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Abstract—This paper considers the minimum mean p-th error
(MMPE) estimation problem: estimating a random vector in the
presence of additive white Gaussian noise (AWGN) in order to
minimize an Lp norm of the estimation error.

The MMPE generalizes the classical minimum mean square er-
ror (MMSE) estimation problem. This paper derives basic prop-
erties of the optimal MMPE estimator and MMPE functional.
Optimal estimators are found for several inputs of interests,
such as Gaussian and binary symbols. Under an appropriate
p-th moment constraint, the Gaussian input is shown to be
asymptotically the hardest to estimate for any p ≥ 1. By using
a conditional version of the MMPE, the famous “MMSE single-
crossing point” bound is shown to hold for the MMPE too for all
p ≥ 1, up to a multiplicative constant. Finally, the paper develops
connections between the conditional differential entropy and the
MMPE, which leads to a tighter version of the Ozarow-Wyner
lower bound on the rate achieved by discrete inputs on AWGN
channels.

I. INTRODUCTION

Notation: Deterministic scalar/vector quantities are de-
noted by lowercase normal/bold letters, matrices by bold
uppercase letters, random variables by uppercase letters, and
random vectors by bold uppercase letters. For a random vector
V we denote the support by supp(V), covariance matrix by
KV, determinant by |KV|, transpose by VT , and trace by
Tr(V). Γ(·) denotes the gamma function.

Problem Formulation: Consider the classical point-to-
point Gaussian channel,

Y =
√
snr X + Z, (1)

where Z,X,Y ∈ Rn, Z ∼ N (0, I) is independent of X, and
snr ≥ 0 is the signal-to-noise ratio (SNR). When it will be
necessary to emphasize the SNR at the output Y we will use
Ysnr. The minimum mean square error (MMSE) of estimating
X from (any random variable) Y plays a key role in Bayesian
statistics and estimation theory and is defined as:

mmse(X|Y) = mmse(X, snr) := n−1 inf
f

E [Err (X, f(Y))]

= n−1E [Err (X,E[X|Y])] , where (2a)

Err (X, f(Y)) := Tr
(

(X− f(Y)) (X− f(Y))
T
)
. (2b)

In the Bayesian setting the MMSE in (2a) is understood as a
cost function with the quadratic loss function (i.e., L2 norm)
defined in (2b). Another commonly used cost function is the
expected absolute difference between the variable of interest
and its estimate, which uses the L1 norm instead of the L2.

For various theoretical and practical reasons, the following,
which generalizes the notion of the p-th moment, has been
used [1]:

‖U‖p := n−
1
p E

1
p [Tr

p
2
(
UUT)], (3)

where the quantity in (3) is a norm for p ≥ 1. In particular,
for Z ∼ N (0, I) the norm is given by

n‖Z‖pp = 2
p
2

Γ
(
n+p

2

)
Γ
(
n
2

) , for n ∈ N, p ≥ 0. (4)

In [2] the norm in (3) was used to define the following
generalization of the MMSE. The minimum mean p-th error
(MMPE) in estimating X from Y is defined as:

mmpe(X, snr, p) := inf
f
‖X− f(Y)‖pp

= inf
f
n−1E

[
Err

p
2 (X, f(Y))

]
,

where the minimization is over all measurable estimators
f(Y). The optimal MMPE estimator of X of order p is
denoted by fp(X|Y), and mmpe(X, snr, 2) = mmse(X, snr)
with f2(X|Y) = E[X|Y]. The MMPE is a function of the
input distribution X, the SNR, and the order p.

Past Work: Properties of the MMSE for the channel in (1)
have been throughly explored in [3]. Of particular interest here
is the “single-crossing point property” bound developed in [3]
for n = 1 and in [4] for n ≥ 1. In [5] the authors considered a
scalar additive channel and derived conditions on the input and
noise distributions under which the optimal estimator is linear.
The current notion of MMPE has been introduced and studied
in [6] where amongst other properties it has been shown that:

Proposition 1. For any p ≥ 0, the optimal MMPE estimator
is given by the following point-wise almost sure relationship:

fp(X|Y = y) = arg min
v∈Rn

E
[
Err

p
2 (X,v)|Y = y

]
. (5)

Contributions and Paper Outline: In Section II-A we
study properties of the optimal estimator fp(X|Y) in (5). In
Section II-B we find the optimal estimator for several inputs
of interest. In Section II-C we show that in general the optimal
estimator is biased. In Section III we develop several bounds
on the MMPE. For example, we show that the Gaussian
input is the ‘hardest’ to estimate under an appropriate moment
constraint. In Section IV we define and study properties of the
conditional MMPE. In Section V we show that the famous
‘MMSE single-crossing point’ bound [3], [4] holds for the
MMPE for all p ≥ 1, up to a multiplicative constant. Finally,
in Section VI we show connections between entropy and the
MMPE, which lead to a tighter version of the Ozarow-Wyner
bound [7]. Due to space limitations, the proofs are omitted
and can be found in the extended version of the paper [2].
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II. PROPERTIES OF OPTIMAL ESTIMATORS

A. Basic Properties of the Optimal MMPE Estimator

Interestingly, many of the known properties of E[X|Y] –
the optimal MMSE / L2 norm estimator – are still exhibited
by fp(X|Y) in (5), as shown in [6, Prop. 6 and Prop. 7].

Proposition 2. ([6, Prop. 6]) For any p > 0

mmpe(X + a, snr, p) = mmpe(X, snr, p), (6a)

mmpe(aX, snr, p) = apmmse(X, a2snr, p). (6b)

Proposition 2 asserts that the MMPE is shift invariant and
shows how the MMPE behaves under scaling.

Proposition 3. ([2, Prop. 7]) For any p > 0 the optimal
estimator fp(X|Y) has the following properties:

1) (Non-negativity) if 0 ≤ X ∈ R1 then 0 ≤ fp(X|Y ),
2) (Linearity) fp(aX + b|Y) = afp(X|Y) + b,
3) (Stability) fp(g(Y)|Y) = g(Y) for any function g(·),
4) (Idempotence) fp(fp(X|Y)|Y) = fp(X|Y),
5) (Degradeness) fp (X|Ysnr0 ,Ysnr) = fp (X|Ysnr0), for a

Markov chain X→ Ysnr0 → Ysnr,
6) (Orthogonality-like Property)

E
[
Err

p−2
2 (X, fp(X|Y)) · (X− fp(X|Y))

T · g(Y)
]

= 0

for any deterministic function g(·) ∈ Lp.

Proposition 3 shows that the MMPE has many of the well
known properties of the MMSE.

B. Examples of Optimal MMPE Estimators

Next, we provide examples of optimal MMPE estimators.

Proposition 4. For XG ∼ N (0, I) and p ≥ 1

mmpe(XG, snr, p) =
‖Z‖pp

(1 + snr)
p
2

,

with the optimal estimator given by fp(XG|Y = y) =
√
snr y

1+snr .

The optimal MMPE estimator is in general a function of p
as shown next.

Proposition 5. For X ∈ {x1, x2} with PX [X = x1] := q ∈
[0, 1], and q̄ := 1− q, and for p ≥ 1, we have that

fp(X|Y = y) =
x1 · q · e−

(y−
√

snrx1)2

2(p−1) + x2 · q̄ · e−
(y−
√

snrx2)2

2(p−1)

q · e−
(y−
√

snrx1)2

2(p−1) + q̄ · e−
(y−
√

snrx2)2

2(p−1)

.

For the practically relevant BPSK modulation, or XBPSK ∈
{±1} with equal probability, from Proposition 5 we have that

fp(XBPSK|Y = y) = tanh

(
y
√
snr

p− 1

)
. (7)

For p = 1 the optimal estimator in (7) becomes a hard decision
decoder.
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Fig. 1: Plot of E[(X − fp(X|Y )] vs. p for X ∈ {−3, 1} and
Pr[X = −3] = 0.01, with fp(X|Y ) as in Proposition 5.

C. Average Bias of the Optimal MMPE Estimator

An estimator f(X|Y) is said to be unbiased on average
if E[X − f(X|Y)] = 0. In general fp(X|Y) is unbiased on
average only for p = 2. This follows from the law of total
expectation

E[fp=2(X|Y)] = E[E[X|Y]] = E[X]. (8)

Fig. 1 shows that in general the optimal MMPE estimator is
biased on average, as is common in Bayesian estimation; it
plots E[(X − fp(X|Y )] vs. p for X ∈ {−3, 1} : Pr[X =
−3] = 0.01, with fp(X|Y ) as in Proposition 5. However,
the optimal MMPE estimator is unbiased in the sense that
the (p − 1)-th moment of the bias is zero. This can be seen
from the orthogonality like property in Proposition 3 by taking
g(Y) = I.

III. BOUNDS ON THE MMPE

Our first bound generalizes the linear MMSE (LMMSE)
bounds given in [3, Prop. 4] to the MMPE for any inputs X
of any dimension n ≥ 1.

Proposition 6. For snr ≥ 0, 0 < q ≤ p, and any input X,

n
p
q−1mmpe

p
q (X, snr, q) ≤ mmpe(X, snr, p), (9a)

mmpe(X, snr, p) ≤ min

(‖Z‖pp
snr

p
2

.‖X‖pp
)
. (9b)

Moreover, if ‖X‖p ≤ ‖Z‖p for p ≥ 1, then

mmpe(X, snr, p) ≤ kp,snr ·
‖Z‖pp

(1 + snr)
p
2

, (9c)

where kp=2,snr = 1 and k
1
p

p6=2,snr = 1+
√
snr√

1+snr
≤ 1 + 1√

1+snr
.

As an application of Proposition 6 we show that asymptot-
ically a Gaussian input is the hardest to estimate.

Proposition 7. For every snr ≥ 0, p ≥ 1, and a random
variable X such that ‖X‖pp ≤ σp‖Z‖pp, we have

mmpe(X, snr, p) ≤ kp,σ2snr

σp‖Z‖pp
(1 + snrσ2)

p
2

. (10)
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Moreover, X ∼ N (0, σ2I) asymptotically achieves the bound
in (10) since limsnr→∞ kp,σ2snr = 1.

Proof. Let X = σU. Then ‖X‖p = ‖σU‖p ≤ σ‖Z‖p and
thus ‖U‖p ≤ ‖Z‖p. By the bound in (9c), we have that

mmpe(X, snr, p) = mmpe(σU, snr, p) (11)
a)
= σpmmpe(U, σ2snr, p) (12)
b)

≤ kp,σ2snr

σp‖Z‖pp
(1 + snrσ2)

p
2

, (13)

where the (in)-equalities follow from: a) the scaling prop-
erty of the MMPE in (6b), and b) the bound in (9c). By
Proposition 4, the bound in (10) is achieved with equality by
XG ∼ N (0, σ2I). This concludes the proof.

IV. CONDITIONAL MMPE

We define the conditional MMPE as

mmpe(X, snr, p|U) := ‖X− fp(X|Ysnr,U)‖pp. (14)

The conditional MMPE in (14) reflects the fact that the optimal
estimator has been given additional information in the form of
U. Note that when Z is independent of (X,U) we can write
the conditional MMPE for Xu ∼ PX|U(·|u) as

mmpe(X, snr, p|U) =

∫
mmpe(Xu, snr, p) dPU(u). (15)

Since giving extra information does not increase the esti-
mation error we have the following result:

Proposition 8. For every snr ≥ 0, p ≥ 0, and random variable
X, we have

mmpe(X, snr, p) ≥ mmpe(X, snr, p|U). (16)

Finally, the following proposition generalizes [8, Proposi-
tion 3.4] and states that MMPE estimation of X from two
independent observations is equivalent to estimating X from
a single observation with a higher SNR:

Proposition 9. For every X and p ≥ 0, let U =
√

∆ ·X +
Z∆ where Z∆ ∼ N (0, I) and where (X,Z,Z∆) are mutually
independent. Then

mmpe(X, snr, p|U) = mmpe(X, snr + ∆, p). (17)

Together, Propositions 9 and 8 imply that, for fixed X and
p, the MMPE is a non-increasing function of snr.

V. SINGLE CROSSING POINT PROPERTY BOUND

The single crossing point property bound is a powerful tool
for showing converses for Gaussian noise channels [4]. Next
we generalize this important bound to the MMPE.

Proposition 10. Suppose mmpe
2
p (X, snr0, p) =

β‖Z‖2p
1+βsnr0

for
some β ≥ 0. Then

mmpe
2
p (X, snr, p) ≤ cp ·

β‖Z‖2p
1 + β snr

, for snr ≥ snr0, (18)

where cp =

{
2 p ≥ 1

1 p = 2
.

Proof. Let snr = snr0 +∆ for ∆ ≥ 0, and let Y∆ =
√

∆X+
Z∆. Then

Ysnr =

√
∆√

snr0 + ∆
Y∆ +

√
snr0√

snr0 + ∆
Ysnr0

=
√
snr0 + ∆X + W,

where W ∼ N (0, I). Next, let

m := mmpe
2
p (X, snr0, p) = ‖X− fp(X|Ysnr0)‖2p

and define a suboptimal estimator given (Y∆,Ysnr0)

X̂ =
(1− γ)√

∆
Y∆ + γfp(X|Ysnr0).

for some γ ∈ R. Then

X− X̂ = γ(X− fp(X|Ysnr0))− (1− γ)√
∆

Z∆,

and

mmpe
1
p (X, snr, p)= ‖X− fp(X|Ysnr)‖p

a)
= ‖X− fp(X|Y∆,Ysnr0)‖p
b)

≤ ‖X− X̂‖p =

∥∥∥∥γ(X− fp(X|Ysnr0))− (1− γ)√
∆

Z∆

∥∥∥∥
p

c)
=

∥∥∥‖Z‖2p(X− fp(X|Ysnr0))−
√

∆ ·m · Z∆

∥∥∥
p

‖Z‖2p + ∆ ·m
, (19)

where the (in)-equalities follow from: a) Proposition 9, b)
using a sub-optimal estimator, and c) choosing γ =

‖Z‖2p
‖Z‖2p+∆·m .

Next, by applying the triangle inequality,

mmpe
1
p (X, snr, p)

≤

∥∥‖Z‖2p(X− fp(X|Ysnr0))
∥∥
p

+
∥∥∥√∆ ·m · Z∆

∥∥∥
p

‖Z‖2p + ∆ ·m
(20)

=

√
m‖Z‖p · (‖Z‖p +

√
∆ ·
√
m)

‖Z‖2p + ∆ ·m
≤
√

2

√
m‖Z‖p√

‖Z‖2p + ∆ ·m
,

where in the last step we have used (a+ b) ≤
√

2
√
a2 + b2.

Note that for the case p = 2, instead of using the triangle
inequality in (20), the term can be expanded into a quadratic
equation for which it is not hard to see that the choice of
γ =

‖Z‖2p
‖Z‖2p+∆·m is optimal and leads to a bound

mmpe
1
p (X, snr, p) ≤

√
m‖Z‖p√

‖Z‖2p + ∆ ·m
.

The proof is concluded by noting that β = m
‖Z‖2p−snr0m

.

Remark 1. We conjecture that the multiplicative constant cp
can be sharpened to 1 for all p ≥ 1. However, in order to
make such a claim one must solve the following optimization:

min
γ∈[0,1]

‖(1− γ)W + γZ‖p, (21)
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where W and Z are independent and Z ∼ N (0, I). The opti-
mization problem in (21) is the subject of current investigation.

VI. APPLICATIONS

We next show how the MMPE concept can be used to derive
tighter versions of some well known information theoretic
bounds. It is important to point out that even though the
focus of this paper is the additive white Gaussian noise
(AWGN) setting, the results that follow apply to any channel
model in which the noise is an absolutely continuous random
variable without an assumption of independent and identically
distributed noise samples.

A. Bounds on the Differential Entropy

For any random vector U such that |KU| <∞ and h(U) <
∞, and any random vector V, the following inequality is
considered to be a continuous analog of Fano’s inequality [9]:

h(U|V) ≤ n

2
log(2πe mmse(U|V)). (22)

Therefore, by applying (22) to the AWGN setting, for any X
such that |KU| <∞ and h(U) <∞, by using Proposition 6
(i.e., q = 2) we can arrive at the trivial bound:

h(X|Y) ≤ n

2
log
(

2πe · n
2−p
p ·mmpe

2
p (X, snr, p)

)
. (23)

Next, we show that the trivial bound in (23) can be improved.

Proposition 11. For any U ∈ Rn such that ‖U‖p < ∞ and
h(U) <∞ for some p ∈ (0,∞) and any V ∈ Rn, we have

h(U|V) ≤ n

2
log
(
k2
n,p · n

2
p · ‖U− g(V)‖2p

)
, (24)

for any deterministic function g(·) and where

kn,p :=

√
π
(
p
n

) 1
p e

1
p Γ

1
n

(
n
p + 1

)
Γ

1
n

(
n
2 + 1

) =

√
2πe

n
1
2

(
p
2

) 1
2n

+ o

(
n

p

)
.

Proof. Let Wv = Uv − g(v) where g(·) is a deterministic
function and Uv ∼ pU|V(·|v). By [1, Theorem 3] we have

kn,p · n
1
p ‖Wv‖p ≥ e

1
nhe(Wv), (25)

where he(·) is the differential entropy measured in nats.
Moreover, observe that he(Wv) = he(Uv−g(v)) = he(Uv)
due to the translation invariance of the differential entropy.
Therefore, by rearranging (25) and by using the translation
invariance of the differential entropy, we get

n−1he(Uv) log(e) ≤ log
(
kp · n

1
p ‖Wv‖p

)
, (26)

where from (2b) n
1
p ‖Wv‖p = E

1
p

[
Err

p
2 (U, g(V))|V = v

]
.

By taking the expectation on both sides of (26) with respect
to pV(v) we arrive at

n−1he(U|V) log(e) = n−1h(U|V)

≤ 1

p
E
[
log

(
kpp · n ·

1

n
· E
[
Err

p
2 (U, g(V))|V

])]
a)

≤ 1

p
log

(
kpp · n ·

1

n
· E
[
E
[
Err

p
2 (U, g(V))|V

]])

=
1

p
log

(
kpp · n ·

1

n
· E
[
Err

p
2 (U, g(V))

])
= log

(
kp · n

1
p · ‖U− g(V)‖p

)
,

where the inequality in a) follows from Jensen’s inequality.
This concludes the proof.

Note that the result in Proposition 11 holds in great gen-
erality and the AWGN assumption is not necessary. As an
application of Proposition 11 to the AWGN setting we have
the following stronger version of the inequality in (23).

Proposition 12. For any X such that ‖X‖p <∞ and h(X) <
∞ for some p ∈ (0,∞), we have that

n−1h(X|Y) ≤ 1

2
log
(
k2
n,p · n

2
p ·mmpe

2
p (X, snr, p)

)
,

where kn,p is defined in Proposition 11.

Proof. The proof follows by setting U = X and V = Y and
g(Y) = fp(X|Y) in the statement of Proposition 11.

B. Generalized Ozarow-Wyner Bound

In [7] the following “Ozarow-Wyner lower bound” on the
mutual information achieved by a discrete input on an AWGN
channel was shown:

[H(XD)− gap]+ ≤ I(XD;Y ) ≤ H(XD), (27a)

gap =
1

2
log
(πe

6

)
+

1

2
log

(
1 +

lmmse(X, snr)

dmin(XD)2

)
, (27b)

where lmmse(X|Y ) is the LMMSE. The advantage of the
bound in (27) compared to existing bounds is its computational
simplicity. The bound on the gap in (27) has been sharpened
in [10, Remark 2] to

gap =
1

2
log
(πe

6

)
+

1

2
log

(
1 +

mmse(X, snr)

dmin(XD)2

)
, (28)

since lmmse(X, snr) ≥ mmse(X, snr). Next, we generalize
the bound in (27) to vector discrete inputs and give the sharpest
known bound on the gap term.

Proposition 13. (Generalized Ozarow-Wyner Bound) Let XD

be a discrete random vector such that pi = P[XD = xi] for
xi ∈ supp(XD), and let K be a set of continuous random
vectors, independent of XD, such that h(U) < ∞ and
‖U‖p <∞, and

supp(U + xi) ∩ supp(U + xj) = ∅,
∀ xi,xj ∈ supp(XD), i 6= j, and ∀ U ∈ K. (29)

Then for any p ≥ 1

[H(XD)− gapp]
+ ≤ I(XD;Y) ≤ H(XD), (30)

where

gapp = inf
U∈K

gap(U), and n−1 · gap(U)

= log

(
1 +

mmpe
1
p (X, snr, p)

‖U‖p

)
+ log

(
kn,p · n

1
p · ‖U‖p

e
1
nhe(U)

)
.
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Fig. 2: Gap vs. snr.

Proof. Let (U,XD,Z) be mutually independent. By the data
processing inequality and the assumption in (29) we have

I(XD;Y) ≥ I(XD + U;Y) = h(XD + U)− h(XD + U|Y)

= H(XD) + h(U)− h(XD + U|Y). (31)

Next, by using Proposition 11, we have that the last term of
(31) can be bounded as:

n−1h(XD + U|Y) ≤ log
(
kn,p · n

1
p · ‖XD + U− g(Y)‖p

)
≤ log

(
kn,p · n

1
p · (‖U‖p + ‖XD − g(Y)‖p)

)
, (32)

where the last inequality follows by the triangle inequality.
Next, by combining (31) and (32) we have that

I(XD;Y) ≥ H(XD)− n · log

(
1 +
‖XD − g(Y)‖p

‖U‖p

)
− n · log

(
kn,p · n

1
p · ‖U‖p

e
1
nhe(U)

)
.

Finally, the proof concludes by taking g(Y) = fp(X|Y) and
taking the supremum over all possible U.

As a simple example of Proposition 13 consider the case of
n = 1 and XD uniformly distributed with the number of points
equal to N = b

√
1 + snrc; that is, we choose the number

of points such that H(X) ≈ 1
2 log(1 + snr). Fig. 2 shows

the following: the solid cyan line is the “shaping loss” for
a one-dimensional infinite lattice and is the limiting gap if
the number of points N grows faster than

√
snr; the solid

magenta line is the gap due to the original Ozarow-Wyner
gap in (27); and the dashed purple, dashed-dotted blue and
dotted green lines are the new gap due to Proposition 13 for
values of p = 2, 4 and 6, respectively, and where we chose
U ∼ U

[
−dmin(XD)

2 ,
dmin(XD)

2

]
. We note that the new version

of the Ozarow-Wyner bound provides the sharpest bound for
the gap. An open question is what value of p would provide
the smallest gap and if that would coincide with the ultimate
“shaping loss”.

VII. CONCLUSION

We have considered the problem of estimating a random
variable from a noisy observations under a very general cost
function, termed the MMPE. We have shown that many of

the known properties of the MMSE extend directly to the
MMPE. The MMPE has been used to refine bounds on the
conditional entropy and improve the gap term in the Ozarow-
Wyner bound. Other possible applications of this sharpened
version of the Ozarow-Wyner bound include sharpening of
the bound on discrete inputs in [11] and [12]. For other
applications of the MMPE, such as bounds on the first order
phase transition of mutual information, please see [2]. Another
recent application of the MMPE can be found in [13] in
connections to the transmition of a modulated signal over a
continuous-time AWGN channel.
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[4] R. Bustin, M. Payaró, D. P. Palomar, and S. Shamai, “On MMSE cross-
ing properties and implications in parallel vector Gaussian channels,”
IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 818–844, Feb 2013.

[5] E. Akyol, K. B. Viswanatha, and K. Rose, “On conditions for linearity
of optimal estimation,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp.
3497–3508, 2012.

[6] A. Dytso, R. Bustin, D. Tuninetti, N. Devroye, S. Shamai, and H. V.
Poor, “On the minimum mean p-th error in Gaussian noise channels
and its applications,” in Proc. IEEE Int. Symp. Inf. Theory, Barcelona,
Spain, July 2016.

[7] L. Ozarow and A. Wyner, “On the capacity of the Gaussian channel
with a finite number of input levels,” IEEE Trans. Inf. Theory, vol. 36,
no. 6, pp. 1426–1428, Nov 1990.

[8] D. Guo, S. Shamai, and S. Verdú, The Interplay Between Information
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