

κγ,|X|,|Y | =
γ

2(1 + ln(max(|X|, |Y |)))
.

III. MAIN RESULT

For the G-IC in (1) we now evaluate the TIN region in (5)
with mixed inputs

Xi =
√

1− δi XiD +
√
δi XiG, i ∈ [1 : 2] : (14a)

XiD ∼ PAM

(
Ni,

√
12

N2
i − 1

)
, (14b)

XiG ∼ N (xiG; 0, 1), (14c)
P := [N1, N2, δ1, δ2] ∈ N× N× [0, 1]× [0, 1], (14d)

where the random variables Xij are independent for i ∈ [1 :
2], j ∈ {D,G}. A careful choice of the parameters in P will
lead to the desired results in different parameter regimes. From
the TIN region in (5) we have:

Prop. 4. For the G-IC the following region is achievable

Rin(S, I) :=
⋃

P∈N2×[0,1]2

Rin(S, I;P), (15a)

where Rin(S, I;P) is a lower bound on the TIN region in (5)
evaluated for the mixed input in (14) with fixed parameter
vector P := [N1, N2, δ1, δ2], given by

Rin(S, I;P) :=
{

(R1, R2) : Ri ≤ Id (Si) + Ig

(
Sδi

1 + Iδi′

)
−min

(
log(Ni′), Ig

(
I(1− δi′)
1 + Iδi′

))
, i ∈ [1 : 2]

}
, (15b)

and where the equivalent discrete constellations seen at the
receivers are

Si :=
√

1− δi
√

SXiD +
√

1− δi′
√

IXi′D√
1 + Sδi + Iδi′

, (15c)

for i′ 6= i ∈ [1 : 2] and the functionals Id (·) and Ig (·) are
defined in (8) and (7), respectively.

From Prop. 4, it follows that the following gDoF region is
achievable:

Prop. 5. Parametrize the number of points and the power
splits in the mixed inputs in (14) as

Ni = Nd(Sβi), βi ≥ 0, δi =
1

1 + Spi
, pi ≥ 0, (16a)

for i ∈ [1 : 2], where Nd(·) is defined in (6). For the G-IC an
achievable gDoF region a.e. is

Din(α) =
⋃

p:=[β1,β2,p1,p2],p∈R4
+

Din(α;p), (16b)

Din(α;p) =
{

(d1, d2) : di ≤ β1 + β2 + [1− pi − [α− pi′ ]+]+

−min(βi′ , α− [α− pi′ ]+), i ∈ [1 : 2])
}

(16c)

provided that at least one of the following conditions hold for
all i ∈ [1 : 2]

1) 1 ≤ α− βi′ and max(1− pi, α− pi′ , 0)
−min(1− βi, α− βi′) = 0, (16d)

2) α ≤ 1− βi and max(1− pi, α− pi′ , 0)
−min(1− βi, α− βi′) = 0, (16e)

3) max(1− pi, α− pi′ , 0)−min(1− βi, α− βi′ ,
max(1− βi − βi′ , α− βi − βi′)) = 0. (16f)

The main result of this paper is the following theorem:

Theorem 1. For the symmetric G-IC the TIN-based achievable
region in (15a) is optimal to within a constant gap, or a gap
of order O(log log(S)) up to an outage set, and it is therefore
gDoF optimal up to a set of measure zero.

Proof: Depending on the parameters (S, I = Sα) we
identify the following operational regimes:

1) Very Strong Interference: α ≥ 2.
2) Strong Interference: 1 ≤ α < 2.
3) Weak Interference Type I: 2/3 ≤ α < 1.
4) Weak Interference Type II: 1/2 ≤ α < 2/3.
5) Very Weak Interference: 0 ≤ α < 1/2.

We shall consider each regime individually by picking the
parameters of the mixed inputs such that inner and outer
bounds approximately match. Here we view the discrete and
the Gaussian part of the mixed input as a “common” and a
“private” message, respectively, in the HK scheme. Thus, a
critical aspect of our analysis is to identify the optimal rate
split for each point on the convex closure of the capacity region
outer bound. By using [9, Lem. 4], which can be thought of
as the gDoF region in (4) before Fourier-Motzkin elimination,
we found that either it is optimal to user pi = α in (16a), or
equally split the rate between common and private messages.

a) Very Strong Interference Regime: α ≥ 2: In this
regime it is optimal to send only common messages, and
to perform successive decoding starting with the interfering
message. While joint decoding is not allowed in our TIN
region, the discrete part of the inputs behaves as common
message (i.e., as if it could be decoded at non intended
destination). The gDoF region in (4) is

DVery Strong : d1 ≤ 1, d2 ≤ 1,

1718



which is easily matched by the achievable scheme in Prop. 5
by using

p = [1, 1,∞,∞].

In order to complete the proof we show that the condition
in (16d) is satisfied:

1 ≤ α− βi, ∀i ∈ [1 : 2]⇔ 1 ≤ α− β ⇔ 2 ≤ α,

where the last implication comes from the definition of regime.
For the finite (S, I), the capacity region in max(R1, R2) ≤

Ig(S). We set δi = 0, Ni = Nd(S), i ∈ [1 : 2], and thus for
sum-sets in (15c) we have S1 = S2 := S; the gap is thus
readily computed as

gap = Ig(S)− Id(S) ≤ 1
2

log
(

16πe
12

)
≈ 1.75.

b) Strong Interference: 1 ≤ α < 2: Capacity in this
regime is achieved by sending only common messages. Thus,
similar to the very strong interference regime, we set δ1 =
δ2 = 0. However, unlike in the very strong interference regime,
we vary the number of points in the discrete part in order to
mimic time sharing, for a reason that will become clear soon.
In this regime the gDoF region is that of a Compound MAC
and in parametric form is given by

DStrong(α) =
⋃

t∈[0,1]

{
d1 ≤ t+ (1− t) (α− 1) := β1(t)
d2 ≤ t (α− 1) + (1− t) := β2(t)

}
.

Note that the parameter t ∈ [0, 1] is used to time-share between
the two corner points of the capacity region (in this case a
MAC-region). This parametric form of the gDoF region is
matched to the achievable scheme in Prop. 5 by using

p(t) = [β1(t), β2(t),∞,∞], ∀t ∈ [0, 1].

To complete the proof we choose to verify the condition
in (16f) for i = 1 and for all t ∈ [0, 1] (by symmetry, it
also holds for i = 2); we have

min(1− β1(t), α− β2(t),max(1− β1(t)− β2(t),
α− β1(t)− β2(t))),

= max(1− t− (1− t) (α− 1) , α− t (α− 1)− (1− t), 0),
= 0, ∀t ∈ [0, 1],

and the last equality follows since in this regime we have
α ≤ β1(t), α ≤ β2(t), ∀t ∈ [0, 1].

For finite (S, I) the outer bound for this regime can be
written as

RStrong(S, I) =
⋃

t∈[0,1]


R1 ≤ (1− t)Ig

(
I

1+S

)
+ tIg (S)

:= Ig(S1,t)
R2 ≤ tIg

(
I

1+S

)
+ (1− t)Ig (S)

:= Ig(S2,t)

 .

By choosing δi = 0, Ni = Nd(Si,t), i ∈ [1 : 2], we have that
the gap is

gap = max
i∈[1:2]

(Ig(Si,t)− Id(Si,t))

≤ 1
2

log

(
2πe
3

(
1 +

8
(
1 + ln(

√
1 + S)

)2
γ2

))
,

where we used Prop. 3 to bound minimum distance of the
sum-set constellations at the receivers and where such a bound
holds everywhere except a set of measure γ.

c) Weak Type I: 2/3 ≤ α < 1: In this regime the best
known strategy is to send common and private messages with
a power split as in [6]. Thus, as in the strong interference
regime, we vary the number of points in the discrete parts to
mimic time sharing, but unlike the strong interference regime,
we also use the Gaussian part of the inputs (i.e., δ1, δ2 are
non-zero) to allow for a private message. As we shall see, for
our TIN-based scheme a single power split as in [6] does not
suffice to achieve all points in the gDoF region; we will thus
also vary δ1, δ2 in addition to β1 and β2. In this regime the
gDoF region in (4) can be written in the parametric form as

DWeak I(α) =
⋃

t∈[0,1]

(
Dd1+d2(α, t) ∪ D2d1+d2(α, t)

∪ Dd1+2d2(α, t)
)
,

Dd1+d2(α, t) =


d1 ≤ t(2α− 1) + (1− t)(1− α)

+1− α := β1,a(t) + 1− α
d2 ≤ t(1− α) + (1− t)(2α− 1)

+1− α := β2,a(t) + 1− α

 ,

D2d1+d2(α, t) =


d1 ≤ t(2α− 1) + (1− t)α+ 1− α

:= β2,a(t) + 1− α
d2 ≤ t(1− α) + t(1− α)

:= β2,b(t) + t(1− α)

 ,

Dd1+2d2(α, t) =
{
d1 ≤ β2,b(t) + t(1− α)
d2 ≤ β2,a(t) + 1− α

}
,

where again t ∈ [0, 1] is used to time-share.
Next, Dd1+d2(α, t) is matched to Prop. 5 by picking

p(t) =[β1,a(t), β1,b(t), α, α], ∀t ∈ [0, 1].

To complete the achievability of Dd1+d2(α, t) we show that
(16f) is satisfied. Due to the symmetry it is enough to verify
condition (16f) for i = 1 for all t ∈ [0, 1], which gives

1− α−min(1− β1,a(t), α− β2,a(t),
max(1− β1,a(t)− β2,a(t), α− β1,a(t)− β2,a(t))),
= 1− α−min(1− t(2α− 1)− (1− t)(1− α),
α− t(1− α)− (1− t)(2α− 1), 1− α), ∀t ∈ [0, 1],

= 1− α− (1− α) = 0, ∀t ∈ [0, 1].

The region D2d1+d2(α, t) is matched to Prop. 5 with

p(t) =[β2,a(t), β2,b(t), α, 1− t(1− α)], ∀t ∈ [0, 1].
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To complete achievability of D2d1+d2(α, t), we verify condi-
tion (16f) for S1 (the one for S2 follows similarly), that is

max(0, 1− p1, α− p2)−min(1− β2,a(t), α− β2,b(t),
max(1− β2,a(t)− β2,b(t), α− β2,a(t)− β2,b(t)))
= max(0, 1− α, α− (1− t(1− α)))
−min(1− (t(2α− 1) + (1− t)α), α− t(1− α), 1− α)
= 0, ∀t ∈ [0, 1].
In order to achieve D2d1+d2 and Dd1+2d2 (i.e., points on

the closure on the region but not on the sum-rate face), we
had to vary both the common (i.e βi’s) and private (i.e. pi’s)
part of the messages to mimic time sharing and power control.
Another important observation is that we exactly characterized
the set of parameters needed to achieve every rate pair on the
closure of DWeak I – a characterization that is not obvious from
the work in [6], which in fact seems to suggest that a single
power split suffices to achieve all points in the gDoF region.

The proof of optimality of the proposed scheme to within
a gap of order O(log log(S)) is quite tedious and it is not
reported here for sake of space; the details can be found in [8]).
Rem. 2. We remark that in order to bound the minimum
distance of the received constellations in strong and weak type
I interference regimes we have used Prop. 3, which implies
that there exists a set of measure 0 where (15a) is strictly
below the outer bound (4). This comes as no surprise, from
[10] we know that in the vicinity of α = 1, for two-user G-
IC, constellation based schemes perform poorly when channel
gains are rationally dependent and outage sets have been used
to circumvent this. Moreover, for more than two users, this
becomes an artifact of the capacity region itself.

d) Weak Interference Type II: 1/2 ≤ α < 2/3: In this
regime the gDoF region in (4) can be written as

DWeak II:(α) =
⋃

t∈[0,1]

(
DHd1+d2(α, t) ∪ D

L
d1+d2(α, t)

∪ D2d1+d2(α, t) ∪ Dd1+2d2(α, t)
)
,

Dd1+d2(α, t) =



d1 ≤ (1− t)(2− 2α)
+t(4α− 2) := β1,a(t)
+(1− t)(1− α) + t(2α− 1)

d2 ≤ (1− t)(4α− 2)
+t(2− 2α) := β1,b(t)
+(1− t)(2α− 1) + t(1− α)


,

D2d1+d2(α, t) =


d1 ≤ (1− t)(2− 2α) + t

:= β2,a(t) + 1− α
d2 ≤ (1− t)(4α− 2)

:= β2,b(t) + (1− t)(2α− 1)


Dd1+2d2(α, t) =

{
d1 ≤ β2,b(t) + (1− t)(2α− 1)
d2 ≤ β2,a(t) + 1− α

}
.

Next, Dd1+d2(α, t) is achievable for all t ∈ [0, 1] by picking

p(t) = [β1,a(t), β1,b(t), 1− β1,a(t), 1− β1,b(t)],

in Prop. 5 and verifying the condition in (16e)–which we do
not report here as it is similar to the previous regime. For

Dd1+2d2(α, t) we pick

p(t) = [β2,a(t), β2,b(t), α, 1− β2,b(t)],

in Prop. 5 and verify the condition (16d) for receiver one and
condition (16e) for receiver two. By symmetry, Dd1+2d2(α, t)
is achievable by swapping the users.

The proof of optimality of the proposed scheme to within
a constant gap is quite tedious and it is not reported here for
sake of space; the details can be found in [8]).

e) Very Weak Interference: 0 ≤ α < 1/2: Gaussian
inputs with power control and treating interference as noise
are optimal to within 1/2 bit from the work of [6]. Since this
scheme is a special case of the TIN region with mixed inputs,
with N1 = N2 = 1, the claimed optimality follows.

IV. CONCLUSION

In this paper we proved that a very simple, generally
applicable, lower bound that does neither require joint de-
coding nor time sharing is optimal to within an additive gap
(either constant uniformly over the channel gains, or of order
O(log log(S)) up to an outage set of controllable measure)
and thus achieves the optimal gDoF region of the two-
user symmetric G-IC for all channel parameters. Our result
demonstrates that properly accounting for the distribution of
the interference (i.e., not Gaussian with our mixed inputs)
when treating interference as noise results in near optimal rates
in all channel parameters. Moreover, an exact characterization
of the closure of gDoF region, together with the fact that we
used PAM signals with closed form expressions for the number
of points and the power splits, makes the scheme practical.
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