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Abstract—The problem of estimating an arbitrary random
variable from its observation corrupted by additive white Gaus-
sian noise, where the cost function is taken to be the minimum
mean p-th error (MMPE), is considered. The classical minimum
mean square error (MMSE) is a special case of the MMPE.
Several bounds and properties of the MMPE are derived and
discussed. As applications of the new MMPE bounds, this paper
presents: (a) a new upper bound for the MMSE that complements
the ‘single-crossing point property’ for all SNR values below a
certain value at which the MMSE is known, (b) an improved
characterization of the phase-transition phenomenon which man-
ifests, in the limit as the length of the capacity achieving code
goes to infinity, as a discontinuity of the MMSE, and (c) new
bounds on the second derivative of mutual information, or the
first derivative of MMSE, that tighten previously known bounds.

I. INTRODUCTION

Consider the classical point-to-point Gaussian channel:

Y =
√
snr X + Z, (1)

where Z,X,Y ∈ Rn and Z ∼ N (0, I) is independent of
X and where snr ≥ 0 is the signal to noise ratio (SNR).
When it will be necessary to emphasize the SNR at output
Y we will denote it with Ysnr. The minimum mean squared
error (MMSE) of estimating X from Y plays a key role in
Bayesian statistics and estimation theory and is defined as

mmse(X|Y) = mmse(X, snr) := n−1 inf
f

E [Err (X, f(Y))]

= n−1E [Err (X,E[X|Y])] , where (2a)

Err (X, f(Y)) := Tr
(

(X− f(Y)) (X− f(Y))
T
)
, (2b)

where Tr(·) is the trace operation. In the Bayesian setting
the MMSE in (2a) is understood as a cost function with
the quadratic loss function (i.e. L2 norm) defined in (2b).
Another commonly used cost function is the L1 norm with
loss function given by the absolute value of error (i.e., the
difference between the variable of interest and its estimate).
However, other order errors are far less well understood for
the approximation theoretic treatment of Lp spaces see [1].
Motivated by the study of cost functions in which the loss
function is of a different error order, for any random variable
U we define a norm for 2p ≥ 1 by

‖U‖p := n−
1
2p E

1
2p [Trp

(
UUT

)
], (3)

with the triangle inequality shown in [2]. Throughout the paper
we define the L2p space, for 2p ≥ 1, as the space of random

vectors on a fixed probability space (Ω, σ(Ω),P) such that the
norm defined in (3) is finite. The minimum mean p-th error
(MMPE) in estimating X from Y is defined as

mmpe(X, snr, p) := inf
f
‖X− f(Y)‖2pp

= inf
f
n−1E [Errp (X, f(Y))] , (4)

where the minimization is over all possible Borel measur-
able estimators f(Y). The optimal MMPE estimator of or-
der p of X is denoted by fp(X|Y = y). In particular,
mmpe(X, snr, 1) = mmse(X, snr) with f1(X|Y) = E[X|Y].
The definition of loss function used in (4) is motivated by:
• it reduces to a natural expression with loss function given

by Errp(X, f(Y )) = |X − f(Y )|2p for X ∈ R1,
• it naturally appears in applications of Holder’s or Jensen’s

inequality to (2). This is the key motivation for studying
MMPE: as a tool to develop new bounds on the MMSE.

We shall also look at the p-th error achieved with the subop-
timal (unless 2p = 2) estimator E[X|Y], that is,

n−1E [Errp (X,E[X|Y])] = ‖X− E[X|Y]‖2pp , (5)

which represents higher order moments of the loss function
in (2b) and serves (see below) as an upper bound on (4).

MMPE for 2p 6= 2 differs from MMSE in a number of
aspects. The main difference is that the norm defined in (3)
is not a Hilbert space norm in general (unless 2p = 2); as a
result, there is no notion of inner product or orthogonality, and
fp(X|Y), unlike E[X|Y], can no longer be thought of as an
orthogonal projection. Therefore, the orthogonality principle—
an important tool in the analysis of the MMSE—is no longer
available when studying the MMPE for 2p 6= 2.
Notation. We adopt the following notational conventions:
deterministic scalar/vector quantities are denoted by lower
normal/bold case letters, matrices by bold upper case letters,
random variables by upper case letters, and random vectors
by bold uppercase letters; Γ(x) denotes the gamma function.
Past Work. The key application of MMPE is to derive new
bounds on the first (MMSE) and second derivative of mutual
information. Next, we review some properties of the MMSE
and its derivative that are relevant for this work.

Properties of the MMSE for the channel in (1) have been
throughly explored in [3]. Of particular interest to this work
is the ‘single-crossing point property’ bound developed in [4]
for n = 1 and in [5] for n ≥ 1, stated next.1

1The single-crossing point property is not stated in full generality here, see
[4, Proposition 16], [5, Theorem 1] for the complete statement of the theorem.



Proposition 1. (Single-crossing point property). For any fixed
X, suppose that mmse(X, snr0) = β

1+βsnr0
, for some β ≥ 0.

Then for all snr ∈ [snr0,∞) we have that

mmse(X, snr) ≤ β

1 + βsnr
. (6)

The single-crossing point property with the I-MMSE rela-
tionship In(X, snr) := 1

nI(X;Ysnr) = 1
2

∫ snr

0
mmse(X, t)dt

[6], have been used: in [4] to provide an alternative proof
of the converse for the Gaussian broadcast channel (BC) and
show a special case of the entropy power inequality (EPI);
in [3] to provide a simple proof for the information combining
problem and a converse for the BC with confidential messages;
in [5], by using various extensions of (6), to prove a special
case of the vector EPI, a converse for the capacity region of
the parallel degraded BC under per-antenna power constraints
and under an input covariance constraint, and a converse for
the compound parallel degraded BC under an input covariance
constraint; and in [7] to provide a converse for communication
under an MMSE disturbance constraint.

The single-crossing point property is also instrumental in
showing the behavior of the MMSE of capacity achieving
codes. For example, as the length of any capacity achieving
code goes to infinity, the MMSE behaves as follows:

lim sup
n→∞

mmse(X, snr) =


1

1+snr , 0 ≤ snr ≤ snr0
β

1+βsnr , snr0 ≤ snr ≤ snr1
γ

1+γsnr , snr ≥ snr1

,

(7)

as shown: in [8], for the Gaussian point-to-point channel with
the output Ysnr0 with β = γ = 0; in [9], for the Gaussian
BC with outputs Ysnr1 and Ysnr0 , where snr0 ≤ snr1 and
rate pair (R1, R2) =

(
1
2 log(1 + βsnr1), 1

2 log
(

1+snr0
1+βsnr0

))
for

some β ∈ [0, 1], with γ = 0; in [9], for the Gaussian wiretap
channel with outputs Ysnr0 (primary) and Ysnr1 (eavesdropper)
with maximum equivocation dmax and rate R ≥ dmax, for
β = γ = 0; and in [7], for the Gaussian point-to-point channel
with output Ysnr1 and an MMSE disturbance constraint at Ysnr0
measured by mmse(X, snr0) ≤ β

1+βsnr0
for some β ∈ [0, 1]

with γ = β. The jump discontinuities in (7) at snr = snr0 and
snr = snr1 are referred to as the phase transitions.

Based on the above, an interesting question is how the
MMSE in (7) behaves for codes of finite length. In [10], in
order to study the phase transition phenomenon for inputs of fi-
nite length, the following optimization problem was proposed:

Mn(snr, snr0, β) := sup
X

mmse(X, snr), (8a)

s.t. ‖X‖21 ≤ 1, and mmse(X, snr0) ≤ β

1 + βsnr0
, (8b)

for some β ∈ [0, 1]. Investigation in [10] revealed that
Mn(snr, snr0, β) in (8a) must be of the following form:

Mn(snr, snr0, β) =


1

1+snr , snr ≤ snrL
Tn(snr, snr0, β), snrL ≤ snr ≤ snr0

β
1+βsnr , snr0 ≤ snr

,

for some snrL and some function Tn(snr, snr0, β), where the
region snrL ≤ snr ≤ snr0 is referred to as the phase transition
region and its width is defined as W (n) := snr0−snrL. In [10]
the following was established for Tn(snr, snr0, β) and W (n).

Theorem 1. For any fixed X and snr ∈ [0, snr0], let
mmse(X, snr0) = β

1+βsnr0
. Then

mmse(X, snr) ≤ mmse(X, snr0) + κn

(
1

snr
− 1

snr0

)
,

where κn ≤ n+ 2. (9)

Moreover, the width of the phase transition region scales as
W (n) = O

(
n−1

)
.

The MMPE will also be used in the study of the second
derivative of mutual information (or first derivative of MMSE),
as initiated for n = 1 in [4] and for n ≥ 1 in [5], namely,

d2I(X;Y)

dsnr2
= n

d mmse(X, snr)

dsnr
= −Tr

(
E
[
Cov2(X|Y)

])
,

Cov(X|Y) :=E
[
(X− E[X|Y])(X− E[X|Y])T |Y

]
. (10)

The second derivative of mutual information is important in
characterizing the bandwidth-power trade-off in the wideband
regime [11], [12] and it has also been used in the proof of the
single-crossing point property in [4] and [5]. Moreover, in [4]
it has been shown that the derivative of the MMSE and the
quantity in (5) are related by the following bound for n = 1:

E
[
Cov2(X|Y )

]
≤ ‖X − E[X|Y ]‖42 ≤

3 · 24

snr2
. (11)

Finally, it is worth pointing out that in [13] yet another cost
function, referred to as the score function, was shown to
be useful in establishing information-estimation relationships.
Paper Outline and Main Contributions. In Section II we
study properties of the optimal estimator fp(X|Y): in Propo-
sition 2 we show that the optimal estimator indeed exists; in
Proposition 3 we find the exact value of the MMPE and the
optimal estimator for Gaussian inputs, and in Proposition 4 we
find the optimal estimator for BPSK inputs; in Proposition 5
we compare well known properties of the MMSE to those
for the MMPE. In Section III we develop several bounds on
MMPE such as: in Proposition 7 we find bounds, equivalent
to that of the linear MMSE (LMMSE) bound, for the MMPE;
and in Proposition 8 we derive interpolation bounds for the
MMPE; in Proposition 9 we show that MMPE is a continuous
function of p; and in Theorem 2 we upper bound the MMPE
at a lower SNR with the MMPE of a different order at a
higher SNR. In Section IV we show how the tools developed
in Section III can be applied to find new bounds on the
MMSE and the derivative of MMSE: in Theorem 3 we show
a bound that complements the single-crossing point property
and improves the characterization of the width phase transition
region in Theorem 1, provides a lower bound on how fast a
capacity achieving code sequence will converge to (7); and in
Theorem 4 we show how the MMPE can be used to provide
new lower and upper bounds on the derivative of the MMSE,
where for n = 1 we show an improvement of the bound in (11)



and generalize it to arbitrary n. Due to space limitations, the
proofs are omitted and can be found in the extended version
of the paper [2].

II. ON THE OPTIMAL MMPE ESTIMATOR

It is important to point out that ‖X−E[X|Y]‖2pp in general
is not equal to MMPE, as E[X|Y] might not be the optimal
estimator under the p-th norm. The first result of this section
shows that the optimizing fp(X|Y = y) indeed exists.

Proposition 2. For mmpe(X, snr, p) and p ≥ 0 the optimal
estimator is given by the following point-wise relationship:

fp(X|Y = y) = arg min
v∈Rn

E [Errp(X,v)|Y = y] . (12)

In general we do not have an analytical solution to (12).
Interestingly, the optimal estimator for scalar Gaussian inputs
can be found and is the same for all p and is linear.

Proposition 3. For input X ∼ N (0, 1) and 2p ≥ 1

mmpe(X, snr, p) =
2pΓ

(
2p+1

2

)
√
π(1 + snr)p

,

with optimal estimator given by fp(X|Y = y) =
√
snr y

1+snr .

The optimal MMPE estimator is in general a function of
p as shown next for the practically relevant case of BPSK
modulation, or X ∈ {±1} with equal probability.

Proposition 4. For BPSK input and 2p ≥ 1 we have

fp(X|Y = y) = tanh

(
y
√
snr

2p− 1

)
.

Not all known properties of E[X|Y] and mmse(X|Y) are
also exhibited by fp(X|Y) and mmpe(X, snr, p).

Proposition 5. For any p > 0 the optimal estimator fp has
the following properties:

1) if 0 ≤ X ∈ R1 then 0 ≤ fp(X|Y ),
2) (Linearity) fp(aX + b|Y) = afp(X|Y) + b,
3) (Stability) fp(g(Y)|Y) = g(Y) for any deterministic

function g(·),
4) (Idempotent) fp(fp(X|Y)|Y) = fp(X|Y),
5) (Degradeness) fp (X|Ysnr0 ,Ysnr) = fp (X|Ysnr0), for a

Markov chain X→ Ysnr0 → Ysnr,
6) (Orthogonality Principle) It only holds for 2p = 2 (when

MMPE corresponds to MMSE) as shown in Fig. 1, where
we plot h(p) := E[(X−fp(X|Y ))Y ] vs. p for BPSK input
and observe it is zero only for 2p = 2,

7) (Shift) mmpe(X + a, snr, p) = mmpe(X, snr, p), and
8) (Scaling) mmpe(aX, snr, p) = a2pmmse(X, a2snr, p).

III. BOUNDS AND PROPERTIES OF THE MMPE

a) Bounds: An important upper bound on the MMSE
often used in practice is the LMMSE bound.

Proposition 6. (LMMSE [4].) For any input X and snr > 0

mmse(X, snr) ≤ 1

snr
. (13a)

p
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Fig. 1: Plot of the correlation between the error and observation
h(p) := E[(X − fp(X|Y ))Y ] vs. p, for X ∼ BPSK and snr = 1

and where fp(X|Y ) for any 2p ≥ 1 is given in Proposition 4.

If ‖X‖21 = σ2 <∞, then for any snr ≥ 0

mmse(X, snr) ≤ σ2

1 + σ2snr
, (13b)

where equality in (13b) is achieved iff X ∼ N (0, σ2I).

Next, we present bounds on the MMPE and ‖X−E[X|Y]‖p
that generalize Proposition 6, as well as, [4, Propositions 4 and
5] to higher order errors and input X of any dimension n ≥ 1.

Proposition 7. For snr ≥ 0, 0 < q ≤ p, and any input X

n
p−q
q mmpe

p
q (X, snr, q) ≤ mmpe(X, snr, p)

≤ ‖X− E[X|Y]‖2pp . (14a)

Moreover,

‖X− E[X|Y]‖2pp
p ≥ 1

≤ 22p min

(
‖Z‖2pp
snrp

, ‖X‖2pp

)
, (14b)

mmpe(X, snr, p)
p ≥ 0

≤ min

(
‖Z‖2pp
snrp

, ‖X‖2pp

)
. (14c)

If ‖X‖2pp <∞ then for p ≥ 0

mmpe(X, snr, p) ≤

∥∥‖Z‖2pp X−
√
snr‖X‖2pp Z

∥∥2p

p(
‖Z‖2pp + snr‖X‖2pp

)p , (14d)

where ‖Z‖2pp =
2pΓ(n2 +p)
nΓ(n2 )

.

It is not difficult to check that for 2p = 2 Proposition 7
reduces to Proposition 6. The reason that bounds on ‖X −
E[X|Y]‖p are only available for p ≥ 1, while the bounds on
mmpe(X, snr, p) are available for p ≥ 0, is because the proof
of the bound in (14b) uses Jensen’s inequality, which requires
p ≥ 1, while the proof of the bound in (14c) does not.

b) Interpolation and Continuity: One of the key advan-
tages of using MMPE is that the MMPE of order q can be
tightly predicted based on the knowledge of the MMPE at a
lower order p and the MMPE at a higher order r. At the heart



of this analysis is the interpolation of Lp spaces [14]: given
0 ≤ p ≤ q ≤ r and α ∈ (0, 1) such that 1

q = α
p + 1−α

r the q-

th norm can be bounded as ‖X‖q ≤ ‖X‖αp ‖X‖
(1−α)
r , which

implies that the norm is log-convex and thus a continuous
function of p [15, Theorem 5.1.1]. Next, we present several
interpolation results for the MMPE.

Proposition 8. (Log-Convexity.) For any 0 < p < q < r ≤ ∞
and α ∈ (0, 1) such that

1

q
=
α

p
+
ᾱ

r
⇐⇒ α =

q−1 − r−1

p−1 − r−1
,

where ᾱ = 1− α, we have

‖X− E[X|Y]‖q ≤ ‖X− E[X|Y]‖αp ‖X− E[X|Y]‖ᾱr ,

mmpe
1
q (X, snr, q) ≤ ‖X− fr(X|Y)‖2αp mmpe

ᾱ
r (X, snr, r).

From log-convexity we can deduce continuity.

Proposition 9. (Continuity.) For fixed X and snr > 0,
mmpe(X, snr, p) and ‖X − E[X|Y]‖p are continuous func-
tions of p ≥ 0.

c) Change of Measure: The next result enables us to
change the expectation from Ysnr to Ysnr0 ; this is particularly
useful when we know the MMPE, or the structure of the
estimator, at one SNR value but not at another.

Proposition 10. For any X and any snr ∈ (0, snr0], p ≥ 0

mmpe(X, snr, p) (16)

= inf
f

1

n
E
[
Errp(X, f(Ysnr0))

√
snr

snr0
e

snr0−snr
2snr0

∑n
i=1 Z

2
i

]
.

One must be careful when evaluating Proposition 10. For
example, since we have that

lim
snr→0+

√
snr

snr0
e

snr0−snr
2snr0

Z2

= 0,

at first glance it appears that the expectation on the right of
(16) is zero while mmpe(X, 0, p) is not, by Proposition 7, thus
violating the equality. However, closer examination shows that
when snr→ 0 the limit and expectation cannot be exchanged

lim
snr→0+

E
[√

snr

snr0
e

snr0−snr
2snr0

Z2
]

= lim
snr→0+

√
snr

snr0
E
[
e

snr0−snr
2snr0

Z2
]

= lim
snr→0+

√
snr

snr0

1√
1− snr0−snr

snr0

= 1,

where in the last equality we used the moment generating
function of (the chi-square random variable) Z2. As an ex-
ample, Proposition 10 for X ∼ N (0, 1) with the optimal
linear estimator from Proposition 3, i.e. f(y) = ay for some
a, evaluates to

E
[
Err(X, f(Ysnr0))

√
snr

snr0
e

snr0−snr
2snr0

Z2
]

a)
= (1−

√
snr0a)2

√
snr

snr0
E[X2]E

[
e

snr0−snr
2snr0

Z2
]

+ a2

√
snr

snr0
E
[
Z2e

snr0−snr
2snr0

Z2
]
b)
=

1

1 + snr
,

where the equalities follow from: a) linearity of expectation
and the fact that Z and X are independent, and b) since
E
[
e

snr0−snr
2snr0

Z2
]

=
√

snr0
snr and E

[
Z2e

snr0−snr
2snr0

Z2
]

=
(
snr0
snr

)3/2
and choosing a = snr√

snr0(1+snr) to minimize the expression.
The next result enables us to bound the MMPE at snr with

values of the MMPE at snr0 while varying the order.

Theorem 2. For 0 < snr ≤ snr0, any X and any p ≥ 0

mmpe(X, snr, p) ≤ κn,t mmpe
1−t
1+t

(
X, snr0,

1 + t

1− t
· p
)
,

where κn,t :=

(
2n

n2

) t
t+1
(

1

1− t

) nt
t+1−

1
2

, t =
snr0 − snr

snr0
.

The bound in Theorem 2, whose proof hinges on Hölder’s
inequality and the change of measure technique in Propo-
sition 10, is the key in showing new bounds on the phase
transitions region for MMSE, presented in the next section.

IV. APPLICATIONS

In this section we show that the MMPE, besides its interest
in estimation theory, can be used to study quantities that are
important for information theoretic applications such as the
first (MMSE) and the second derivative of mutual information.

a) New bounds on the MMSE: The main result of the
subsection is shown next, which uses Theorem 2 and Propo-
sition 8.

Theorem 3. For 0 < snr ≤ snr0,

mmse(X, snr) ≤ min
r> 1

γ

√
2

n1−γ

(
1 + γ

γ

)n(1−γ)−1
2

M
γr−1
r−1

1 M
1−γ
r−1
r ,

(17a)

where γ :=
snr

2snr0 − snr
∈ (0, 1], (17b)

M1 := mmse(X, snr0) =
β

1 + βsnr0
, (17c)

Mr := ‖X− E [X|Ysnr0 ]‖2rr ≤ 22r min

(
‖Z‖2rr
snrr0

, ‖X‖2rr
)
,

(17d)

and where the minimizing r in (17a) can be approximated by

ropt ≈

 ln
(

4e
snr0mmse(X,snr0)

)
, 1

γ ≤ ln
(

4e
snr0mmse(X,snr0)

)
1
γ ,

1
γ > ln

(
4

snr0mmse(X,snr0)

) .

Moreover, the width of the phase transition region is given by

W (n) = O
(
n−

1
2

)
. (17e)

The bounds in Theorems 3 and 1 are shown in Fig. 2.
The bound in Theorem 3 is asymptotically tighter than the
one in Theorem 1. This follows since the phase transition
region shrinks as O

(
1√
n

)
for Theorem 3, while as O

(
1
n

)
for Theorem 1. It is not possible in general to assert that
Theorem 3 is tighter than Theorem 1. In fact, for small values
of n, the bound in Theorem 1 can offer advantages, as seen
for the case n = 1 shown in Fig. 2b. Another advantage of
the bound in Theorem 1 is its analytical simplicity.
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Fig. 2: Bounds on Mn(snr, snr0, β) vs snr.

b) Bounds on the derivative of the MMSE in (10): The
main result of this subsection is the next bound.

Theorem 4. For any input X

mmse2(X, snr) = mmpe2(X, snr, 1)

≤ 1

n
Tr
(
E
[
Cov2(X|Y)

])
≤ n mmpe(X, snr, 2). (18)

It can be observed that, for the case n = 1, by using the
bound in (14b) from Proposition 7 we have that

E
[
Cov2(X|Y )

]
≤ mmpe(X, snr, 2) ≤ 3

snr2
, (19)

which significantly reduces the constant in (11) from 3 · 24

to 3. A bound similar to that in (19) has been shown in [10,
Proposition 9 and 10] via a different method.

V. CONCLUDING REMARK

This paper has considered the problem of estimating a
random variable from a noisy observation under a very general
cost function, termed the MMPE. As a tool the MMPE has
been applied to show a new bound on the MMSE that comple-
ments the single-crossing point property. The MMPE has also
been used to refine bounds on the derivative of the MMSE.
Even though not reported here, due to space limitations,
the MMPE can also be used to improve, asymptotically, the
converse bound of the disturbance constrained problem studied
in [10].

An interesting future direction is to study interactions be-
tween the signal dimension n and p as was done in [16].
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