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Abstract—The paper considers information-theoretic applica-

tions of a broad class of distributions termed generalized Gaus-

sian (GG). The flexible parametric form of the probability density

function of the GG family makes it an excellent choice for many

modeling scenarios. Well-know examples of this distribution

include Laplace, Gaussian, and uniform.

The first part of the paper explores properties of the GG

distribution. In particular, it is shown that a GG random variable

can be decomposed into a product of a Gaussian random variable

and a independent positive random variable. The properties of

this decomposition are carefully examined.

The second part of paper consideres a rate-distortion problem

of GG sources under the Lp error distortion. For example,

conditions are derived under which Shannon’s lower bound is

tight.

I. INTRODUCTION

A classical rate-distortion problem, first formulated by
Shannon in [1], considers a source with the distribution P

X

on
X , a reconstruction alphabet ˆX and a rate distortion measure
d : X ⇥ ˆX ! R+. One of the crowning achievements of
Shannon is an exact expression for the rate-distortion function
given by

R(D) = inf

P

X̂|X :E
[

d(X,X̂)
]

D

I(X;

ˆX). (1)

For continuous sources the rate-distortion function has been
found for a Laplace source with an absolute error distortion
d(x, x̂) = |x � x̂| [2], exponential source with absolute error
distortion [3] and Gaussian source with square error distortion
d(x, x̂) = |x� x̂|2 [1]. In this paper, we will enlarge this set
of known cases by considering the rate-distortion problem for
generalized Gaussian (GG) distributions.
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A. Problem Formulation
We shall refer to X with GG distribution given by the

probability density function (pdf)

f
X

(x) =
c
q

↵
e

� |x�µ|q
2↵q , (2a)

c
q

=

q

2

q+1
q

�

⇣
1
q

⌘ , x 2 R, (2b)

as X ⇠ N
q

(µ,↵q

). The well-know examples of this family of
distributions include: the Laplace distribution for q = 1; the
Gaussian distribution for q = 2; and the uniform distribution
on [��,�] for q = 1 and ↵ = lim

q!1
�
1
2

� 1
q �.

We consider the rate distortion problem with a GG source
and a distortion measure that corresponds an `

p

-norm

d(x, x̂) = |x� x̂|p, p � 1. (3)

Formally, we seek to solve

R
p,q

(↵, D) = inf

P

X̂|X :E
[

|X�X̂|p
]

 2Dp

p

I(X;

ˆX), (4)

where X ⇠ N
q

(µ,↵q

). We also define

R1,q

(↵, D) = inf

P

X̂|X :|X�X̂|D a.s. P
X

I(X;

ˆX). (5)

It should be noted that our analysis carries over to distributions
on R+ such as an exponential distribution, and thus our
analysis will subsume the known cases mentioned above.

B. Why Generalized Gaussian Sources?
The flexible parametric form of the pdf of GG distributions

allows for tails that are either heavier than Gaussian (p < 2)
or lighter than Gaussian (p > 2) which makes it an excellent
choice for many modeling scenarios.

From the information theoretic perspective the GG distribu-
tion is interesting because it maximizes the entropy and Réyni
entropy under a p-th absolute moment constraint [4], [5].

Theorem 1. Let X 2 R such that E[|X|q]  2↵q

q

. Then

h(X)  1

q
log

✓
qe

2cq
q

· E[|X|q]
◆

 1

q
log

✓
↵q

e

cq
q

◆
. (6)

The inequality in (6) is attained with equality iff X ⇠
N

q

(0,↵q

).

Proof: This result can be proved via a method outlined
in [4, Chapter 12].



C. Shannon’s Lower Bound

In [1] Shannon developed a technique for constructing a
lower bound on the rate distortion which we now explore in
our context.

Theorem 2. For X ⇠ N
q

(0,↵q

) and (p, q) 2 R2
+

R
p,q

(↵, D) �

log

⇣ ↵

D

⌘
+ log

✓
c
p

c
q

e

1
q

� 1
p

◆�+
. (7)

Proof:

I(X;

ˆX) = h(X)� h(X| ˆX)

= h(X)� h(X � ˆX| ˆX)

a)
� h(X)� h(X � ˆX) (8a)
b)
� 1

q
log

✓
E[|X|q] · qe

2cq
q

◆

� 1

p
log

 
E[|X � ˆX|p] · pe

2cp
p

!
(8b)

c)
� log

⇣ ↵

D

⌘
+ log

✓
c
p

c
q

e

1
q

� 1
p

◆
, (8c)

where the inequalities follow from: a) the fact that conditioning
reduces entropy; b) the maximum entropy principle from The-
orem 1; and c) the distortion constraint E

h
|X � ˆX|p

i
 2Dp

p

.
This concludes the proof.

The inequalities in (8) are tight if there exists a backward
test channel for some random variable ˆX such that

X =

ˆX + Z, (9)

and where Z ⇠ N
p

(0, Dp

) and independent of ˆX . Moreover,
denoting by �

r

(t) the characteristic function of X ⇠ N
r

(0, 1),
showing the existence of a test channel in (9) is equivalent to
showing that the function

h(t) =
�
q

(↵t)

�
p

(Dt)
, (10)

is a valid characteristic function of some random variable ˆX .
W.l.o.g. in what follows we set D = 1 and ↵ � 1 and define

�(q,p,↵)(t) =
�
q

(↵t)

�
p

(t)
. (11)

Therefore, showing the existence of the test channel in (9)
amounts to showing that �(q,p,↵)(t) is a valid characteristic
function for ↵ � 1.

Remark 1. Note that using an additive backward test channel
is not the only way of achieving equalities in (8). However,
this is one of the most commonly used techniques and under-
standing its limitations can be very valuable.

D. Examples of Gaussian and Laplace Sources
The problem of analyzing �(q,p,↵)(t) in (11) can be best

demonstrated by studying the following four cases:
• (q, p) = (2, 2) Gaussian source with a square-error

distortion;
• (q, p) = (1, 1) Laplace source with an absolute-error

distortion;
• (q, p) = (2, 1) Gaussian source with an absolute-error

distortion; and
• (q, p) = (1, 2) Laplace source with a square-error distor-

tion.
Recall, that the characteristic functions of Gaussian and

Laplace random variables are given by �2(t) = e

� t

2

2 and
�1(t) =

1
1+4t2 , respectively. Therefore, for the above four

mentioned cases the function �(q,p,↵)(t) is given by

�(2,2,↵)(t) = e

� (↵2�1)t2

2 , �(2,1,↵)(t) = (1 + 4t2)e�
↵

2
t

2

2 ,

�(1,1,↵)(t) =
1 + 4t2

1 + 4↵2t2
, �(1,2,↵)(t) =

e

t

2

2

1 + 4↵2t2
.

On the one hand, note that �(2,2,↵)(t) = e

� (↵2�1)t2

2 is
a valid characteristic function and corresponds to ˆX ⇠
N2(0,↵

2 � 1), and

�(1,1,↵)(t) =
1 + 4t2

1 + 4↵2t2
=

1

↵2
+

✓
1� 1

↵2

◆
1

1 + 4↵2t2
,

(12)

is a valid characteristic function of ˆX with pdf given by

f
X̂

(x) =
1

↵2
�(x) +

✓
1� 1

↵2

◆
c1
↵
e

� |x|
2↵ , (13)

which is a pdf of a random variable ˆX = B · Y where B ⇠
Bernoulli

�
1� 1

↵

2

�
and Y ⇠ N1(0,↵) and where B and Y

are independent.
On the other hand, recall that all characteristic functions

satisfy the inequality |�(t)|  1, which is not satisfied by

�(1,2,↵)(t) =

e
t

2
2

1+4↵2
t

2 . Moreover, observe that �(2,1,↵)(t) =

(1 + 4t2)e�
↵

2
t

2

2 has an inverse Fourier transform given by

F�1{�(2,1,↵)(t)}(x) =
1

2⇡

(↵2 � x)e�
x

2

2↵2

↵5
, (14)

which takes on negative values for ↵2 < x and therefore
cannot be a valid pdf.

Therefore, �(1,2,↵)(t) and �(2,1,↵)(t) are not valid charac-
teristic functions and the test channel in (9) does not exists
for (p, q) = (1, 2) and (p, q) = (2, 1).

Remark 2. From the Gaussian and Laplace examples, we see
that the existence of the test channel is not always guaranteed.
This motivates answering the question for which values of
(p, q) the test channel can be formed. However, answering
such a question can be challenging since there exists no
closed form expression for the characteristic function �

r

(t)
for r 6= 1, 2. In fact, very little is known about properties



of �
r

(t) for r 6= 1, 2. Section III is, therefore, devoted to
studying properties of the characteristic function of the GG
random variable, which are of independent interest.

II. MAIN RESULTS

Our main results are given next.

Theorem 3. Let Z ⇠ N
p

(0, 1) and for (p, q) 2 R2
+ let

S = {(q, p) : q 2 (0, 2), p > 0, p 6= q}
[ {(q, p) : q � 2, 0 < p < q}. (15)

Then we have:

• for (q, p) 2 S and any ↵ � 1 the test channel in (9)
cannot be formed. In other words, for (p, q) 2 S and any
↵ � 1 there exists no ˆX independent of Z such that (9)
holds with X ⇠ N

q

(0,↵q

).
• for {(q, p) : 2 < q  p} and almost all1 ↵ � 1 the

test channel in (9) cannot be formed. In other words,
for {(p, q) : 2 < q  p} and almost all ↵ � 1 there
exists no ˆX independent of Z such that (9) holds with
X ⇠ N

q

(0,↵q

).
• for {(p, q) : 1  p = q  2} and all ↵ � 1 the

test channel in (9) exists and Shannon’s lower bound in
Theorem 2 is attainable. Moreover, the distribution of ˆX
is given by

f
X̂

(x) =
e

� x

2

2(↵2�D

2)�1)

p
2⇡((↵2 �D2

)� 1)

, (16)

for p = 2 and

f
X̂

(x) =

✓
D

↵

◆
p+1

�(x) +

 
1�

✓
D

↵

◆
p+1
!
g(x),

(17)

for 1  p < 2, and where g(x) is the pdf of a random
variable with characteristic function given by

�(t) =
�
p

(↵t)�
�
D

↵

�
p+1

�
p

(Dt)⇣
1�

�
D

↵

�
p+1
⌘
�
p

(Dt)
. (18)

Note that for the regime 2 < q  p the results holds for
almost all ↵ � 1, but we would like to point out that there are
cases in this regime when a test channel can be established
and Shannon’s lower bound is tight as demonstrated next for
the case of (p, q) = (1,1).

Theorem 4. For X ⇠ Unif[�↵,↵] and ↵

D

2 N (set of measure
zero)

R1,1(↵, D) = log

+
⇣ ↵

D

⌘
, (19)

1In other words, the set of ↵ for which the statement does not hold has
Lebesgue measure zero.

where the equality in (19) is attained by a discrete random
variable ˆX uniformly distributed on

supp(

ˆX) =

⇢
±i ·D : i 2


1 :

N

2

��
, if N is even,

supp(

ˆX) =

⇢
±i ·D : i 2


0 :

N � 1

2

��
, if N is odd.

where on N =

↵

D

.

Proof: Let Z ⇠ Unif[�D,D] independent of ˆX and
define a test channel as in (9).

Note, that by this construction we have that X ⇠
Unif[�↵,↵], |X � ˆX|  D a.s., and

I(X;

ˆX) = h(X)� h(X| ˆX)

= h(X)� h(Z)

= log

⇣ ↵

D

⌘
.

This concludes the proof.

III. PROPERTIES OF THE GENERALIZED GAUSSIAN
DISTRIBUTION

In this section we study properties of the GG distribution.

A. Moments and Mellin Transform
The moments and absolute moments of the GG distribution

are given next.

Proposition 1. (Moments [6].) For any p > 0 and k > �1

the moments of X ⇠ N
p

(0,↵p

) are given by

E[Xk

] =

2

k

p↵k

�

⇣
1
p

⌘
�

✓
k + 1

p

◆
, for k = even, (20)

E[Xk

] = 0, for k = odd. (21)

Definition 1. The Mellin transform of a positive random
variable X is defined as

m
X

(s) = E[Xs�1
], (22)

for s 2 C and Re(s) > 0.

The Mellin transform emerges as a major tool in character-
izing products of positive independent random variables since

m
X·Y (s) = m

X

(s) ·m
Y

(s). (23)

Proposition 2. (Mellin Transform of |X|.) For any p > 0 and
X ⇠ N

p

(0, 1)

E[|X|s�1
] =

2

s�1
p ↵k

�

⇣
1
p

⌘
�

✓
s

p

◆
(24)

where s 2 C such that Re(s) > 0. Moreover, for any p > 0

and k > �1 the absolute moments are given by

E[|X|k] = 2

k

p↵k

�

⇣
1
p

⌘
�

✓
k + 1

p

◆
. (25)



Proof: The Mellin transform can be easily computed by
using the integral

Z 1

0
xs�1e�x

p

dx =

1

p
�

✓
s

p

◆
, (26)

and a change of variable, and where the above integral is finite
if Re(s) > 0 and p > 0.

Note that the p-th absolute moment of X ⇠ N
p

(0,↵p

) is
given by

E[|X|p] = 2↵p

p
. (27)

The following corollary, which relates k-th moments of two
GG distributions of a different order, is useful in many proofs.

Corollary 1. Let X
q

⇠ N
q

(0, 1) and X
p

⇠ N
p

(0, 1) then for
q � p

E[|X
q

|k]  E[|X
p

|k], (28)

for any k 2 R+. Moreover, for q > p

lim

k!1

✓
E[|X

p

|k]
E[|X

q

|k]

◆ 1
k

= 1. (29)

Proof: The proof follows by using Proposition 2 and
Stirling’s approximation for the gamma function.

B. Relation to Positive Definite Functions

As will be observed throughout this paper, the GG distribu-
tion exhibits different properties depending whether p  2 or
p > 2. At the heart of this behavior is the concept of positive-
definite functions.

Definition 2. A function f : R ! C is called positive
definite if for every positive integer n and all real numbers
x1, x2, ..., xn

the n⇥ n matrix

A = (a
i,j

)

n

i,j=1, a
i,j

= f(x
i

� x
j

), (30)

is positive semi-definite.

Our first result relates the pdf of the GG distribution to the
class of positive definite functions.

Theorem 5. The function e

� |x|p
2 is

• not positive definite for p > 2; and
• positive definite for 0 < p  2. Moreover, for x > 0

e

� x

p

2
=

Z 1

0
e�

tx

2

2 dµ(t), (31)

where dµ(t) (independent of x) is a finite non-negative
Borel measure on t 2 [0,1].

Proof: See Appendix B.
The concept of positive-definite functions will also play an

important role in examining properties of the characteristic
function of the GG distribution.

C. Product Decomposition of the GG Random Variable

As a consequence of Theorem 5 we have the following
decompositional representation of the GG random variable.

Proposition 3. For any 0 < p  2 and X ⇠ N
p

(0, 1) we
have that

X = V · Z, (32)

where V (dependent on p) is a positive random variable
independent of Z ⇠ N2(0, 1). Moreover, V has the following
properties:

• V is an unbounded random variable for p < 2 and V = 1

for p = 2; and
• for p < 2 V is a continuous random variable with pdf

given by

f
V

(v) =
1

2⇡

�

�
1
2

�

�

⇣
1
p

⌘
Z

R
v�it�1

2

it

p

�

⇣
it+1
p

⌘

2

it

2
�

�
it+1
2

� dt, v > 0.

(33)

Proof: See Appendix A.
The pdf of V can be also be represented as a power series

expansion.

Proposition 4. For p < 2 the pdf of V in (33) is given by

f
V

(v) =
p

p
⇡�
⇣

1
p

⌘
1X

k=0

a
k

vkp, v > 0, (34)

where

a
k

=

(�1)

k+1
sin

⇣
⇡kp

2

⌘
�

⇣
kp

2 + 1

⌘
2

(kp+1)
(

1
2�

1
p

)

k!
. (35)

Proof: The proof follows by using the residue theorem
on the integral in (33).

Remark 3. For the case of p = 1, the random variable V is
distributed according to the Rayleigh distribution.

D. Characteristic Function

The focus of this section is on the characteristic function
of the GG distribution which will play an important role in
analyzing the output distribution of additive channels with
GG distributed noise. The characteristic function of the GG
distribution can be given in the following integral form.

Theorem 6. For any p > 0 the characteristic function of
X ⇠ N

p

(0,↵p

) is given by

�
p

(t) = 2c
p

Z 1

0
cos(t↵x)e�

x

p

2 dx. (36)

Proof: The proof follows from the fact that e�
|x|p
2 is an

even function and therefore its Fourier transform is equivalent
to the cosine transform.

Examples of characteristic functions of X ⇠ N
p

(0, 1) for
several values of p are given in Fig. 1.
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Fig. 1: Plot of the characteristic function of X ⇠ N
p

(0, 2)
for several values of p.

E. On the Distribution of Zeros of the Characteristic Function

As can be seen from Fig. 1 the characteristic function of the
GG distribution can have zeros. The following theorem gives
a somewhat surprising result on the distribution of the zeros
of �

p

(t) in (36).

Theorem 7. (Distribution of Zeros.) The characteristic func-
tion of �

p

(t) in (36) has the following properties:
• for p > 2, �

p

(t) has at least one positive to negative zero
crossing; and

• for 0  p  2, �
p

(t) is non-negative and can be
expressed as

�
p

(t) = E
h
e

� t

2
V

2

2

i
, (37)

where the random variable V (dependent on p) is defined
in (32).

Proof: See Appendix B.

Remark 4. Note that for 0 < p  2 the function �
p

(

p
2t) can

be thought of as a Laplace transform of a random variable
V 2. This observation will be useful in several of the proofs.

F. Asymptotics of �
p

(t)

By using the representation of �
p

(t) in Theorem 7, we can
give an exact tail behavior for �

p

(t) in (36).

Proposition 5. For 0 < p < 2 we have that

lim

t!1
�
p

(t) · t
p+1

A1
= 1, (38)

where A1 =

p2
p�1
2 �

(

p+1
2 )

p
⇡�
(

1
p

)

a1 and a1 is defined in (35).
Moreover,

lim

t!1
�(q,p,↵)(t) =

8
<

:

0, q > p
1

↵

q+1 , q = p
1, q < p

. (39)

Proof: See Appendix C.

G. Deconvolution Results
We are now in a position to answer whether �(q,p,↵)(t) in

(11) is a characteristic function.

Theorem 8. The function �(q,p,↵)(t) in (11) has the following
properties

• for (q, p) 2 S, �(q,p,↵)(t) is not a characteristic function
for any ↵ � 1; and

• for every {(p, q) : 2 < q  p} there exists an ↵ � 1 such
that �(q,p,↵)(t) is not a characteristic function.

Proof: See Appendix D.
We would like to point out that for 2 < q  p there are

cases when �(q,p,↵)(t) is a characteristic function. Specifically,
we can find an ↵ � 1 such that �(q,p,↵)(t) is a characteristic
function for p > 2 and q > 2. The most trivial case is of p = q
and ↵ = 1, for which

�(q,p,↵)(t) = 1, (40)

is a characteristic function. A less trivial example is when
p = q = 1 in which case �1(t) = sinc(t) and

�(1,1,↵)(t) =
sinc(↵t)

sinc(t)
. (41)

For example, when ↵ = 2 we have that �(1,1,↵)(t) =

1
2 cos(2t), which corresponds to the characteristic function of
the random variable ˆX = ±1 equally likely. Note that in the
above example, because zeros of �

p

(t) occur periodically, we
can select ↵ such that the poles and zeros of �(q,p,↵)(t) cancel.
However, we conjecture that such examples are only possible
for p = 1, and for 2 < p < 1 zeros of �

p

(t) do not appear
periodically leading to the following conjecture

Conjecture 1. For 2 < q  p < 1, �(q,p,↵)(t) is not a
characteristic function for any ↵ > 1.

It is not difficult to check, by using the property that
convolution with an analytic function is again analytic, that
Conjecture 1 is true if p is an even integer and q is any non-
even real number.

In view of Theorem 8 it remains to answer what happens
to �(q,p,↵)(t) when 0 < q = p < 2.

Theorem 9. For 1  q = p < 2, �(p,p,↵)(t) in (11) is a
characteristic function. Moreover,

�(p,p,↵)(t) =
1

↵p+1
+

✓
1� 1

↵p+1

◆
G(t), (42)

where G(t) is a characteristic function of a continuous random
variable.

Proof: See Appendix E.
Note that for the case of 0 < q = p < 1 whether �(p,p,↵)(t)

is a characteristic remains an open question.

H. Proof of Theorem 3
The proof the main results now follows easily by noting that

the test channel in (9) does not exist under the circumstances
described in Theorem 8, and exists (i.e., Shannon’s lower



bound is achievable) under the circumstances described in
Theorem 9.

IV. CONCLUSION

In this work, we have examined a problem of lossy
compression for the generalized Gaussian family of source
distributions. For the case when the distortion and the source
distribution are matched (i.e., p = q), a closed form expression
for the rate-distortion function has been given and shown to be
attained by Shannon’s lower bound. Moreover, for cases when
the distortion and the source distribution are not matched,
conditions under which no backward test channel exists have
been given.

APPENDIX A
PROOF OF PROPOSITION 3

To show that X = V · Z, first observe that d⌫(t) =

c
p

q
2⇡
t

dµ(t) is a probability measure where dµ(t) was defined
in Theorem 5.

1 = P(X 2 R) =
Z

R
c
p

e

� |x|p
2 dx

a)
=

Z

R
c
p

Z 1

0
e�

tx

2

2 dµ(t)dx

b)
= c

p

Z 1

0

Z

R
e�

tx

2

2 dxdµ(t)

= c
p

Z 1

0

r
2⇡

t
dµ(t)

=

Z 1

0
d⌫(t),

where the equalities follow from: a) using the representation
of e

� |x|p
2 in Theorem 5; and b) switching of the order

of integration as justified by Tonelli’s theorem for positive
functions.

The above implies that d⌫(t) = c
p

q
2⇡
t

dµ(t) is a proba-
bility measure on [0,1). Moreover, for any measurable set
S ⇢ R we have

P(X 2 S) =
Z

S
c
p

e

� |x|p
2 dx

a)
=

Z

S
c
p

Z 1

0
e�

tx

2

2 dµ(t)dx

=

Z 1

0

Z

S

r
t

2⇡
e�

tx

2

2 dxc
p

r
2⇡

t
dµ(t)

=

Z 1

0
P
✓

1p
t
Z 2 S

◆
c
p

r
2⇡

t
dµ(t)

b)
=

Z 1

0
P
✓

1p
T
Z 2 S | T = t

◆
c
p

r
2⇡

t
dµ(t)

c)
= E


P
✓

1p
T
Z 2 S | T

◆�

= P
✓

1p
T

· Z 2 S
◆

d)
= P (V · Z 2 S) ,

where the equalities follow from: a) the representation of
e

� |x|p
2 in Theorem 5; b) the fact that c

p

q
2⇡
t

dµ(t) is a
probability measure; c) because Z is independent of t; and
d) renaming V =

1p
T

.
Therefore, it follows that X can be decomposed into V ·Z.
To find the pdf of V we use the Mellin transform approach

by observing that

E[|X|it] = E[|V · Z|it] = E[V it

] · E[|Z|it]. (43)

Therefore, by using Proposition 2 we have that the Mellin
transform of V is given by

E[V it

] =

E[|X|it]
E[|Z|it] =

�

�
1
2

�

�

⇣
1
p

⌘
2

it

p

�

⇣
it+1
p

⌘

2

it

2
�

�
it+1
2

� . (44)

Finally, the pdf of V is computed by using the inverse
Mellin transform of (44)

f
V

(v) =
1

2⇡

�

�
1
2

�

�

⇣
1
p

⌘
Z

R
v�it�1

2

it

p

�

⇣
it+1
p

⌘

2

it

2
�

�
it+1
2

� dt, v > 0.

This concludes the proof.
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We first show that for p > 2 there is at least one zero. We
use the approach of [7]. Towards a contradiction assume that
�
p

(t) � 0 for all t � 0, then for all t � 0 we have that

0  1

2c
p

1

2⇡

Z 1

0
�
p

(x)(1� cos(xt))2dx

a)
=

1

2c
p

1

2⇡

Z 1

0
�
p

(x)
1

2

(3� 4 cos(tx) + cos(2tx)) dx

b)
= 3� 4e

� t

p

2
+ e

� (2t)p

2 ,

where the equalities follow from: a) using (1 � cos(xt))2 =

1
2 (3� 4 cos(tx) + cos(2tx)); and b) using the inverse Fourier
transform and Parseval’s identity. For small x we can write
e

�x

= 1� x+O(x2
) and therefore we have that

0  3� 4

✓
1� tp

2

◆
+

✓
1� (2t)p

2

◆
+O(t2p)

= (4� 2

p

)

tp

2

+O(t2p).

Therefore, for p > 2 we reach a contradiction since 4�2

p < 0

for p > 2. This concludes the proof for the case of p > 2.
For 0 < p  2 the proof goes as follows:

�
p

(t) = E[eitX ]

a)
= E[eitV Z

]

= E
⇥
E[eitV Z |V ]

⇤

b)
= E

h
e

� t

2
V

2

2

i

c)
> 0,



where the (in)-equalities follow from: a) the decomposition
in Proposition 3; b) the independence of V and Z and the
fact that the characteristic function of Z is e

� t

2

2 ; and c) the
positivity of e� t

2
V

2

2 .
This concludes the proof.
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The proof follows by observing that

�
p

(t) =

Z 1

0
e

� t

2
v

2

2 f
V

(v)dv

a)
 p

p
⇡�
⇣

1
p

⌘a1
Z 1

0
e

� t

2
v

2

2 vpdv

b)
=

p
p
⇡�
⇣

1
p

⌘a12
p�1
2
�

✓
p+ 1

2

◆
1

tp+1

= A1
1

tp+1
, (45)

where the (in)-equalities follow from: a) using the first term
of the series in Proposition 4 to bound f

V

(v); and b) using
the p-th absolute moment of a Gaussian random variable from
Proposition 2.

The lower bound on �
p

(t) follows similarly and is given by

A1
1

tp+1
�O

✓
1

t2p+1

◆
� �

p

(t). (46)

The upper bound in (45) and the lower bound in (46) imply
that

lim

t!1
�
p

(t) · t
p+1

A1
= 1. (47)

This concludes the proof.
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A. Case of q > p > 0

We start by looking at the regime q > p > 0. We want to
show that there exists no random variable X independent of
Z ⇠ N

p

(0, 1) such that

↵X =

ˆX + Z, (48)

where X ⇠ N
q

(0, 1) for all ↵ � 1. Note that, since X and Z
are symmetric and have finite moments, if such an ˆX exists
it must also be symmetric with finite moments. Then for all
k � 1

↵kE[|X|k] = E[| ˆX + Z|k]
= E[E[| ˆX + Z|k | Z]]

a)
� E[|E[ ˆX + Z | Z]|k]]
b)
= E[|E[ ˆX] + Z|k]]
= E[|Z|k], (49)

where the (in)-equalities follow from: a) Jensen’s inequality;
and b) the independence of ˆX and Z.

This in turn implies that, in order for inequality in (49) to
be true, we must have that

↵ �
✓
E[|Z|k]
E[|X|k]

◆ 1
k

, (50)

for all k � 1. However, by Corollary 1 for p < q

↵ � lim

k!1

✓
E[|Z|k]
E[|X|k]

◆ 1
k

= 1;

therefore, there exists no ↵ � 1 that can satisfy (50) for all
k � 1. This concludes the proof for p < q.

B. Case of p = 2 and q < 2

Note that in the case of p = 2 and q < 2 we want to show
that there is no random variable ˆX such that the convolution
leads to

f
X

(y) = c2E

e

� (y�X̂)2

2

�
, where f

X

(y) =
c
q

↵
e

� |y|q
2↵q .

Such an ˆX does not exist since the convolution preserves
analyticity. That is the convolution with an analytic pdf must
result in an analytic pdf. Noting that f

X

(y) is not analytic for
q < 2 (i.e., the derivative at zero is not defined) leads to the
desired conclusion.

C. Case of p > 2 and q  2

Now for p > 2 and q  2 the function �(q,p,↵)(t) has
a pole but no zeros by Theorem 7. Therefore, for the case
of p > 2 and q  2 there exists a t0, namely the pole of
�(q,p,↵)(t), such that �(q,p,↵)(t) is not continuous at t = t0.
This violates the condition that the characteristic function is
always a continuous function of t and therefore �(q,p,↵)(t) is
not a characteristic function for all ↵ � 1.

D. Case of p � q > 2.

For the case of p > 2 and q > 2 the function

�(q,p,↵)(t) =
�
q

(↵t)

�
p

(t)
, (51)

has both poles and zeros by Theorem 7. Moreover, let t1 be
such that is �

p

(t1) = 0 and we can always choose an ↵ such
that �

q

(↵t1) 6= 0 and

�(q,p,↵)(t1) = 1. (52)

In other words, we choose an ↵ such that the poles do not
cancel the zeros. This implies that there exists an ↵ such
that �(p,q,↵)(t) is not a continuous function of t and is not
a characteristic function. Moreover, it is not difficult to show
that the above can be done for almost all ↵ � 1.



E. Case of q < p < 2

Finally, for the regime q < p < 2 the result follows from
Proposition 5 where it is shown that

lim

n!1
�(q,p,↵)(t) = 1, (53)

which violates the condition that the characteristic function is
bounded. This concludes the proof.
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To show that �(p,p,↵) is a characteristic function we use
Cramer’s theorem [8] which requires verification that

2

x2

Z
xA

0
(xA� u)�(p,p,↵)

⇣u
x

⌘
cos(u)du � 0, (54)

for x > 0 and A � 0.
First, we focus on xA  ⇡. By using the fact that

�(p,p,↵)(t) is monotonically decreasing, by the second mean
value theorem for integration we have that

Z
xA

0
(xA� u)�(p,p,↵)

⇣u
x

⌘
cos(u)du

= �(p,q,↵) (0)

Z
b

0
(A� u

x
) cos(u)du, (55)

for some b 2 [0, xA]. Note that the integral
R
b

0 (xA �
u) cos(u)du � 0 for all b 2 [0, xA].

For xA > ⇡ let K be the largest integer such that xA �
K⇡; then

Z
xA

0
(xA� u)�(p,p,↵) cos(u)du

=

K�1X

k=0

Z (k+1)⇡

k⇡

(xA� u)�(p,p,↵) cos(u)du

+

Z
xA

K⇡

(xA� u)�(p,p,↵) cos(u)du,

and the proof then follows similarly to the case of xA  ⇡
by using second mean value theorem for integration on each
of the domains. For further details see [9].

Next, we show that

�(p,p,↵)(t) =
1

↵p+1
+

✓
1� 1

↵p+1

◆
G(t), (56)

where G(t) =
(

�(p,p,↵)(t)� 1
↵

p+1 )

(

1� 1
↵

p+1 )
is the characteristic function

of a continuous distribution.
First, observe that f(t) = 1 is a characteristic function of

�(x). Second, recall that the set of characteristic functions is
closed under convex combinations, and since �(p,p,↵)(t) and
f(t) = 1 are characteristic function so is G(t).

To show that G(t) is the characteristic function of a contin-
uous distribution it is enough to show that G(t) is integrable

(i.e., we can perform Fourier inversion). The integrability of
G(t) follows from the fact that G(t) is bounded and

lim

t!1
t2G(t) = 0; (57)

for details see [9]. This concludes the proof.
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