
On Communications through a Gaussian Noise
Channel with an MMSE Disturbance Constraint
Alex Dytso, Ronit Bustin, Daniela Tuninetti, Natasha Devroye, H.Vincent Poor, Shlomo Shamai (Shitz)

Corresponding Author: Alex Dytso, University of Illinois at Chicago, USA, odytso2@uic.edu

Abstract—This paper considers a Gaussian channel with one
transmitter and two receivers. The goal is to maximize the
communication rate at the intended/primary receiver subject to
a disturbance constraint at the unintended/secondary receiver.
The disturbance is measured in terms of minimum mean square
error (MMSE) of the interference that the transmission to the
primary receiver inflicts on the secondary receiver.

The paper presents a new upper bound for the problem
of maximizing the mutual information subject to an MMSE
constraint. The new bound holds for vector inputs of any length
and recovers a previously known limiting (when the length for
vector input tends to infinity) expression from the work of Bustin
et al. The key technical novelty is a new upper bound on MMSE.
This new bound allows one to bound the MMSE for all signal-to-
noise ratio (SNR) values below a certain SNR at which the MMSE
is known (which corresponds to the disturbance constraint). This
new bound complements the ‘single-crossing point property’ of
the MMSE that upper bounds the MMSE for all SNR values
above a certain value at which the MMSE value is known. The
new MMSE upper bound provides a refined characterization of
the phase-transition phenomenon which manifests, in the limit as
the length of the vector input goes to infinity, as a discontinuity
of the MMSE for the problem at hand.

A matching lower bound, to within an additive gap of order
O
(
log log 1

MMSE

)
(where MMSE is the disturbance constraint),

is shown by means of the mixed inputs recently introduced by
Dytso et al.

I. INTRODUCTION

Consider a Gaussian noise channel with one transmitter and
two receivers:

Y =
√
snrX + Z, (1a)

Ysnr0 =
√
snr0X + Z0, (1b)

where Z,Z0,X,Y,Ysnr0 ∈ Rn, Z,Z0 ∼ N (0, I) and
(Z,Z0,X) are mutually independent. When it will be nec-
essary to stress the SNR at Y we will denote it with Ysnr.

We denote the mutual information between input X and
output Y as

I(X;Y) = I(X, snr) := E
[
log

(
pY|X(Y|X)

pY(Y)

)]
. (2)

We also denote the mutual information normalized by n as

In(X, snr) :=
1

n
I(X, snr). (3)

We denote the minimum mean squared error (MMSE) of
estimating X from Y as

mmse(X|Y) = mmse(X, snr) :=
1

n
Tr (E [Cov(X|Y)]) ,

(4)

where Cov(X|Y) is the conditional covariance matrix of X
given Y and is defined as

Cov(X|Y) := E
[
(X− E[X|Y]) (X− E[X|Y])

T |Y
]
.

Moreover, since the distribution of the noise is fixed, the quan-
tities I(X;Y) and mmse(X|Y) are completely determined
by X and snr and there is no ambiguity in using the notation
I(X, snr) and mmse(X, snr).

We consider a scenario in which a message, encoded as X,
must be decoded at the primary receiver Ysnr while it is also
seen at the unintended/secondary receiver Ysnr0 for which it
is an interferer. This scenario is motivated by the two-user
Gaussian Interference Channel (G-IC), whose capacity is only
known for some special cases. The following strategies are
commonly used to manage interference in the G-IC:

1) interference is treated as Gaussian noise: in this ap-
proach the interference structure is neglected. It has been
shown to be sum-capacity optimal in the so called very-
weak interference regime [?].

2) partial interference cancellation: by using the Han-
Kobayashi (HK) achievable scheme [?], part of the
interfering message is decoded and subtracted off, and
the remaining part is treated as Gaussian noise. This
approach has been show to be capacity achieving in
strong interference [?] and optimal within 1/2 bit per
channel per user otherwise [?].

3) soft-decoding / estimation: the unintended receiver em-
ploys soft-decoding of part of the interference. This is
enabled by using non-Gaussian inputs and designing the
decoders that treat interference as noise by taking into
account the correct (non-Gaussian) distribution of the
interference. Such scenarios were considered in [?], [?]
and [?], and shown to be optimal to within either a
constant or a O(log log(snr)) gap in [?].

In this paper we look at a somewhat simplified scenario as
opposed to the G-IC as shown in Fig. ??. We assume that there
is only one message for the primary receiver, and the primary
user inflicts interference (disturbance) on a secondary receiver.
The primary transmitter wishes to maximize its transmission
rate, while subject to a constraint on the disturbance it inflicts
on the secondary receiver. The disturbance is measured in
terms of MMSE. Intuitively, the MMSE disturbance constraint
quantifies the remaining interference after partial interference
cancellation or soft-decoding have been performed [?], [?].
Formally, we aim to solve the following problem.
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Fig. 1: Channel Model.

Definition 1. (max-I problem.) For some β ∈ [0, 1]

Cn(snr, snr0, β) := sup
X
In(X, snr), (5a)

s.t.Tr
(
E[XXT]

)
≤ n, (5b)

and mmse(X, snr0) ≤ β

1 + βsnr0
. (5c)

The subscript n in Cn(snr, snr0, β) emphasizes that we
seek to find bounds that hold for any input length n. Even
though this model is somewhat simplified, compared to the
G-IC, it can serve as an important building block, towards
characterizing the capacity of G-IC [?], [?].

In [?] the capacity of the channel in Fig. ?? was properly de-
fined and it was shown to be equal to limn→∞ Cn(snr, snr0, β).
The reason why the capacity does not have a ‘single-letter’
expression is because the MMSE constraint does not ‘single-
letterize’. Moreover, in [?, Sec. VI.3] and [?, Sec. VIII] it
was conjectured that the optimal input for C1(snr, snr0, β) is
discrete.

A. Contributions and Paper Outline

In Section ?? we position our work in the context of existing
literature. In Section ?? we summarize our main results. In
Section ?? we develop bounds on the derivative of the MMSE,
which we use to prove our main result in Theorem ??. Due to
space limitations, most proofs are omitted and can be found
in the extended version of the paper [?].

B. Notation

Throughout the paper we adopt the following notational
conventions: deterministic scalar quantities are denoted by
lower case letters and deterministic vector quantities are de-
noted by lower case bold letters; matrices are denoted by bold
upper case letters; random variables are denoted by upper case
letters and random vectors are denoted by bold uppercase
letters; all logarithms are taken to be base e; we denote
support of a random variable A by supp(A); X ∼ PAM (N)
denotes pulse-amplitude modulation (PAM) or the uniform
probability mass function over a zero-mean constellation with
|supp(X)| = N points, minimum distance dmin(X), and
therefore average energy E[X2] = d2min(X)

N2−1
12 ; we denote

the Fisher information matrix of the random vector A by
J(A); for x ∈ R we let [x]+ := max(x, 0) and log+(x) :=
[log(x)]+; we use the Landau notation f(x) = O(g(x)) to
mean that for some c > 0 there exists an x0 such that
f(x) ≤ cg(x) for all x ≥ x0.

II. PAST WORK

The mutual information and the MMSE can be related,
for any input X, via the so called I-MMSE relationship [?,
Theorem 1].

Proposition 1. (I-MMSE relationship [?].) The I-MMSE is
given by the derivative relationship

d

dsnr
In(X, snr) =

1

2
mmse(X, snr), (6a)

or the integral relationship [?, Eq.(47)]

In(X, snr) =
1

2

∫ snr

0

mmse(X, t)dt. (6b)

In order to develop bounds on Cn(snr, snr0, β) we require
bounds on the MMSE. An important bound on the MMSE is
the following linear MMSE (LMMSE) upper bound.

Proposition 2. (L-MMSE bound [?].) For any X and snr > 0

mmse(X, snr) ≤ 1

snr
. (7a)

If 1
nTr

(
E[XXT]

)
≤ σ2, then for any snr ≥ 0

mmse(X, snr) ≤ σ2

1 + σ2snr
, (7b)

where equality in (??) is achieved iff X ∼ N (0, σ2I).

Another important bound for the MMSE is the single-
crossing point property bound developed in [?] for n = 1
and extended in [?] to any n ≥ 1. Next the single-crossing
point property is not stated in full generality, which can be
found in [?, Proposition 16] and [?, Theorem 1].

Proposition 3. ( Single-crossing point property [?].) For any
fixed X, suppose that mmse(X, snr0) = β

1+βsnr0
, for some

fixed β ≥ 0. Then for all snr ∈ [snr0,∞) we have that

mmse(X, snr) ≤ β

1 + βsnr
, (8a)

and for all snr ∈ [0, snr0)

mmse(X, snr) ≥ β

1 + βsnr
. (8b)

In words, Proposition ?? means that if we know that the
value of MMSE at snr0 is given by mmse(X, snr) = β

1+βsnr0
then for all higher SNR values (snr0 ≤ snr) we have the upper
bound in (??) and for all lower SNR values (snr ≤ snr0)
we have a lower bound in (??). Unfortunately, Proposition ??
does not provide an upper bound on mmse(X, snr) for snr ∈
[0, snr0) and one of the goals of this paper is to fill in this
gap. Note that upper bounds on MMSE are useful, thanks to
the I-MMSE relationship, as tools to derive converse results.

Motivated by the search of the complementary upper bound
to Proposition ?? we define the following problem.



Definition 2. (max-MMSE problem.) For some β ∈ [0, 1]

Mn(snr, snr0, β) := sup
X

mmse(X, snr), (9a)

s.t.
1

n
Tr
(
E[XXT]

)
≤ 1, (9b)

and mmse(X, snr0) ≤ β

1 + βsnr0
. (9c)

Clearly, Mn(snr, snr0, β) ≤ M∞(snr, snr0, β) for all finite
n. Observe that the max-MMSE problem problems in (??) and
the max-I problem in (??) have a different objective functions
but have the same constraints.

Note that Proposition ?? gives a solution to the max-MMSE
problem in (??) for snr ≥ snr0 and any n ≥ 1 as follows:

Mn(snr, snr0, β) =
β

1 + βsnr
, for snr ≥ snr0, (10)

achieved by X ∼ N (0, βI). Therefore in the rest of the paper
the treatment of max-MMSE problem will only focus on the
regime snr ≤ snr0.

The case n = ∞ of the max-MMSE problem in (??) was
solved in [?, Section V-C] and [?, Theorem 2] as follows:

M∞(snr, snr0, β) =

{
1

1+snr , snr < snr0,
β

1+βsnr , snr ≥ snr0,
, (11)

achieved by using superposition coding with Gaussian code-
books. Clearly there is a discontinuity in (??) at snr = snr0 for
β < 1. This fact is a well known property of MMSE referred
to as a phase transition [?]. It is also well know that, for any
finite n, mmse(X, snr) is a continuous function of snr [?].
Putting these two facts together we have that, for any finite n,
the objective function Mn(snr, snr0, β) must be continuous in
snr and converge to a function with a jump-discontinuity at
snr0 as n → ∞. Therefore, Mn(snr, snr0, β) must be of the
following form:

Mn(snr, snr0, β)

=


1

1+snr , snr ≤ snrL,

Tn(snr, snr0, β), snrL ≤ snr ≤ snr0,
β

1+βsnr , snr0 ≤ snr,
(12)

for some snrL. In this paper we seek to characterize
Tn(snr, snr0, β) and snrL in (??) and give scaling bounds on
the width of the phase transition region defined as

W (n) := snr0 − snrL. (13)

Back to the max-I problem in (??). Clearly, we have the
following relationship for every n ≥ 1

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β). (14)

In [?, Theorem. 3] Bustin et al. proved

C∞(snr, snr0, β) = lim
n→∞

Cn(snr, snr0, β),

=

{
1
2 log(1 + snr), snr ≤ snr0,

1
2 log(1 + βsnr) + 1

2 log
(

1 + snr0(1−β)
1+βsnr0

)
, snr ≥ snr0,

=
1

2
log+

(
1 + βsnr

1 + βsnr0

)
+

1

2
log (1 + min(snr, snr0)) , (15)
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Fig. 2: Plot of C∞(snr,snr0,β)
1
2 log(1+snr)

vs. snrdB, for β = 0.01,
snr0 = 5 = 6.989 dB.

which is achieved by using superposition coding with Gaussian
codebooks. Fig. ?? shows a plot of C∞(snr, snr0, β) normal-
ized by the capacity of the point-to-point channel capacity
1
2 log(1+snr). The region snr ≤ snr0 (flat part of the curve) is
where the MMSE constraint is inactive since the channel with
snr0 can decode the interference and guarantee zero MMSE.
The regime snr ≥ snr0 (curvy part of the curve) is where
the receiver with snr0 can no-longer decode the interference
and the MMSE constraint becomes active, which in practice
is the more interesting regime because the secondary receiver
experiences ‘weak interference’ that can not be fully decoded
(recall that in this regime superposition coding appears to be
the best achievable strategy for G-IC but it is unknown whether
it achieves capacity [?]).

The importance of studying models of communication
systems with disturbance constraints has been recognized
previously. For example, in [?] Bandemer et al. studied the
following problem related to the max-I problem in (??).

Definition 3. (Bandemer et al. problem.) For some R ≥ 0

In(snr, snr0, R) := max
X

In(X, snr), (16a)

s.t.
1

n
Tr
(
E[XXT]

)
≤ 1, (16b)

and In(X, snr0) ≤ R. (16c)

In [?] it was shown that the optimal solution for
In(snr, snr0, R), for any n, is attained by X ∼ N (0, αI)

where α = min
(

1, e
2R−1
snr0

)
; here α is such that the most

stringent constraint between (??) and (??) is satisfied with
equality. In other words, the optimal input is Gaussian with
power reduced such that the disturbance constraint in (??) is
not violated.

Observe that the max-I problems in (??) and the one
in (??) have the same objective function but have different
constraints. The relationship between the constraints in (??)



and (??) can be explained as follows. The constraint in (??)
imposes a maximum value on the function mmse(X, snr) at
snr = snr0, while the constraint in (??), via the integral I-
MMSE relationship in (??), imposes a constraint on the area
below the function mmse(X, snr) in the range snr ∈ [0, snr0].

Measuring the disturbance with the mutual information as
in (??), in contrast to measuring the disturbance with the
MMSE as in (??), suggests that it is always optimal to use
Gaussian codebooks with the reduced power without any rate
splitting. Moreover, while the mutual information constraint
in (??) limits the amount of information transmitted to the
unintended receiver, it may not be the best choice when one
models the interference, since any information that can be
reliably decoded is not really interference. For this reason,
it has been argued in [?] and [?] that the max-I problem with
the MMSE disturbance constraint is a more suitable building
block to study the G-IC and understand the key role of rate
splitting in approaching capacity.

III. MAIN RESULTS

A. max-MMSE problem: bounds on Mn(snr, snr0, β)

We start by giving bounds on the phase transition region of
Mn(snr, snr0, β) defined in (??).

Theorem 1. (D-Bound.) For any X and 0 ≤ snr ≤ snr0, let
mmse(X, snr0) = β

1+βsnr0
for some β ∈ [0, 1]. Then

mmse(X, snr) ≤ mmse(X, snr0) + kn

(
1

snr
− 1

snr0

)
−∆,

(17a)
kn ≤ n+ 2, ∆ = 0. (17b)

If X is such that 1
nTr

(
E[XXT]

)
≤ 1 then

∆ := ∆(??) = 2 log

(
1 + snr0
1 + snr

)
− 2 log

( snr0
snr

)
+

1

1 + snr

− 1

1 + snr0
+

1

snr
− 1

snr0
. (17c)

The bound on Mn(snr, snr0, β) in (??) from Theorem ?? is
depicted in Fig. ??, where:
• The red line is the M∞(snr, snr0, β) upper bound on

M1(snr, snr0, β); and
• The blue line is the new upper bound on M1(snr, snr0, β)

from Theorem ??.
Observe that the new bound provides a tighter and continuous
upper bounds on M1(snr, snr0, β) than the trivial upper bound
given by M∞(snr, snr0, β).

We next show how fast the phase transition region shrinks
with n as n→∞.

Proposition 4. The bound in (??) from Theorem ?? intersects
the LMMSE bound in (??) from Proposition ?? at

snrL = snr0
1 + βsnr0
kn
kn−1 + βsnr0

= O

((
1− 1

n

)
snr0

)
. (18a)

Thus, the width of the phase transition region is given by

W (n) =
1

kn − 1

snr0
kn
kn−1 + βsnr0

= O

(
1

n

)
. (18b)

In Proposition ?? we found the intersection between the
LMMSE bound 1

snr and the bound in (??) from Theorem ??.
Unfortunately, for the power constraint case, the intersection
of the LMMSE bound 1

1+snr and the bound in (??) cannot
be found analytically. However, the solution can be computed
efficiently by using numerical methods. Moreover, the asymp-
totic behavior of the phase transition region is still given by
O
(
1
n

)
. The bound in Theorem ?? for several values of n is

shown in Fig. ?? where:
• The red line is the M∞(snr, snr0, β) bound on

Mn(snr, snr0, β); and
• The blue line is the bound on Mn(snr, snr0, β) from

Theorem ?? for n = 1, 3, 15 and 70.
We observe that the new bound provides a refined characteri-
zation of the phase transition phenomenon for finite n and in
particular it recovers the bound in (??) as n→∞.

B. max-I problem: bounds on Cn(snr, snr0, β)

Using the previous novel bound on Mn(snr, snr0, β) in
Theorem ?? we can find new upper bounds on Cn(snr, snr0, β)
by integration as follows:

Cn(snr, snr0, β) ≤ 1

2

∫ snr

0

Mn(t, snr0, β)dt

=
1

2
log(1 + snrL) +

1

2

∫ snr0

snrL

Tn(t, snr0, β)dt

+
1

2
log

(
1 + βsnr

1 + βsnr0

)
, for snr0 ≤ snr, (19)

and

Cn(snr, snr0, β) ≤ 1

2

∫ snr

0

Mn(t, snr0, β)dt

≤ 1

2
log(1 + min(snrL, snr))

+
1

2

∫ snr

min(snrL,snr)

Tn(t, snr0, β)dt, for snr0 ≥ snr. (20)

By using Theorem ?? to bound Tn(t, snr0, β) we get the
following upper bounds on Cn(snr, snr0, β).

Proposition 5. For any 0 ≤ snr0 and β ∈ [0, 1] and snrL
given in Proposition ?? we have that for snr0 ≤ snr

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β)−∆(??), (21)

and for snr0 ≥ snr

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β)−∆(??), (22)

where

0 ≤ ∆(??) =
1

2
log

(
1 + snr0
1 + snrL

)
− 1

2

β(snr0 − snrL)

1 + βsnr0

− (n+ 2)

2
log

(
snr0
snrL

)
+

(n+ 2)(snr0 − snrL)

2snr0
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Fig. 3: Bounds on Mn(snr, snr0, β) vs. snr.

+
1

2

(
(2snrL + 1) log

(
snr0(1 + snrL)

snrL(1 + snr0)

)
− snr0 − snrL

1 + snr0

− snr0 − snrL
snr0

)
= O

(
1

n

)
, (23)

and

0 ≤ ∆(??) =
1

2
log

(
1 + snr

1 + min(snrL, snr)

)
− β(snr −min(snrL, snr))

2(1 + βsnr0)
− (n+ 2)

2
log

(
snr

min(snrL, snr)

)
+

(n+ 2)(snr −min(snrL, snr))

2snr0

+
1

2

(
(2 min(snrL, snr) + 1) log

(
1 + min(snrL, snr)

min(snrL, snr)

)
− (2snr + 1) log

(
1 + snr

snr

)
+ 2(snr −min(snrL, snr)) log

(
1 + snr0
snr0

)
− snr −min(snrL, snr)

snr0
− snr −min(snrL, snr)

1 + snr0

)
= O

(
1

n

)
.

(24)

Fig. ?? compares the bounds on Cn(snr, snr0, β) from
Proposition ?? with C∞(snr, snr0, β) for several values of
n. The figure shows how the new bounds in Proposition ??
improves on the trivial C∞(snr, snr0, β) bound.

C. max-MMSE problem: achievability of M1(snr, snr0, β)

In this Section we propose an input that will be used in
the achievable strategy for both the max-I problem and the
max-MMSE problem with input length n = 1. This input is
referred to as mixed input [?] and is defined as

Xmix :=
√

1− δXD +
√
δXG, δ ∈ [0, 1], (25)

where XG and XD are independent, XG ∼ N (0, 1), E[X2
D] ≤

1, and where the distribution of XD and parameter δ are to
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be optimized over. The input Xmix exhibits a decomposition
property where the MMSE and the mutual information can be
written as the sum of the MMSE and mutual information of
the XD and XG components, albeit at different SNR values.

Proposition 6. ([?]) For Xmix defined in (??) we have that

I(Xmix, snr) = I

(
XD,

snr(1− δ)
1 + δsnr

)
+ I(XG, snr δ), (26a)

mmse(Xmix, snr) =
1− δ

(1 + snrδ)2
mmse

(
XD,

snr(1− δ)
1 + δsnr

)
+ δ mmse(XG, snr δ). (26b)

Observe that Proposition ??, implies that in order for mixed
inputs to comply with the MMSE constraints in (??) and (??)
the MMSE of the XD component must satisfy

mmse

(
XD,

snr0(1− δ)
1 + δsnr0

)
≤ (β − δ)(1 + δsnr0)

(1− δ)(1 + βsnr0)
. (27)

The bound in (??) will be helpful in our choice of δ later on.



When XD is a discrete random variable with supp(XD) =
N we use the following bounds from [?, App. C] and [?, Rem.
2].

Proposition 7. ([?], [?]) For discrete random variable XD

such that pi = Pr(XD = xi) for i ∈ [1 : N ] we have that

mmse(XD, snr) ≤ d2max

N∑
i=1

pie
− snr

8 d
2
i , (28a)

I(XD, snr) ≥ H(XD)− 1

2
log
(π

6

)
− 1

2
log

(
1 +

12

d2min

mmse(XD, snr)

)
, (28b)

where

d` = min
xi∈supp(XD):i6=`

|x` − xi|, (28c)

dmin = min
`∈[1:N ]

d`, (28d)

dmax = max
xk,xi∈supp(XD)

|xk − xi|. (28e)

Proposition ?? and Proposition ?? are particularly useful
and allow us to design Gaussian and discrete components of
mixed inputs independently.

Fig. ?? shows upper and lower bounds on M1(snr, snr0, β)
where we show the following:
• The upper bound in (??) (solid red line);
• The upper bound from Theorem ?? (dashed cyan line);
• The Gaussian-only input lower bound (green line), with
X ∼ N (0, β), where the power has been reduced to meet
the MMSE constraint;

• The mixed input lower bound (blue dashed line), with
the input in (??). We used Proposition ?? where we
optimized over XD for δ = β snr0

1+snr0
. The choice of δ

is motivated by the scaling property of MMSE that is
δmmse(XG, snrδ) = mmse(

√
δXG, snr) and the con-

straint on the discrete component in (??). That is, we
chose δ such that the power of XG is approximately β
while the MMSE constraint on XD in (??) is not equal to
zero. The input XD used in Fig. ?? was found by a local
search algorithm on the space of distributions with N =
3, and resulted in XD = [−1.8412,−1.7386, 0.5594] with
PX = [0.1111, 0.1274, 0.7615], which we do not claim
to be the optimal;

• The discrete-only input lower bound (brown dashed-
dotted line), with XD = [−1.8412,−1.7386, 0.5594]
with PX = [0.1111, 0.1274, 0.7615], that is, the same
discrete part of the above mentioned mixed input. This
is done for completeness, to see the performance of the
MMSE of the discrete component of the mixed input,
in order to emphasize the behavior with and without the
Gaussian component; and

• The discrete-only input lower bound (dotted magenta
line), with XD = [−1.4689,−1.1634, 0.7838] with
PX = [0.1282, 0.2542, 0.6176], which was found by
using a local search algorithm on the space of discrete-
only distributions with N = 3 points.
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Fig. 5: Upper and lower bounds on M1(snr, snr0, β) vs. snr,
for β = 0.01, snr0 = 10.

On the one hand, Fig. ?? shows that, for snr ≥ snr0,
a Gaussian-only input with power reduced to β maximizes
M1(snr, snr0, β) in agreement with the ‘single-crossing point
property’ (green line). On the other hand, for snr ≤ snr0, we
see that a discrete-only input achieves higher MMSE than a
Gaussian-only input with reduced power (brown dashed-dotted
line). Interestingly, unlike Gaussian-only inputs, discrete-only
inputs do not have to reduce power in order to meet the
MMSE constraint. The reason discrete-only inputs can use
full power, as per the power constraint only, is because their
MMSE decreases fast enough (exponentially in SNR, as seen
in (??)) to comply with the MMSE constraint. However, for
snr ≥ snr0, the behavior of the MMSE of discrete-only inputs
prevents it from being optimal; this is due to their exponential
tail behavior.

The mixed input (blue dashed line) gets the best of both
(Gaussian-only and discrete-only) worlds: it has the behavior
of Gaussian-only inputs for snr ≥ snr0 (without any reduction
in power) and the behavior of discrete-only inputs for snr ≤
snr0. This behavior of mixed inputs turns out to be important
for the max-I problem, where we need to choose an input that
has the largest area under the MMSE curve.

Finally, Fig. ?? shows the achievable MMSE with another
discrete-only input (dotted magenta line) that achieves higher
MMSE than the mixed input for snr ≤ snr0 but lower than
the mixed input for snr ≥ snr0.

The insight gained from analyzing different lower bounds
on M1(snr, snr0, β) will be crucial to show an approximately
optimal input for C1(snr, snr0, β), which we consider next.

D. max-I problem: achievability of C1(snr, snr0, β)

In this Section we demonstrate that an inner bound on
C1(snr, snr0, β) with the mixed input in (??) is to within an
additive gap of the outer bound in Proposition ??.

Proposition 8. A lower bound on C1(snr, snr0, β) with the
mixed input in (??), with XD ∼ PAM(N) and with
input parameters as specified in Table ??, is to within



TABLE I: Parameters of mixed inputs in (??) used in the proof of Proposition ??.

Regime Input Parameters

Weak Interference (snr ≥ snr0) N =

⌊√
1 + c1

(1−δ)snr0
1+δsnr0

⌋
, c1 = 3

2 log
(

12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

) , δ = β snr0
1+snr0

.

Strong Interference (snr ≤ snr0) N =
⌊√

1 + c2snr
⌋

, c2 = 3

2 log
(

12(1+βsnr0)
β

) , δ = 0.

O
(

log log( 1
mmse(X,snr0)

)
of the outer bound in Proposition ??

with the exact gap value given by:

snr ≥ snr0 ≥ 1 : C1(snr, snr0, β)− I1(Xmix, snr) ≤ gap1,

(29a)
snr0 ≥ snr ≥ 1 : C1(snr, snr0, β)− I1(Xmix, snr) ≤ gap2,

(29b)

snr ≤ 1 : C1(snr, snr0, β)− I1(Xmix, snr) ≤
1

2
log(2),

(29c)

where

gap1 :=
1

2
log

(
2

3
log

(
24(1 + (1− β)snr0

β

)
+

6β

1 + βsnr0

)
+

1

2
log

(
4π

3

)
−∆(??), (29d)

gap2 :=
1

2
log

(
1 +

2

3
log

(
12(1 + βsnr0)

β

))
+

1

2
log

(
4π

6

)
−∆(??). (29e)

Please note that the gap result in Proposition ?? is constant
in snr (i.e., independent of snr) but not in snr0.

Fig. ?? compares the inner bounds on C1(snr, snr0, β),
normalized by the point-to-point capacity 1/2 log(1 + snr),
with mixed inputs (dashed magenta line) in Proposition ?? to:
• The upper bound in (??), (solid red line);
• The upper bound from Proposition ?? (dashed blue line);
• The inner bound with X ∼ N (0, β), where the reduction

in power is necessary to satisfy the MMSE constraint
mmse(X, snr0) ≤ β

1+βsnr0
(dotted green line).

Fig. ?? shows that Gaussian inputs are sub-optimal and that
mixed-inputs achieve more degrees of freedom1 compared
to Gaussian inputs. Interestingly, in the regime snr ≤ snr0,
it is approximately optimal to set δ = 0, that is, only the
discrete part of the input is used. This in particular supports
the conjecture in [?] that discrete inputs may be optimal for
n = 1 and snr ≤ snr0.

IV. PROPERTIES OF THE FIRST DERIVATIVE OF MMSE

A key element in the proof of the ‘single-crossing point
property’ in Proposition ?? was the characterization of the
first derivative of the MMSE

−mmse′(X, snr) =
1

n
Tr
(
E
[
Cov2(X|Y

))
=

1

n
Tr
(
E
[
Cov2(X, snr)

])
, (30)

1The degrees of freedom, or pre-log, is defined as d(X) :=

limsnr→∞
I(X,snr)

0.5 log(1+snr)
.
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Fig. 6: Upper and lower bounds on Cn=1(snr, snr0, β) vs.
snrdB, for β = 0.001 and snr0 = 60 = 17.6815 dB.

which was given in [?, Proposition 9] for n = 1 and in [?,
Lemma 3] for n ≥ 1. The first derivative in (??) turns out to
be instrumental in proving Theorem ?? as well.

For ease of presentation, in the rest of the section, instead
of focusing on the derivative mmse′(X, snr) we will focus
on Tr

(
E[Cov2(X|Y)]

)
. The quantity Tr

(
E[Cov2(X|Y)]

)
is well defined for any X. Moreover, for the case of n = 1 it
has been shown [?, Proposition 5]

E
[
Cov2(X|Y )

]
≤ k1

snr2
, where k1 ≤ 3 · 24. (31)

Before using (??) in the proof of Theorem ??, we will need
to sharpen the existing constant for n = 1 in (??) (given by
k1 ≤ 3 · 24) and generalize it to any n ≥ 1, which to the best
of our knowledge has not been considered before.

Proposition 9. For any X and snr > 0 we have

1

n
Tr
(
E[Cov2(X|Y)]

)
≤ kn

snr2
, (32a)

where

kn ≤
n(n+ 2)− n mmse(ZZT|Y)− Tr

(
J2(Y)

)
n

≤ n+ 2.

(32b)

In Proposition ?? the bound on k1 in (??) has been tightened
from k1 ≤ 3 · 24 in (??) to k1 ≤ 3. This improvement will
result in tighter bounds in what follows.

The following tightens kn for power constrained inputs.



Proposition 10. If X such that 1
nTr

(
E
[
XXT

])
≤ 1 then

Tr(J2(Y)) ≥ n

(1 + snr)2
. (33)

Observe that, by using the bound in (??) from Proposi-
tion ?? together with the lower bound on the Fisher infor-
mation in Proposition ??, we have that for power constrained
inputs

kn ≤
n(n+ 2)− n

(1+snr)2

n
= n+ 2− 1

(1 + snr)2
. (34)

We are now ready to prove our main result.

A. Proof of Theorem ??
The proof of Theorem ?? relies on the fact that MMSE is an

infinitely differentiable function of snr [?, Proposition 7] and
therefore we can write the difference of two MMSE functions
using the fundamental theorem of calculus as

mmse(X, snr)−mmse(X, snr0) = −
∫ snr0

snr

mmse′(X, γ)dγ

a)
=

∫ snr0

snr

1

n
Tr
(
E[Cov2(X, γ)]

)
dγ

b)

≤
∫ snr0

snr

(n+ 2)

γ2
dγ = (n+ 2)

(
1

snr
− 1

snr0

)
,

where the (in)-equalities follow from: a) by using (??), and b)
by using the bound in Proposition ?? with kn ≤ n+ 2. If we
further assume that X has finite power, instead of bounding
kn ≤ n+ 2, we can use (??),to obtain

mmse(X, snr)−mmse(X, snr0) ≤
∫ snr0

snr

kn
γ2
dγ

≤
∫ snr0

snr

n+ 2

γ2
dγ −

∫ snr0

snr

1

γ2(1 + γ)2
dγ

= (n+ 2)

(
1

snr
− 1

snr0

)
−∆(??)

where

0 ≤ ∆(??) =

∫ snr0

snr

1

γ2(1 + γ)2
dγ.

This concludes the proof of Theorem ??.

V. CONCLUSION

In this paper we have considered a Gaussian channel
with one transmitter and two receivers in which the max-
imization of the rate at the primary/intended receiver is
subject to a disturbance constraint measured by the MMSE
at the secondary/unintended receiver. We have derived new
upper bounds on the capacity of this channel that hold for
vector inputs of any length, and demonstrates a matching
lower bound that is within an additive gap of the order
O
(

log log 1
mmse(X,snr0)

)
of the upper bound. At the heart of

our proof is a new upper bound on the MMSE that comple-
ments the ‘single-crossing point property’ of the MMSE and
maybe of independent interest.
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