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On the Two-User Interference Channel With
Lack of Knowledge of the Interference

Codebook at One Receiver
Alex Dytso, Daniela Tuninetti, and Natasha Devroye

Abstract— In multiuser information theory, it is often assumed
that every node in the network possesses all codebooks used in
the network. This assumption may be impractical in distrib-
uted ad hoc, cognitive, or heterogeneous networks. This paper
considers the two-user interference channel with one oblivious
receiver (IC-OR), i.e., one receiver lacks knowledge of the
interfering cookbook, whereas the other receiver knows both
codebooks. This paper asks whether, and if so how much, the
channel capacity of the IC-OR is reduced compared with that of
the classical IC where both receivers know all codebooks. A novel
outer bound is derived and shown to be achievable to within
a gap for the class of injective semideterministic IC-ORs; the
gap is shown to be zero for injective fully deterministic IC-ORs.
An exact capacity result is shown for the general memoryless
IC-OR when the nonoblivious receiver experiences very strong
interference. For the linear deterministic IC-OR that models the
Gaussian noise channel at high SNR, nonindependent identi-
cally distributed. Bernoulli(1/2) input bits are shown to achieve
points not achievable by i.i.d. Bernoulli(1/2) input bits used in
the same achievability scheme. For the real-valued Gaussian
IC-OR, the gap is shown to be at most 1/2 bit per channel use,
even though the set of optimal input distributions for the derived
outer bound could not be determined. Toward understanding the
Gaussian IC-OR, an achievability strategy is evaluated in which
the input alphabets at the nonoblivious transmitter are a mixture
of discrete and Gaussian random variables, where the cardinality
of the discrete part is appropriately chosen as a function of
the channel parameters. Surprisingly, as the oblivious receiver
intuitively should not be able to jointly decode the intended
and interfering messages (whose codebook is unavailable), it is
shown that with this choice of input, the capacity region of the
symmetric Gaussian IC-OR is to within 1/2 log (12πe) ≈ 3.34 bits
(per channel use per user) of an outer bound for the classical
Gaussian IC with full codebook knowledge at both receivers.

Index Terms— Oblivious processing, codebooks, interference
channel, discrete inputs.

I. INTRODUCTION

ACLASSICAL assumption in multi-user information
theory is that each node in the network possesses

knowledge of the codebooks used by every other node.
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However, such an assumption might not be practical in
heterogeneous, cognitive, distributed or dynamic networks.
For example, in very large ad-hoc networks, where nodes
enter and leave at will, it might not be practical for new
nodes to learn the codebooks of old nodes and vice-versa.
In cognitive radio scenarios, where new cognitive systems
coexist with legacy systems, requiring the legacy systems to
know the codebooks of the new cognitive systems might not
be viable. This motivates the study of networks where each
node possesses only a subset of the codebooks used in the
network. We will refer to such systems as networks with
partial codebook knowledge and to nodes with only knowledge
of a subset of the codebooks as oblivious nodes.

To the best of our knowledge, systems with oblivious
terminals were first introduced in [1]. In [1] lack of codebook
knowledge was modeled by using codebook indices, which
index the random encoding function that maps the messages to
the codewords. If a node has codebook knowledge it knows the
index (or instance) of the random encoding function used; else
it does not and the codewords essentially look like the symbols
were produced in an independent, identically distributed (i.i.d.)
fashion from a given distribution. In [2] and [3] this concept of
partial codebook knowledge was extended to model oblivious
relays and capacity results were derived. However, as pointed
out in [2, Sec. III.A] and [3, Remark 5], these capacity regions
are “non-computable” in the sense that it is not known how to
find the optimal input distribution in general. In particular,
the capacity achieving input distribution for the practically
relevant Gaussian noise channel remains an open problem.

We make progress on this front by demonstrating that
certain rates are achievable for the Gaussian noise interfer-
ence channel with oblivious receivers (G-IC-OR) through the
evaluation of a simplified Han-Kobayashi scheme [4] in which
joint decoding of the intended and interfering messages is not
required at the oblivious receiver. The major contribution of
this work is the realization that Gaussian inputs perform poorly
in the proposed achievable region. We therefore propose to use
a class of inputs that we termed mixed inputs. A mixed input is
random variable that is a mixture of a continuous and a discrete
part, such as for example a Gaussian random variable and a
uniformly distributed random variable on an equally spaced set
of discrete points. We then properly design the distribution of
the mixed input as a function of the channel parameters.

We are not the first to consider discrete inputs for Gaussian
noise channels. In [5] the authors considered the point-to-point
power-constrained Gaussian noise channel and derived lower
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bounds on the achievable rate when the input is contained
to be an equally spaced Pulse Amplitude Modulation (PAM)
in which each each point is used with equal probability;
such an input was shown to be optimal to within 0.41 bits
per channel use [5, eq. (9)]. As pointed out in [6], already
in 1948 Claude Shannon in the unpublished work [7]
argued the asymptotically optimality of a PAM input for the
point-to-point power-constrained Gaussian noise channel.

In [8, Th. 6 and 7], the authors asymptotically characterized
the optimal input distribution over N masses at high and
low SNR, respectively, for a point-to-point power-constrained
Gaussian noise channel by assuming that N is not dependent
on SNR. For the purpose of this work, these bounds cannot
be used, as 1) these bounds are optimized for a specific SNR
while we shall need to lower bound the rate achievable by a
discrete input at multiple receivers each characterized by a
different SNR; 2) we need a firm bound that holds at all
finite SNR; and 3) we need to properly choose N as a function
of SNR, a question posed but left open in [8].

The sub-optimality of Gaussian inputs for Gaussian noise
channels has been observed before. Past work on the asyn-
chronous IC [9], [10] showed that non-Gaussian inputs may
outperform i.i.d. Gaussian inputs by using local perturbations
of an i.i.d. Gaussian input: [9, Lemma 3] considers a fourth
order approximation of mutual information, while [10, Th. 4]
uses perturbations in the direction of Hermite polynomials of
order larger than three. In both cases the input distribution
is assumed to have a density, though [9, Fig. 1] numerically
shows the performance of a ternary PAM input as well. For the
cases considered in [9] and [10], the improvement over i.i.d.
Gaussian inputs shows in the decimal digits of the achievable
rates; it is hence not clear that perturbed continuous Gaussian
inputs as in [9] and [10] can actually provide Degrees of
Freedom (DoF) gains over Gaussian inputs (note that a strict
DoF gain implies an unbounded rate gain as SNR increases)
which we seek in this work. In a way this work follows the
philosophy of [11]: the main idea is to use sub-optimal point-
to-point codes in which the reduction in achievable rates is
more than compensated by the decrease in the interference
created at the other users.

The rest of the paper is organized as follows. The general
memoryless IC-OR channel model is introduced in Section II,
together with the special class of injective semi-deterministic
IC-ORs (ISD-IC-OR) of which the Gaussian noise channel is
an example. Our main results are:

1) In Section III, in Theorem 2 we derive a novel outer
bound that incorporates this partial codebook knowledge
explicitly. In this bound, the single rate bounds are valid
for a general memoryless IC-OR while the sum-rate
bound is valid for the ISD-IC-OR only.

2) In Section IV we demonstrate a series of capacity and
approximate capacity results for various regimes and
classes of IC-OR. Specifically, by using the achievable
region in Proposition 3 we prove: (a) in Theorem 4
we obtain the capacity region for the general memo-
ryless IC-OR in very strong interference at the non-
oblivious receiver, (b) in Theorem 5 we demonstrate
the capacity region to within a gap for the ISD-IC-OR,

and (c) in Corollary 6 we show that for the injective
fully deterministic IC-OR the gap is zero.

3) In Section IV-D, we look at the practically relevant
G-IC-OR and its corresponding Linear Deterministic
Approximation (LDA-IC-OR) in the spirit of [12], which
models the G-IC-OR at high SNR, whose exact capacity
is in principal given by Corollary 6 but whose convex
closure we were not able to determine directly. Surpris-
ingly, for the LDA-IC-OR we numerically demonstrate
that for the proposed achievable scheme in Proposition 3,
i.i.d. Bernoulli(1/2) input bits (known to be optimal for
the LDA-IC with full codebook knowledge [13]) are out-
performed by other (correlated and non-uniform) input
distributions that achieve the same sum-rate performance
as full codebook knowledge.

4) In Section IV-E, for the G-IC-OR, we show
in Corollary 7 that our inner and outer bounds
that are to within 1/2 bit (per channel use per user)
of one another. However, similarly to prior work on
oblivious models, we are not able to find the set of
input distributions that exhaust the outer bound in
Theorem 2, in particular we cannot argue whether i.i.d.
Gaussian inputs exhaust the outer bound.
Inspired by the results for the LDA-IC-OR, we numer-
ically show that a larger sum-capacity is attainable by
using a discrete input at the non-oblivious transmitter
than by selecting i.i.d. Gaussian inputs, or using time-
division, or treating interference as noise, in the strong
interference regime at high SNR. This suggests that the
penalty for the lack of codebook knowledge is not as
severe as one might initially expect.

5) For the remainder of the paper we consider the
G-IC-OR, and demonstrate that even with partial code-
book knowledge we are able to achieve to within
1
2 log (12πe) ≈ 3.34 bits per channel use of the
symmetric capacity region of the G-IC with full code-
book knowledge through the use of mixed inputs.1

The main tool, to derive the symmetric capacity to
within a constant gap is Theorem 8, which is the lower
bound from [5] on the mutual information achievable by
a PAM input on a point-to-point Gaussian noise channel.
With this tool, in Section VI in Theorems 9 and 10,
we evaluate the achievable rate region presented in
Proposition 3 for the G-IC-OR when the non-oblivious
transmitter uses either a PAM input or a mixed input that
comprises a Gaussian component and a PAM compo-
nent. Corollaries 11 and 12 provide the gDoF character-
ization of the achievable regions in Theorems 9 and 10.

6) In past work on networks with oblivious nodes no
performance guarantees were provided as the capacity
regions could not be evaluated. In Section VII we study
the generalized degrees of freedom (gDoF) achievable
with mixed inputs. In Theorem 13, we show that mixed

1The restriction to the symmetric case, i.e., same direct links and same
interference links, is just to reduce the number of parameters in our deriva-
tions. We strongly believe that an approximate capacity result (to within a
constant gap) can be shown for the general asymmetric case, albeit through
more tedious computations than those reported here.
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inputs achieve the gDoF of the classical G-IC, hence
implying that there is no loss in performance due to
lack of codebooks in a gDoF sense / at high SNR. This
is quite surprising considering that the oblivious receiver
cannot perform joint decoding of the two messages,
which is optimal for the classical G-IC in the strong
and very strong interference regimes.

7) Finally, in Section VIII we turn our attention to the finite
SNR regime and in Theorem 14 we show that the capac-
ity of the symmetric G-IC-OR is within 1

2 log (12πe) ≈
3.34 bits per channel use of the outer bound to the
capacity region of the classical symmetric G-IC.

We conclude the paper with some final remarks and
future directions in Section IX. Some proofs are reported in
the Appendix.

II. CHANNEL MODEL

A. Notation
We adopt the following notation convention:

• Lower case variables are instances of upper case random
variables which take on values in calligraphic alphabets.

• Throughout the paper log(·) denotes logarithms in base 2.
• [n1 : n2] is the set of integers from n1 to n2 ≥ n1.
• Y j is a vector of length j with components (Y1, . . . , Y j ).
• We let δ(·) denote the the Dirac delta function.
• If A is a random variable (r.v.) we denote its support by

supp(A).
• The symbol | · | may denote different things: |A| is

the cardinality of the set A, |X | is the cardinality of
supp(X) of the r.v. X , or |x | is the absolute value of the
real-valued x .

• For x ∈ R we let �x� denote the largest integer not greater
than x .

• For x ∈ R we let [x]+ := max(x, 0) and log+(x) :=
[log(x)]+.

• The functions Ig(x), Id(n, x) and Nd(x), for n ∈ N and
x ∈ R

+, are defined as

Ig(x) := 1

2
log(1 + x), (1)

Id(n, x) :=
[

1

2
log(1+min(n2−1, x))− 1

2
log

(πe

3

)]+
,

(2)

Nd(x) :=
⌊√

1 + x
⌋
, (3)

where the subscript d reminds the reader that discrete
inputs are involved, while g that Gaussian inputs are
involved.

• N (μ, σ 2) denotes a real-valued Gaussian r.v. with mean
μ and variance σ 2.

• Unif([n1 : n2]) denotes the uniform distribution over the
set [n1 : n2].

• Bernoulli(p) denotes the Bernoulli distribution with para-
meter p ∈ [0, 1].

• X ∼ PAM(N) denotes the uniform distribution over a
zero-mean Pulse Amplitude Modulation (PAM) constel-
lation with |X | = N points and unit-energy.

• co(·) denotes the convex closure operator.

Fig. 1. The IC-OR, where F1 and F2 represent codebook indices known to
one or both receivers.

B. General Memoryless IC-OR

An IC-OR consists of the two-user memoryless interference
channel (X1,X2, PY1Y2|X1 X2,Y1,Y2) where receiver 2
is oblivious of transmitter 1’s codebook. We use the
terminology “codebook” to denote a set of codewords and the
(one-to-one) mapping of the messages to these codewords.
We model lack of codebook knowledge as in [1], where
transmitters use randomized encoding functions, which
are indexed by a message index and a “codebook index”
(F1 and F2 in Fig. 1). An oblivious receiver is unaware of the
“codebook index” (F1 is not given to decoder 2 in Fig. 1) and
hence does not know how codewords are mapped to messages.
The basic modeling assumption is that without the knowledge
of the codebook index a codeword looks unstructured. More
formally, by extending [2, Definition 2], a (2nR1, 2nR2 , n)
code for the IC-OR with enabled time sharing is a six-tuple
(PF1|Qn , σ n

1 , φn
1 , PF2|Qn , σ n

2 , φn
2 ), where the distribution

PFi |Qn , i ∈ [1 : 2], is over a finite alphabet Fi conditioned on
the time-sharing sequences qn from some finite alphabet Q,
and where the encoders σ n

i and the decoders φn
i , are mappings

σ n
1 : [1 : 2nR1 ] × [1 : |F1|] → X n

1 ,

σ n
2 : [1 : 2nR2 ] × [1 : |F2|] → X n

2 ,

φn
1 : [1 : |F1|] × [1 : |F2|] × Yn

1 → [1 : 2nR1 ],
φn

2 : [1 : |F2|] × Yn
2 → [1 : 2nR2 ].

Moreover, when user 1’s codebook index is unknown at
decoder 2, the encoder σ n

1 and the distribution PF1|Qn must
satisfy

P[Xn
1 = xn

1 |Qn = qn]

=
2nR1∑
w1=1

|F1|∑
f1=1

PF1|Qn ( f1|qn) 2−nR1 δ
(
xn

1 − σ n
1 (w1, f1)

)

=
∏

t∈[1:n]
PX1|Q(x1t |qt), (4)

according to some distribution PX1|Q . In other words, when
averaged over the probability of selecting a given codebook
and over a uniform distribution on the message set, the trans-
mitted codeword conditioned on any time sharing sequence
has an i.i.d. distribution according to some distribution PX1|Q .
We refer the reader to [2, Remark 1] for further justifications
of the condition in (4).

A non-negative rate pair (R1, R2) is said to be
achievable if there exist a sequence of encoding functions
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σ n
1 (W1, F1), σ n

2 (W2, F2), and decoding functions
φn

1 (Y n
1 , F1, F2), φn

2 (Y n
2 , F2), such that the average probability

of error satisfies maxi∈[1:2] P[Ŵi 
= Wi ] → 0 as n → +∞.
The capacity region is defined as the convex closure of all
achievable rate pairs (R1, R2) [14].

Remark 1: One of the key features of our model is that
the codebook index may change from codeword to codeword.
In particular, one can show that the number of codebooks is
given by |F | = |X |n2nR

[2]. Therefore, communicating the
index of the codebook - before the transmission of every code-
word - incurs a non vanishing overhead. For more discussion
on which communication schemes are permitted and which are
not we refer reader to [1] and [2].

C. Injective Semi-Deterministic IC-OR

For a general memoryless IC-OR, no restrictions
are imposed on the transition probability PY1Y2|X1 X2 .
The ISD-IC-OR is a special IC-OR with transition probability

PY1Y2|X1 X2(y1, y2|x1, x2)

=
∑
t1,t2

PT1|X1(t1|x1)PT2|X2(t2|x2)

· δ(y1 − g1(x1, t2)
)

δ
(
y2 − g2(x2, t1)

)
, (5)

for some memoryless transition probabilities PT1|X1 and
PT2|X2 , and some deterministic functions g1(·, ·) and g2(·, ·)
that are injective when their first argument is held fixed [15].
The ISD property implies that

H (Y1|X1) = H (T2) and H (Y2|X2) = H (T1)

∀PX1 X2 = PX1 PX2 , (6)

or in other words that the Tu is a deterministic function of
the pair (Yu, Xu), u ∈ [1 : 2]. For channels with continuous
alphabets, the summation in (5) should be replaced with an
integral and the discrete entropies in (6) with the differential
entropies.

III. OUTER BOUNDS

In this section we present novel outer bounds for the IC-OR.
In particular, we derive the single rate bounds that are valid
for a general memoryless IC-OR and a sum-rate bound that is
valid for the ISD-IC-OR only.

We begin by proving a property of the output distributions
that is key to deriving single-letter expressions in our outer
bounds; this property holds for a general memoryless IC-OR.

Proposition 1: The output of the oblivious decoder has a
product distribution conditioned on the signal whose codebook
is known, that is,

PY n
2 |Xn

2 ,F2(yn
2 |xn

2 , f2) =
n∏

i=1

PY2i |X2i (y2i |x2i ).

which implies

H (Y n
2 |Xn

2 , F2) =
n∑

i=1

H (Y2i |X2i )
for ISD-IC-OR=

n∑
i=1

H (T1i).

Proof of Proposition 1: Starting from the joint distribution
of Y n

2 , Xn
1 conditioned on Xn

2 , F2 we have that

PY n
2 ,Xn

1 |Xn
2 ,F2(yn

2 , xn
1 |xn

2 , f2)

a)= PXn
1
(xn

1 )

n∏
i=1

PY2i |X1i ,X2i (y2i |x1i , x2i )

b)=
n∏

i=1

PX1i (x1i )

n∏
i=1

PY2i |X1i ,X2i (y2i |x1i , x2i )

c)=
n∏

i=1

PY2i ,X1i |X2i (y2i , x1i |x2i )

where the equalities follows from: a) the inputs are indepen-
dent and the channel is memoryless, b) the assumption that
Xn

1 has a product distribution if not conditioned on F1 as
in (4), and c) the inputs are independent. By marginalizing
with respect to Xn

1 yields

PY n
2 |Xn

2 ,F2(yn
2 |xn

2 , f2) =
n∏

i=1

∑
x1i

PY2i ,X1i |X2i (y2i , x1i |x2i)

=
n∏

i=1

PY2i |X2i (y2i |x2i ),

as claimed.
The main result of the section is the following upper bound:
Theorem 2: Any achievable rate pair (R1, R2) for the

IC-OR must satisfy

R1 ≤ I (Y1; X1|X2, Q), (memoryless IC-OR) (7a)

R2 ≤ I (Y2; X2|Q), (memoryless IC-OR) (7b)

R1 + R2 ≤ H (Y1|Q) + H (Y2|U2, Q) − H (T2|X2, Q)

−H (T1|Q)(memoryless ISD-IC-OR)

= I (Y1; X1, X2|Q) + I (Y2; X2|U2, Q), (7c)

for some input distribution that factors as

PQ,X1,X2,U2(q, x1, x2, u2)

= PQ(q)PX1|Q(x1|q)PX2|Q(x2|q)PT2|X2(u2|x2), (7d)

and with |Q| ≤ 2. We denote the region in (7d) as Rout.
Proof of Theorem 2: By Fano’s inequality

H (W1|Y n
1 , F1, F2) ≤ nεn and H (W2|Y n

2 , F2) ≤ nεn for
some εn → 0 as n → ∞.

We begin with the R1-bound (non-oblivious receiver) in (7a):

n(R1 − εn)
a)≤ I (W1; Y n

1 , F1, F2)

b)≤ I (W1; Y n
1 |F1, F2, W2)

c)≤ I (Xn
1 ; Y n

1 |F1, F2, Xn
2 )

d)= H (Y n
1 |F1, F2, Xn

2 ) −
n∑

i=1

H (Y1i |X1i , X2i )

e)≤
n∑

i=1

H (Y1i |X2i ) −
n∑

i=1

H (Y1i |X1i , X2i )

=
n∑

i=1

I (X1i ; Y1i |X2i ),
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where the (in)equalities follow from: a) Fano’s inequality,
b) giving W2 as side information and using the fact that
F1, F2, W1 and W2 are mutually independent, c) data
processing (Fi , Wi ) → Xn

i → Y n
1 , for i ∈ [1 : 2], and

d) because the channel is memoryless, e) by chain rule
of entropy and by “conditioning reduces entropy”. For the
R2-bound (oblivious receiver) in (7b) we have:

n(R2 − εn)
a)≤ I (W2; Y n

2 , F2)
b)≤ I (W2; Y n

2 |F2)
c)≤ I (Xn

2 ; Y n
2 |F2)

d)= H (Y n
2 |F2) −

n∑
i=1

H (Y2i |X2i )

e)≤
n∑

i=1

H (Y2i) −
n∑

i=1

H (Y2i |X2i )

=
n∑

i=1

I (X2i ; Y2i ),

where the (in)equalities follow from: a) Fano’s inequality,
b) the fact that F2 and W2 are independent, c) data processing
(Fi , Wi ) → Xn

i → Y n
1 , for i ∈ [1 : 2], and d) by Proposition 1,

e) from chain rule of entropy and “conditioning reduces
entropy”.

Next, by providing U2 as side information to receiver 2
(oblivious receiver) similarly to [15],2 where U2 is jointly
distributed with the inputs according to (7d), we have:

n(R1 + R2 − 2εn)
a)≤ I (Xn

1 ; Y n
1 |F1, F2) + I (Xn

2 ; Y n
2 , Un

2 |F2)

= H (Y n
1 |F1, F2) − H (Y n

1 |F1, F2, Xn
1 )

+H (Un
2 |F2) − H (Un

2 |F2, Xn
2 )

+H (Y n
2 |F2, Un

2 ) − H (Y n
2 |F2, Xn

2 , Un
2 )

b)= H (Y n
1 |F1, F2) − H (T n

2 |F1, F2)

+H (Un
2 |F2) − H (Un

2 |F2, Xn
2 )

+H (Y n
2 |F2, Un

2 ) − H (T n
1 )

c)= H (Y n
1 |F1, F2) − H (T n

2 |F1, F2)

+H (T n
2 |F2) − H (T n

2 |F2, Xn
2 )

+H (Y n
2 |F2, Un

2 ) − H (T n
1 )

d)= H (Y n
1 |F1, F2) + H (Y n

2 |F2, Un
2 )

−H (T n
2 |Xn

2 ) − H (T n
1 )

e)≤
n∑

i=1

H (Y1i |F1, F2) + H (Y2i |F2, U2i )

−H (T2i |X2i ) − H (T1i),

f)≤
n∑

i=1

H (Y1i) + H (Y2i |U2i )

−H (T2i |X2i ) − H (T1i),

2Random variable U2 is obtained by passing X2 through an auxiliary
channel described by PT2 |X2 . Intuitively, U2 represents interference caused
by X2 plus noise at the output Y1. The idea is that providing a noisy version
of X2 as side information will result in a tighter bound than for example
giving just X2.

where (in)equalities follow from: a) by Fano’s inequality
and by giving U2 as side information and by proceeding
as done for the single rate bounds up to step labeled “c)”,
b) by the injective property in (5) and the independence of
(Xn

1 , T n
1 ) and Xn

2 , c) by definition of U2 in (7d) we have
H (Un

2 |F2) = H (T n
2 |F2), d) by independence of the messages

we have H (T n
2 |F1, F2)− H (T n

2 |F2) = 0, e) since the channel
is memoryless and thus H (T n

2 |F2, Xn
2 ) = H (T n

2 |Xn
2 ) =∑n

i=1 H (T2i |X2i ) and since H (T n
1 ) = H (Y n

2 |Xn
2 ) can be

single-letterized by using Proposition 1, and f) by conditioning
reduces entropy.

The introduction of a time-sharing random variable
Q ∼ Unif[1 : n] yields the bounds in (7). The Fenchel-
Eggleston-Caratheodory theorem [16, Ch. 14] guarantees that
we may restrict attention to |Q| ≤ 2 without loss of optimality.

Finally, the equality in (7c) follows from the injective prop-
erty in (5), the independence of the inputs and the memoryless
property of the channel, i.e.,

H (T2|X2) = H (T2|X1, X2) = H (Y1|X1, X2, Q),

H (T1|Q) = H (T1|U2, Q, X2).

This concludes the proof.

IV. CAPACITY RESULTS

In this section we prove that the outer bound in (7d) is
(approximately) tight in certain regimes or for certain classes
of channels. To start, we propose an achievable rate region
based on a simplified Han-Kobayashi scheme [4] in which
joint decoding of the intended and interfering messages is not
required at receiver 2 (the oblivious receiver) and in which
every node uses an i.i.d. codebook.

A. Inner Bound

Consider an achievability scheme where encoder 1 transmits
using an i.i.d. codebook, while encoder 2, corresponding to
the oblivious receiver, rate-splits as in the Han and Kobayashi
achievability scheme for the classical IC [4]. It may then be
shown that the following rates are achievable,

Proposition 3: The set of non-negative rate pairs (R1, R2)
satisfying

R1 ≤ I (Y1; X1|U2, Q), (8a)

R2 ≤ I (Y2; X2|Q), (8b)

R1 + R2 ≤ I (Y1; X1, U2|Q) + I (Y2; X2|U2, Q), (8c)

is achievable for every input distribution that factorizes as

PQ,X1,X2,U2 = PQ PX1|Q PX2|Q PU2|X2 Q , (8d)

and where |Q| ≤ 8 from [17]. We denote the region in (8)
as Rin, which is achievable for any memoryless IC-OR.

Proof of Proposition 3: The proof follows by setting the
auxiliary r.v. U1 in the Han and Kobayashi rate region
in [14, Sec. 6.5] to U1 = ∅. Note, that this modified version
of the Han and Kobayashi scheme employs joint decoding
(of desired and undesired messages) only at receiver 1
(the non-oblivious receiver) and hence knowledge of the
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codebook of transmitter 1 is not needed at receiver 2
(the oblivious receiver).

Remark 2: By comparing the outer bound region Rout in
Theorem 2 to the inner bound region Rin in Proposition 3 we
notice the following differences: 1) in (7d) the side information
random variable U2 is distributed as T2 conditioned on X2,
while in (8d) the auxiliary random variable U2 can have any
distribution conditioned on X2; 2) the mutual information
terms involving Y1 have X2 in the outer bound, but U2 in the
inner bound; and 3) the mutual information terms involving
Y2 are the same in both regions.

B. Capacity in Very Strong Interference at the Non-Oblivious
Receiver for the General Memoryless IC-OR

In this section we show that under special channel
conditions, akin to the very strong interference regime for the
classical IC, the outer bound region in Theorem 2 is tight.

A general memoryless IC-OR for which

I (X2; Y2|X1) ≤ I (X2; Y1), ∀PX1,X2 = PX1 PX2 , (9)

is said to have very strong interference at the non-oblivious
receiver (receiver 1). Intuitively, when the condition in (9)
holds, the non-oblivious receiver should be able to first decode
the interfering signal by treating its own signal as noise and
then decode its own intended signal free of interference. This
should “de-activate” the sum-rate bound in (7c). Next we
formalize this intuition.

Theorem 4: When the condition in (9) holds the capacity
region of the IC-OR is given by

R1 ≤ I (X1; Y1|X2, Q), (10a)

R2 ≤ I (X2; Y2|Q), (10b)

taken over the union of all input distributions that factor as
PQ,X1,X2 = PQ PX1|Q PX2|Q and where |Q| ≤ 2.

Proof of Theorem 4: By dropping the sum-rate outer bound
in (7c) we see that the region in (10a) is an outer bound for
a general memoryless IC-OR. By setting U2 = X2 in the
achievable region in (8), the region

R1 ≤ I (X1; Y1|X2, Q), (11a)

R2 ≤ I (X2; Y2|Q), (11b)

R1 + R2 ≤ I (X1, X2; Y1|Q), (11c)

taken over the union of all PQ,X1,X2 = PQ PX1|Q PX2|Q , is
achievable. We see that the single rate bounds in (11a) match
the upper bounds in (10a). We next intend to show that when
the condition in (9) holds, the sum-rate bound in (11c) is
redundant. By summing (11a) and (11b)

R1 + R2 ≤ I (X1; Y1|X2, Q) + I (X2; Y2|Q)
a)≤ I (X1; Y1|X2, Q) + I (X2; Y2, X1|Q)
b)= I (X1; Y1|X2, Q) + I (X2; Y2|X1, Q)
c)≤ I (X1; Y1|X2, Q) + I (X2; Y1|Q)

= I (X1, X2; Y1|Q) = eq.(11c),

where in a) we loosened the achievable sum-rate by adding

X1 as “side information” to receiver 2, in b) we used the
independence of the inputs, and in c) the condition in (9).
Therefore, the sum-rate bound in (11c) can be dropped without
affecting the achievable rate region. This shows that the outer
bound in (10a) is achievable thereby proving the claimed
capacity result.

Remark 3: For the classical IC, the very strong interference
regime is defined as

I (X1; Y1|X2) ≤ I (X1; Y2),

I (X2; Y2|X1) ≤ I (X2; Y1),

for all product input distributions; under these pair of condi-
tions capacity can be shown. For the IC-OR, the very strong
interference constraint at receiver 2 (oblivious receiver) is not
needed in order to show capacity. Therefore, the very strong
interference condition for the IC-OR is less stringent than
that for the classical IC. We believe this is so because the
oblivious receiver (receiver 2) cannot decode the message of
user 1 as per the modeling assumption. Indeed, we feel that the
“lack of codebook knowledge” as originally proposed in [1]
actually models the inability of a receiver to jointly decode its
message along with unintended ones, as the mapping between
the messages and codewords is not known.

C. Capacity to Within a Constant Gap for the ISD-IC-OR

We now show that Rin in Proposition 3 lies to within a
gap of the outer bound Rout in Theorem 2 for the general
ISD-IC-OR. We have

Theorem 5: For the ISD-IC-OR, if (R1, R2) ∈ Rout then
([R1 − I (X2; T2|U2, Q)]+, R2) ∈ Rin.

Proof of Theorem 5: The proof is as in [15]. First, we
define a new outer bound region R̄out by replacing X2 with
U2 in all positive entropy terms of region Rout, which is
permitted as H (Y2|X2) ≤ H (Y2|U2) by the data processing
inequality. We conclude that Rout ⊆ R̄out. We next compare
R̄out and Rin term by term (we only need to compare the
mutual informations invoking Y1 as those involving Y2 are the
same in both bounds, see Remark 2, thus implying a zero gap
for rate R2): the difference is that R̄out has −H (Y1|X1, X2)
where Rin has −H (T2|U2, Q); thus the gap is

−H (Y1|X1, X2) + H (T2|U2, Q)

= −H (T2|X2) + H (T2|U2, Q) = I (X2; T2|U2, Q).

This concludes the proof.
Remark 4: Note that

I (X2; T2|U2, Q) = H (T2|U2, Q) − H (T2|X2)

≤ H (T2) − H (T2|X2)

≤ max
PX2

I (T2; X2),

so the gap is finite / constant for all channel PT2|X2 with finite
capacity.

We next give an example of constant gap characterization
in Section IV-E after having discussed in Section IV-D a
special class of ISD-IC-OR for which the gap to capacity
is zero.
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D. Exact Capacity for the Injective Fully Deterministic IC-OR

We now specialize Theorem 5 to the class of injective fully
deterministic ICs [18]. For this class of channels the mappings
T1 and T2 in (5) are deterministic functions of X1 and X2,
respectively. We have

Corollary 6: For the injective fully deterministic IC-OR the
outer bound in Theorem 2 is tight.

Proof of Corollary 6: The injective fully deterministic
IC-OR has T2 = U2 and therefore I (X2; T2|U2, Q) = 0 in
Theorem 5.

As an application of Corollary 6 we consider next the Linear
Deterministic Approximation (LDA) of the Gaussian IC-OR at
high SNR, whose classical counterpart (where all codebooks
are known) was first proposed in [12]. The LDA-IC-OR has
input/output relationship

Y1 = Sq−n11 X1 + Sq−n12 X2, T2 = Sq−n12 X2, (12a)

Y2 = Sq−n21 X1 + Sq−n22 X2, T1 = Sq−n21 X1, (12b)

where inputs and outputs are binary-valued vectors of length q ,
S is the q × q shift matrix [12], (n11, n12, n21, n22) are
non-negative integers and q := max{n11, n12, n21, n22}.
Summations and multiplications are bit-wise over the binary
field.

For simplicity, we next evaluate the symmetric sum-capacity
of the LDA-IC-OR. The symmetric LDA-IC-OR has para-
meters n11 = n22 = nS and n12 = n21 = nI := nS α
for some non-negative α. The maximum symmetric rate, or
symmetric sum-capacity normalized by the sum-capacity of
an interference-free channel, is defined as

d(α) := max{R1 + R2}
2 nS

, (13)

where the maximization is over all achievable rate pairs
(R1, R2) satisfying Theorem 2, which is the capacity region
by Corollary 6. Since we may provide the oblivious receiver
in the LDA-IC-OR with the additional codebook index so as
to obtain the classical LDA-IC with full codebook knowledge,
we immediately have

d(α) ≤ d(W)(α)

= min
(

1, max
(α

2
, 1 − α

2

)
, max (α, 1 − α)

)
, (14)

where d(W)(α), the so-called W-curve [19], is the maximum
symmetric rate of the classical LDA-IC. In [13] it was shown
that i.i.d. Bernoulli(1/2) input bits in the Han and Kobayashi
region yield d(W)(α).

Although Theorem 2 gives the exact capacity region of
the LDA-IC-OR, it is not immediately clear which input
distribution achieves the maximum symmetric rate. Instead
of analytically deriving the sum-capacity, we proceeded to
numerically evaluate Theorem 2 for |Q| = 1, which is not
necessarily optimal. We observe the surprising result that even
with |Q| = 1 i.e., without time sharing, some of the points on
the normalized sum-capacity of the LDA-IC-OR are equal to
d(W)(α), see Fig. 2 and Table I. Although we lack a formal
proof that we can achieve the whole W-curve with a non
i.i.d. Bernoulli(1/2) input we do, however, conjecture that it

Fig. 2. The normalized sum-capacity, or maximum symmetric rate, for the
classical LDA-IC (dash-dotted black line). Normalized sum-rates achieved
by the input distributions in Table I (red dots) for the LDA-IC-OR. The
normalized sum-rate achieved by i.i.d. Bernoulli(1/2) inputs and |Q| = 1
(solid blue line) in the capacity region in Theorem 2 for the LDA-IC-OR.

is indeed possible with the scheme in Proposition 3. If true,
this implies that partial codebook knowledge at one receiver
does not impact the sum-rate of the symmetric LDA-IC-OR
at these points. This is quite unexpected, especially in the
strong interference regime (α ≥ 1) where the optimal strategy
for the classical LDA-IC is to jointly decode the interfering
message along with the intended message—a strategy that
seems to be precluded by the lack of codebook knowledge
at one receiver. This might suggest a more general principle:
there is no loss of optimality in lack of codebook knowledge
as long as the oblivious receiver can remove the interfering
codeword, regardless of whether or not it can decode the
message carried by this codeword.

Another interesting observation is that i.i.d. Bernoulli(1/2)
input bits may no longer be optimal (though we do not
show their strict sub-optimality). In Table I we report, for
some values of α and nS, nI, the input distributions to be
used in Rout in Theorem 2. We notice that, at least when
evaluating the region in Theorem 2 for |Q| = 1 only, that the
region exhausting inputs are now correlated. For example,
Table I shows that, for α = 4/3 the inputs X1 and X2
are binary vectors of length log(16) = 4 bits; out of the
16 different possible bit sequences, only 4 are actually used
at each transmitter with strictly positive probability to achieve
d(W)(4/3) = 4/6. By using i.i.d. Bernoulli(1/2) input bits
in Theorem 2 for |Q| = 1 we would obtain a normalized
sum-rate of 1/2 = 3/6, the same as achieved by time
division [13].

Also, i.i.d. Bernoulli(1/2) inputs in the LDA model usu-
ally are translated to i.i.d. Gaussian inputs in the Gaussian
noise model. This intuition is reinforced, in the next section,
by showing that i.i.d. Gaussian are also suboptimal for the
Gaussian noise model for |Q| = 1. Also, the fact that
there exist other, non i.i.d Bernoulli(1/2), input distributions
that are capacity achieving for the LDA stimulates search
for non-Gaussian inputs that might be capacity achieving
for a Gaussian noise channel. In fact the rest of the paper
tries to use intuition gained in this section to construct non-
Gaussian inputs that will be capacity or constant gap capacity
approaching.



1264 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 3, MARCH 2015

TABLE I

LDA-IC-OR: EXAMPLES OF SUM-RATE OPTIMAL INPUT DISTRIBUTIONS FOR

THE CAPACITY REGION IN THEOREM 2

E. The Gaussian Noise IC-OR

We now consider the practically relevant real-valued single-
antenna power-constrained Gaussian noise channel, whose
input/output relationship is

Y1 = h11 X1 + h12 X2 + Z1 = h11 X1 + T2,

T2 = h12 X2 + Z1, (15a)

Y2 = h21 X1 + h22 X2 + Z2 = h22 X2 + T1,

T1 = h21 X1 + Z2, (15b)

where hi j are the real-valued channel coefficients for
(i, j) ∈ [1 : 2]2 assumed constant and known to all nodes,
the input Xi ∈ R is subject to per block power constraints
1
n

∑n
i=1 X2

i ≤ 1, i ∈ [1 : 2], and the noise Zi , i ∈ [1 : 2], is
a unit-variance zero-mean Gaussian r.v.

By specializing the result of Theorem 5 to the G-IC-OR we
may show the following:

Corollary 7: For the G-IC-OR the gap is at most 1/2 bit
per channel use.

Proof of Corollary 7: For the G-IC-OR T2 = h12 X2 + Z1,
and thus we set U2 in Theorem 2 to U2 = h12 X2 + Z∗

1 , where
Z1 ∼ Z∗

1 and mutually independent. We thus have

I (X2; T2|U2, Q) = h(T2|U2, Q) − h(Z2)

≤ h(T2 − U2) − h(Z1)

= h(Z1 − Z∗
1) − h(Z1) = 1

2
log(2),

as claimed.
In the classical G-IC with full codebook knowledge,

Gaussian inputs exhaust known outer bounds, which are
achievable to within 1/2 bit per channel use [19]. From the
rate expression in Theorem 2 it is not clear whether Gaussian
inputs are optimal for Rout. The following discussion
shows that in general the answer is in the negative. For
simplicity we focus on the achievable generalized Degrees of
Freedom (gDoF) for the symmetric G-IC-OR.
The symmetric G-IC-OR has |h11|2 = |h22|2 = SNR
and |h12|2 = |h21|2 = INR, with INR = SNRα for some
non-negative α. The sum-gDoF is defined as

d(α) := lim
SNR→+∞

max{R1 + R2}
2 · 1

2 log(1 + SNR)
, (16)

where the maximization is over all possible achievable rate
pairs. By using the classical G-IC as a trivial upper bound,
we have d(α) ≤ d(W)(α) where d(W)(α) is given in (14).

By evaluating Theorem 2 for independent Gaussian inputs
and |Q| = 1 (which we do not claim to be optimal,
but which gives us an achievable rate up to 1/2 bit) we
obtain

(R1 + R2)
(GG) = min

{
Ig (SNR) + Ig

(
SNR

1 + INR

)
,

Ig

(
SNR

INR + 1

)

+ Ig

(
INR + SNR

1 + INR

)}
,

⇐⇒ d(GG)(α) = 1

2
+
[

1

2
− α

]+
,

the superscript “GG” indicates that both transmitters use a
Gaussian input. For future reference, with Time Division (TD)
and Gaussian codebooks we can achieve

(R1 + R2)
(TD) = 1

2
log (1 + 2 SNR)

⇐⇒ d(TD)(α) = 1

2
.

We plot the achievable gDoF vs. α in Fig. 2, together
with the gDoF of the classical G-IC given by d(W)(α) [19].
We note that Gaussian inputs are indeed optimal for
0 ≤ α ≤ 1/2, i.e., d(GG)(α) = d(W)(α), where interference
is treated as noise even for the classical G-IC (which is
also achievable by the G-IC-OR). For α > 1/2 we have
d(GG)(α) = d(TD)(α), that is, Gaussian inputs achieve the
same rates as time division. Interestingly, Gaussian inputs are
sub-optimal in our achievable region in general as we show
next.

Consider α = 4/3. With Gaussian inputs we only achieve
d(GG)(4/3) = d(TD)(4/3) = 1/2. Notice the similarity
with the LDA-IC-OR: the input distribution that is optimal
for the non-oblivious IC performs as time division for the
G-IC-OR. Inspired by the LDA-IC-OR we explore now
the possibility of using non-Gaussian inputs. By following
[1, Sec. VI.A], which demonstrated that binary signaling
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Fig. 3. Achievable normalized sum-rate for the symmetric G-IC-OR
with α = 4/3 vs SNR in dB. Legend: time division in solid blue line;
Gaussian inputs at both transmitters in red stars; X1 is a uniform PAM

with N = �SNR
1
6 � points and X2 is Gaussian in dash-dotted black line.

outperforms Gaussian signaling for a fixed finite SNR, we
consider a uniform PAM constellation with N points. Fig. 3
shows the achievable normalized sum-rate R1+R2

2· 1
2 log(1+SNR)

as

a function of SNR for the case where X1 (the input
of the non-oblivious pair) is a PAM constellation with
N = �SNR1/6� points and X2 (the input of the oblivious pair)
is Gaussian; we refer to the achievable gDoF of this inputs as
d(DG)(α). Notice that the number of points in the discrete
input is a function of SNR. We also report the achievable
normalized sum-rate with time division and Gaussian inputs.
Fig. 3 shows that, for sufficiently large SNR, using a discrete
input outperforms time division; moreover, for the range of
simulated SNR, it seems that the proposed discrete input
achieves a gDoF of d(DG)(α) = α/2 = 4/6 as for the
classical G-IC with full codebook knowledge. In the sections
that follow we analytically show that using discrete input
(or mixed) at the non-oblivious transmitter indeed achieves
the full gDoF and symmetric capacity region to within a
constant gap.

V. DISCRETE INPUTS: MAIN TOOL

In this section we review the lower bound of [5] on
the mutual information achievable by a PAM input on
a point-to-point power-constrained Gaussian noise channel
that will serve as the main tool in evaluating our inner
bound for the G-IC-OR in Proposition 3. The bound is as
follows:

Theorem 8: Let X D ∼ PAM(N) and let ZG ∼ N (0, 1) and
SNR be a non-negative constant. Then

Id (N, SNR) =:
[
Ig
(

min
(

N2 − 1, SNR
))

− 1

2
log

(πe

3

)]+

(17)

≤ I (X D; √
SNR X D + ZG)

≤ Ig
(

min
(

N2 − 1, SNR
))

. (18)

Proof of Theorem 8: The upper bound in (18) follows from
the well known facts that “Gaussian maximizes the differential
entropy for a given second moment constraint” and that “a
uniform input maximizes the entropy of a discrete random
variable” [14]. Let now xmin := min(N2 − 1, SNR) and

xmax := max(N2 − 1, SNR). We have

I (X D; √
SNRX D + ZG)

from [5, Part b]≥ 1

2
log

(
1 + (N2 − 1)

)

−1

2
log

(
1 + N2 − 1

1 + SNR

)
− 1

2
log

(πe

6

)

= Ig (xmin) + Ig (xmax) − Ig (xmin + xmax)

−1

2
log

(πe

6

)

= Ig (xmin) − Ig

(
xmin

1 + xmax

)
− 1

2
log

(πe

6

)

≥ Ig (xmin) − 1

2
log

(πe

3

)
,

since xmin
1+xmax

∈ [0, 1]. This, combined with non-negativity of
mutual information, gives the lower bound in (17).

Remark 5: The upper and lower bounds in Theorem 8 are
to within 1

2 log
(

πe
3

)
bits of one another. We shall refer to

the quantity 1
2 log

(
πe
3

)
as the “shaping loss” due to the

use of a one-dimensional lattice constellation on the power-
constrained point-to-point Gaussian channel. Note that what
is known as “shaping gain” of a one-dimensional lattice
constellation in the literature is 1

2 log
(

πe
6

)
[20]; what we call

here “shaping loss” has an extra 1
2 log(2) due to the term

Ig
(

xmin
1+xmax

)
; we refer to the sum of these two contribu-

tions as “shaping loss” because it is purely due to the
one-dimensional lattice (“shaping” part) and it causes a
reduction in rate compared to the upper bound (“loss” part).

If we could choose N2 − 1 = SNR ⇐⇒ N = √
1 + SNR

then we could claim that a PAM input is optimal (i.e., achieves
the capacity of the point-to-point power-constrained Gaussian
noise channel) to within gap ≤ 1

2 log
(

πe
3

)
bits per channel

use, where the gap would be completely due to the shaping
loss.

Unfortunately, N is constrained to be an integer. If for
N we choose the closest integer to

√
1 + SNR, that is,

N = �√1 + SNR� =: Nd(SNR), then we incur a further
1 bit “integer penalty”, by which we mean that the difference
between the point-to-point Gaussian channel capacity and the
lower bound on the achievable rate with a PAM in (17) is
upper bounded as

gap ≤ Ig (SNR) − Id (Nd(SNR), SNR)

≤ 1

2
log

(πe

3

)
+ 1

2
log+

⎛
⎜⎝ 1 + SNR⌊√

1 + SNR
⌋2

⎞
⎟⎠

≤ 1

2
log

(πe

3

)
︸ ︷︷ ︸

shaping loss

+ 1

2
log(4)︸ ︷︷ ︸

integer penalty

= 1

2
log

(
4πe

3

)
, (19)

where the largest integer penalty is attained for 1 + SNR =
22 − ε, 0 < ε � 1, for which �√1 + SNR�2 = (2 − 1)2 = 1.

VI. ACHIEVABLE REGIONS FOR THE G-IC-OR

We now analyze the G-IC-OR by using Theorem 8
(i.e., bounds on the mutual information achievable by
a PAM input on a point-to-point power-constrained
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Gaussian noise channel) and the insight on the nature
of the gap due to a PAM input from Remark 5. We first
present a scheme (an achievable rate region evaluated using
a mixed input) that will prove to be useful in strong and
very strong interference, and then present a more involved
scheme that will be useful in the somewhat trickier weak and
moderate interference regimes. Although the second scheme
includes the first as a special case, we start with a simpler
scheme to highlight the important steps of the derivation
without getting caught up in excessive technical details.

A. Achievable Scheme I

We first derive an achievable rate region from Proposition 3
with inputs

Scheme I:X1D ∼ PAM (N) , N ∈ N, independent of

(20a)

X2G ∼ N (0, 1), (20b)
X1 = X1D, X2 = X2G , (20c)
U2 = X2, Q = ∅. (20d)

which we will show in the next sections to be gDoF optimal
and to within a constant gap of the symmetric capacity of
the classical G-IC in the strong and very strong interference
regimes. Such results may not be shown by using i.i.d.
Gaussian inputs in the same achievable scheme in Proposi-
tion 3. The achievable region is derived for a general G-IC-OR
and later on specialized to the symmetric case.

Theorem 9: For the G-IC-OR the following rate region is
achievable by the input in (20a)

R1 ≤ Id
(

N, |h11|2
)
, (21a)

R2 ≤ Id

(
N,

|h21|2
1 + |h22|2

)
+ Ig

(
|h22|2

)

−Ig
(

min
(

N2 − 1, |h21|2
))

, (21b)

R1 + R2 ≤ Id

(
N,

|h11|2
1 + |h12|2

)
+ Ig

(
|h12|2

)
. (21c)

Proof of Theorem 9: We proceed to evaluate the rate region
in Proposition 3 with the inputs in (20a), that is, the achievable
region in (11a) with |Q| = 1.

The rate of the user 1 is bounded by R1 ≤ I (X1; Y1|X2) =
I (X1D; h11X1D + Z1), where I (X1D; h11 X1D + Z1) can be
further lower bounded by using (17) from Theorem 8 with
SNR = |h11|2; by doing so we obtain the bound in (21a).

The rate of the user 2 is bounded by

R2 ≤ I (X2; Y2)

= h(h21 X1D + h22 X2G + Z2︸ ︷︷ ︸
∼N (0,1+|h22|2)

) − h(h21 X1D + Z2)

=
(

h

(
h21√

1 + |h22|2
X1D + Z2

)
− h(Z2)

)

︸ ︷︷ ︸
≥Id

(
N,

|h21|2
1+|h22|2

)
from (17)

+1

2
log(1 + |h22|2) −

(
h (h21 X1D + Z2) − h(Z2)

)
︸ ︷︷ ︸
≤Ig(min(N2−1,|h21|2)) from (18)

,

from which we conclude that the achievable rate for user 2 is
lower bounded as in (21b).

The sum-rate is bounded by R1 + R2 ≤ I (X1, X2; Y1) =
I (X1; Y1) + I (X2; Y1|X1), where I (X1; Y1) can be lower
bounded by means of Theorem 8 with SNR = |h11|2

1+|h12|2
and where I (X2; Y1|X1) = I (X2G ; h12 X2G + Z1) =
Ig(|h12|2); by combining the two terms we obtain the bound
in (21c).

B. Achievable Scheme II

The input in (20a) might not be optimal in general and
may be generalized as follows. Consider the rate region in
Proposition 3 with inputs

Scheme II:

X1D, X1G , X2Gc, X2Gp independent and distributed as

X1D ∼ PAM (N) , N ∈ N,

all the others are N (0, 1), (22a)

X1 = √
1 − δ1 X1D + √

δ1 X1G, δ1 ∈ [0, 1], (22b)

X2 = √
1 − δ2 X2Gc + √

δ2 X2Gp, δ2 ∈ [0, 1]. (22c)

U2 = X2Gc, Q = ∅. (22d)

In Scheme II, X2Gc encodes a “common” message, and
X2Gp and X1G encode the “private” messages as in the
classical Han-Kobayashi scheme [4]. We shall also interpret
X1D as encoding a “common” message even if X1D cannot
be decoded at receiver 2 (the oblivious receiver) as receiver 2
lacks knowledge of the codebook(s) used by transmitter 1. The
main message of the paper is in fact that, even with lack of
codebook knowledge, if there would-be-common message is
from a discrete alphabet then its effect on the rate region—
up to a constant gap—is as if the message could indeed be
jointly decoded. We believe this is because lack of codebook
knowledge may be translated as lack of knowledge of the
mapping of the codewords to the messages, but does not
preclude a receiver’s ability to perform symbol-by-symbol esti-
mation of the symbols in the interfering codeword (rather than
decoding the messages carried by the codeword). Correctly
estimating and subtracting off the interfering symbols is as
effective as decoding the actual interfering codeword, as the
message carried by the codeword is not desired anyhow.
A similar intuition was pointed out in [1] where the authors
write “We indeed see that BPSK signaling outperforms
Gaussian signaling. This is because demodulation is some
form of primitive decoding, which is not possible for the
Gaussian signaling.”

In the next sections we will show that Proposition 3 with the
inputs in (22a) is gDoF optimal and is to within a constant
gap of a capacity outer bound for the classical G-IC in the
weak and moderate interference regimes. Also note that with
δ1 = δ2 = 0 Scheme II in (22a) reduces to Scheme I
in (20a).

The achievable region is derived for a general G-IC-OR and
later on specialized to the symmetric case. The rate region
achievable by Scheme II is:
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Theorem 10: For the G-IC-OR the following rate region is
achievable with inputs as in (22a)

R1 ≤ Id

(
N,

|h11|2(1 − δ1)

1+|h11|2δ1+|h12|2δ2

)
+Ig

( |h11|2δ1

1+|h12|2δ2

)
,

(23a)

R2 ≤ Id

(
N,

|h21|2(1 − δ1)

1+|h21|2δ1+|h22|2
)

+Ig

( |h22|2
1+|h21|2δ1

)

−Ig

(
min

(
N2 − 1,

|h21|2(1 − δ1)

1 + |h21|2δ1

))
, (23b)

R1 + R2 ≤ Id

(
N,

|h11|2(1 − δ1)

1 + |h11|2δ1 + |h12|2
)

+Ig
(
|h11|2δ1 + |h12|2

)
− Ig

(
|h12|2δ2

)

+Id

(
N,

|h21|2(1 − δ1)

1 + |h21|2δ1 + |h22|2δ2

)

+Ig

( |h22|2δ2

1 + |h21|2δ1

)

−Ig

(
min

(
N2 − 1,

|h21|2(1 − δ1)

1 + |h21|2δ1

))
. (23c)

Proof of Theorem 10: The proof can be found in
Appendix A and follows similarly to the proof of Theorem 9.

VII. HIGH SNR PERFORMANCE

We now analyze the performance of the schemes in
Theorems 9 and 10 for the symmetric G-IC-OR at high-SNR
by using the gDoF region as performance metric. The gDoF
region is formally defined as follows. For an achievable pair
(R1, R2), let

D(α) :=
{
(d1, d2) ∈ R

2+ : di := lim
INR = SNRα,
SNR → ∞

Ri
1
2 log(1 + SNR)

,

i ∈ [1 : 2], (R1, R2) is achievable
}
. (24)

Let DG-IC(α) and DG-IC-OR(α) be the gDoF region of the
classical G-IC and of the G-IC-OR, respectively.

We first present two different achievable gDoF regions
based on Theorems 9 and 10, which we will compare to
DG-IC(α) given by [19]

DG-IC(α) : d1 ≤ 1, (25a)

d2 ≤ 1, (25b)

d1 + d2 ≤ max(α, 2 − α), (25c)

d1 + d2 ≤ max(2α, 2 − 2α), (25d)

2d1 + d2 ≤ 2, only for α ∈ [1/2, 1], (25e)

d1 + 2d2 ≤ 2, only for α ∈ [1/2, 1]. (25f)

Corollary 11 (gDoF Region From Achievable Scheme I):
Let N = Nd(SNRβ) and

DI(α, β) : d1 ≤ min(β, 1), (26a)

d2 ≤ min(β, [α − 1]+) + 1 − min(β, α), (26b)

d1 + d2 ≤ min(β, [1 − α]+) + α. (26c)

for any β ≥ 0. By Theorem 9, the gDoF region DI(α, β) is
achievable.

Proof of Corollary 11: We prove the bound in (26b) only
as the other bounds follow similarly. With INR = SNRα and
N = Nd(SNRβ) we have

lim
SNR→∞

log(N2)

log(1 + SNR)
= β, lim

SNR→∞
log(1 + INR)

log(1 + SNR)
= α.

Therefore d2 can be bounded as

d2 = lim
SNR→∞

left hand side of eq.(21b)
1
2 log(1 + SNR)

= min(β, [α − 1]+) + 1 − min(β, α),

thus proving (26b).
Next, by using Theorem 10 with the power split as in [19]

we show yet another achievable gDoF region.
Corollary 12 (gDoF Region From Achievable Scheme II):

Let N = Nd(SNRβ) and

DII(α, β) : d1 ≤ min(β, 1+ α − max(1, α))+ [1 − α]+,

(27a)

d2 ≤ min(β, [α − 1]+) +1− min(β, α), (27b)

d1 + d2 ≤ min(β, [1 + α − max(1, 2α)]+)

+ max(α, 1 − α)

+ min(β, [2α − max(1, α)]+)

+ [1 − α]+ − min(β, α). (27c)

for any β ≥ 0. By Theorem 10, the gDoF region DII(α, β) is
achievable.

Proof of Corollary 12: Let INR = SNRα, N = Nd(SNRβ),
and δ1 = δ2 = 1

1+INR in Theorem 10 (see the region in (40c)
in Appendix A) and take limits similarly to the proof of
Corollary 11.

We are now ready to prove the main result of this section:
Theorem 13: For the G-IC-OR there is no loss in gDoF

compared to the classical G-IC, i.e.,

DG-IC(α) = DG-IC-OR(α).

Proof of Theorem 13: We consider several regimes:

A. Very Strong Interference Regime α ≥ 2

In this regime the gDoF region outer bound DG-IC(α)
is characterized by (25a) and (25b). For achievability we
consider Corollary 11 with β = 1, that is,

DI(α, 1) : d1 ≤ min(1, 1) = 1,

d2 ≤ min(1, [α − 1]+) + 1 − min(1, α)

= 1,

d1 + d2 ≤ min(1, [1 − α]+) + α

= α (redundant because α ≥ 2).

Since the sum-gDoF is redundant, we get that

DI(α, β = 1) = {di ∈ [0, 1], i ∈ [1 : 2]}
= DG-IC-OR(α) = DG-IC(α).

Fig. 4(a) illustrates the region DI(α, β = 1).
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Fig. 4. How to achieve the gDoF region for the G-IC-OR in different parameter regimes. (a) Very strong interference. (b) Strong interference. (c) Moderately
weak interference 1. (d) Moderately weak interference 2.

B. Strong Interference Regime 1 ≤ α < 2
In this regime the gDoF region outer bound DG-IC(α) is

characterized by (25a)-(25c) and has two dominant corner
points: (d1, d2) = (1, α − 1) and (d1, d2) = (α − 1, 1).
For achievability we consider the following achievable gDoF
regions

DI(α, 1) : d1 ≤ 1,

d2 ≤ α − 1,

d1 + d2 ≤ α (redundant).

and

DI(α, α − 1) : d1 ≤ α − 1,

d2 ≤ 1,

d1 + d2 ≤ α (redundant),

Fig. 4(b) illustrates that

co
(
DI(α, 1) ∪ DI(α, α − 1)

)
= DG-IC(α)

= DG-IC-OR(α).

C. Moderately Weak Interference Regime 1
2 < α < 1

In this regime the gDoF region outer bound DG-IC(α) is
characterized by all the constraints in (25a) and has four corner
points: (d1, d2) = (1, 0), (d1, d2) = (0, 1), and
(d1, d2) = (min(4α − 2, α), 2 − 2α) and (d1, d2) = (2 − 2α,
min(4α − 2, α)). The gDoF pair (d1, d2) = (1, 0) is trivially
achievable by silencing user 2, and similarly (d1, d2) = (0, 1)
by silencing user 1. For achievability of the remaining two
corner points, we consider the following achievable gDoF
regions

DII(α, 2α − 1) : d1 ≤ min(2α − 1, 1 + α − 1) + 1 − α = α,
d2 ≤ min(2α − 1, 0) + 1

− min(2α − 1, α) = 2 − 2α,
d1 + d2 ≤ min(2α − 1,

[1 + α − max(1, 2α)]+)
+ max(α, 1 − α)
+ min(2α − 1, [2α − 1]+)

+1 − α − min(2α − 1, α)

= min(2α, 2 − α),
(redundant for α ∈ [2/3, 1]).
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and

DII(α, 1 − α) : d1 ≤ min(1 − α, 1 + α − 1)

+1 − α = 2 − 2α,

d2 ≤ min(1 − α, 0) + 1

− min(1 − α, α) = α,

d1 + d2 ≤ min(1 − α,

[1 + α − max(1, 2α)]+)

+ max(α, 1 − α)

+ min(1 − α, [2α − 1]+)

+1 − α − min(1 − α, α)

= min(2α, 2 − α),

(redundant for α ∈ [2/3, 1]).
Fig. 4(c) (for α ∈ [2/3, 1]) and Fig. 4(d) (for α ∈ [1/2, 2/3])
illustrate that

co
({

(d1, d2) = (1, 0)
} ∪ {

(d1, d2) = (0, 1)
}

∪DII(α, 2α − 1) ∪ DII(α, 1 − α)
)

= DG-IC(α)

= DG-IC-OR(α).

D. Noisy Interference 0 ≤ α ≤ 1
2

In this regime one may achieve the whole optimal
G-IC gDoF region by using Gaussian inputs, treating interfer-
ence as noise, and power control. Since this strategy is feasible
for the G-IC-OR, the G-IC gDoF region is achievable also for
the G-IC-OR.

This concludes our proof.
The result of Theorem 13 is quite surprising, namely, that

for the G-IC-OR we can achieve the gDoF region of the
classical G-IC in all regimes. This is especially surprising in
the strong and very strong interference regimes where joint
decoding of intended and interfering messages is optimal
for the classical G-IC—recall that joint decoding appears to
be precluded by the absence of codebook knowledge in
the G-IC-OR. This seems to suggest that while
decoding of the undesired messages is not possible,
one may still estimate (i.e., symbol-by-symbol demodulate)
the codeword symbols corresponding to the undesired
messages.

VIII. FINITE SNR PERFORMANCE

In the previous section we showed that the gDoF region of
the classical G-IC can be achieved even when one receiver
lacks knowledge of the interfering codebook. One may then
ask whether it is possible to achieve the capacity, pos-
sibly up to a constant gap, of the classical G-IC at all
finite SNRs. We next show that this is indeed possible. For
future use, the capacity region of the classical G-IC is outer
bounded by [19]

R(G-IC)
out : R1 ≤ Ig (SNR), (28a)

R2 ≤ Ig (SNR), (28b)

R1 + R2 ≤
[
Ig (SNR) − Ig (INR)

]+

+Ig (SNR + INR), (28c)

R1 + R2 ≤ 2Ig

(
INR + SNR

1 + INR

)
, (28d)

2R1 + R2 ≤
[
Ig (SNR) − Ig (INR)

]+

+Ig (SNR + INR)

+Ig

(
INR + SNR

1 + INR

)
, (28e)

R1 + 2R2 ≤
[
Ig (SNR) − Ig (INR)

]+

+Ig (SNR + INR)

+Ig

(
INR + SNR

1 + INR

)
, (28f)

which is tight for SNR ≤ INR and optimal to with 1/2 bit
(per channel use per user) otherwise.

The main result of this section is:
Theorem 14: For the G-IC-OR it is possible to achieve the

outer bound region in (28f) to within 1
2 log (12πe) ≈ 3.34 bits

per channel use per user.
Proof of Theorem 14: We consider different regimes

separately.

A. Very Strong Interference SNR (1 + SNR) ≤ INR

In the regime the capacity region of the classical
G-IC is given by (28a) and (28b). For achievability we
consider the achievable region in Theorem 9 with

N = Nd(SNR) (equivalent of β = 1)

�⇒ N2 − 1 ≤ SNR ≤ INR
1 + SNR

≤ INR. (29)

Recall that the achievable region in Theorem 9 is the region
in (11a) with the inputs as in (20a); the sum-rate in Theorem 9
is redundant if I (X1; Y1|X2) + I (X2; Y2) ≤ I (X1, X2; Y1),
that is, if I (X2; Y2) ≤ I (X2; Y1), for all input distributions
in (20a). With a Gaussian X2 as in (20a):

I (X2; Y2) ≤ I (X2; Y2|X1) = I (X2G ; √
SNR X2G + Z2)

= Ig(SNR),

and

I (X2; Y1) = I (X2G ; √
INR X2G + √

SNR X1D + Z2)

≥ Ig

(
INR

1 + SNR

)
,

because a Gaussian noise is the worst noise for a
Gaussian input. Since in very strong interference we have
Ig(SNR) ≤ Ig

(
INR

1+SNR

)
, the condition I (X2; Y2) ≤ I (X2; Y1)

is verified for all inputs in (20a) and hence we can
drop the sum-rate constraint in (21c) from Theorem 9.
Therefore, in this regime the following rates are
achievable
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R(G-IC-OR very strong)
in : R1 ≤ Ig(SNR) − 	1, (30a)

R2 ≤ Ig(SNR) − 	2, (30b)

where for N = Nd(SNR)

	1 := Ig(SNR) − Id (N, SNR)

≤ 1

2
log

(
4πe

3

)
for the reasoning leading to eq.(19),

(30c)

	2 := Ig
(

min
(

N2 − 1, INR
))

− Id

(
N,

INR
1 + SNR

)

= log(N) −
[

log(N) − 1

2
log

(πe

3

)]+

≤ 1

2
log

(πe

3

)
, (30d)

where the equality in (30d) is a consequence of the relation-
ships in (29).

It is immediate to see that (30c) is the gap for R1 and
that (30d) is the gap for R2. Therefore in this regime the gap
is at most 1

2 log
( 4πe

3

)
per channel use per user, and it is due

to shaping loss and integer penalty.

B. Strong Interference SNR ≤ INR < SNR (1 + SNR)

In this regime the capacity region of the classical
G-IC is given by (28a)-(28c), and has two dominant corner
points

R(G-IC strong P1)
out :

(R1, R2) =
(

Ig (SNR) , Ig

(
INR

1 + SNR

))
, (31a)

and

R(G-IC strong P2)
out :

(R1, R2) =
(

Ig

(
INR

1 + SNR

)
, Ig (SNR)

)
. (31b)

The other two corner points are (R1, R2) = (Ig(SNR), 0)
and (R1, R2) = (0, Ig(SNR)) that can be exactly achieved
by silencing one of the users.

For achievability we mimic the proof of the gDoF region
in the same regime (see Fig. 4(b)), that is, we show the
achievability to within a constant gap of the corner points
in (31a) and (31b) by choosing two different values of N
in Theorem 9. For the corner point in (31a) we consider the
achievable region in Theorem 9 with

N = Nd(SNR) (equivalent of β = 1)

�⇒ N2 − 1 ≤ SNR ≤ INR ≤ SNR(1 + SNR), (32a)

and for the corner point (31b) we consider the achievable
region in Theorem 9 with

N = Nd

(
INR

1 + SNR

)
(equivalent of β = α − 1)

�⇒ N2 − 1 ≤ INR
1 + SNR

≤ SNR ≤ INR. (32b)

For the choice of N in (32a) the achievable region in
Theorem 9 can be written as

R1 ≤ Id (N, SNR)

=
[

log (N) − 1

2
log

(πe

3

)]+
,

R2 ≤ Id

(
N,

INR
1 + SNR

)
+ Ig (SNR)

−Ig
(

min
(

N2 − 1, INR
))

=
[
Ig

(
INR

1 + SNR

)
− 1

2
log

(πe

3

)]+

+Ig(SNR) − log(N),

R1 + R2 ≤ Id

(
N,

SNR
1 + INR

)
+ Ig (INR)

=
[
Ig

(
SNR

1 + INR

)
− 1

2
log

(πe

3

)]+
+ Ig(INR),

which can further be lower bounded as

R(G-IC strong P1)
in : R1 ≤ log (N) − 1

2
log

(πe

3

)

= Ig (SNR) − 	1, (33a)

R2 ≤ Ig (SNR + INR) − log(N)

−1

2
log

(πe

3

)

= Ig

(
INR

1 + SNR

)
− 	2, (33b)

R1 + R2 ≤ Ig (SNR + INR) − 1

2
log

(πe

3

)

= (
Ig (SNR) − 	1

)

+
(

Ig

(
INR

1 + SNR

)
− 	2

)

+1

2
log

(πe

3

)
, (33c)

where the sum-rate bound is clearly redundant and where

	1 := Ig (SNR) − log(N) + 1

2
log

(πe

3

)

≤ 1

2
log

(
4πe

3

)
, (34a)

	2 := log(N) − Ig (SNR) + 1

2
log

(πe

3

)

≤ 1

2
log

(πe

3

)
. (34b)

Therefore, with N as in (32a) in Theorem 9, the gap
to the corner point in (31a) is at most 1

2 log
( 4πe

3

)
per

channel use per user, as for the very strong interference
regime.

By following similar steps, for the choice of N in (32b)
in Theorem 9, the gap to the corner point in (31b) is still
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given by (34a), that is, the gap is at most 1
2 log

( 4πe
3

)
per

channel use per user, as for the very strong interference regime.

C. Moderately Weak Interference
INR ≤ SNR ≤ INR (1 + INR)

In this regime the capacity of the G-IC is outer bounded
by (28f).

As we did for the gDoF region (see Figs. 4(c) and 4(d)),
we show here that we can achieve, up to a constant gap,
all dominant corner points of (28f). By silencing one of the
users, we can achieve (R1, R2) = (Ig(SNR), 0) and
(R1, R2) = (0, Ig(SNR)); these rate points are
to within 1 bit of the corner points of (28f) given by
(R1, R2) = (

A, Ig (SNR)
)

and (R1, R2) = (
Ig (SNR) , A

)
where

A := Ig (SNR + INR) + Ig

(
INR + SNR

1 + INR

)

−Ig (SNR) − Ig (INR)

= Ig

(
INR

1 + SNR

)
+ Ig

(
SNR

(1 + INR)2

)

≤ Ig

(
SNR

1 + SNR

)
+ Ig

(
INR

1 + INR

)

≤ 2 · 1

2
log(2) = 1.

We therefore have to show the achievability of the remaining
two corner points obtained by the intersection of the sum-
rate outer bound (given by min(eq.(28c), eq. (28d))) with
either (28e) or (28f). For these corner points, the gDoF-optimal
choices of β were 2α − 1 and 1 − α, which we mimic here
by choosing the following values of N in the region in (40c)
(a simplified achievable region from Theorem 10)

N = Nd

(
INR2

1 + SNR + 2INR

)
(equivalent of β = 2α − 1)

�⇒ N2 − 1 ≤ INR2

1 + SNR + 2INR

≤ min

(
INR2

1 + 2INR
,

INR · SNR
1 + SNR + 2INR

)
, (35)

because INR ≤ SNR, and

N = Nd

(
SNR · INR

(1 + INR)2 + SNR

)
(equivalent of β = 1 − α)

�⇒ N2 − 1 ≤ SNR · INR
(1 + INR)2 + SNR

≤ min

(
INR2

1 + 2INR
,

INR · SNR
1 + SNR + 2INR

)
, (36)

because SNR ≤ INR(1 + INR). In the regime INR ≤ SNR ≤
INR(1 + INR) we also have

INR2

(1 + INR)(1 + SNR) + INR
≤ INR2

(1 + INR)2 + INR

≤ 1 ≤ N2 − 1, ∀N ≥ 2. (37)

With (35)-(37), and by recalling that Ig(x) − 1
2 log(4) ≤

log(Nd(x)) ≤ Ig(x), x ≥ 0, the region in (40c) can be further
lower bounded as follows3

R(G-IC-OR weak)
in :

R1 ≤ Ig(x) − 1

2
log(4)

−1

2
log

(πe

3

)
+ Ig

(
SNR

1 + 2INR

)
, (38a)

R2 ≤ Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)

−1

2
log

(πe

3

)
+ Ig

(
SNR

2

)
−Ig(x), (38b)

R1 + R2 ≤ Ig

(
min

(
INR2

1 + SNR + 2INR
,

SNR · INR
(1 + INR)2 + SNR

))
− 1

2
log(4)

+Ig

(
INR + SNR

1 + INR

)
− Ig

(
INR

1 + INR

)

+Ig

(
SNR

1 + 2INR

)
− 2 · 1

2
log

(πe

3

)
, (38c)

where

x := INR2

1 + SNR + 2INR
if N as in (35), or (38d)

x := SNR · INR
(1 + INR)2 + SNR

if N as in (36). (38e)

In Appendix A we show that region in (38) achieves the
classical G-IC outer bound to within 1

2 log (12πe) ≈ 3.34 bits
(per channel user per user).

D. Noisy Interference INR (1 + INR) ≤ SNR
In this regime Gaussian inputs, treating interference as

noise, and power control is optimal to within 1/2 bit
(per channel use per user) for the classical G-IC; since this
scheme does not require codebook knowledge / joint decoding,
the gap result applies to the G-IC-OR as well.

This concludes the proof.

IX. CONCLUSION

In this paper we derived capacity results for the interference
channel where one of the receivers lacks knowledge of the
interfering codebook, in contrast to a classical model where
both receivers possess full codebook knowledge. For the class
of injective semi-deterministic interference channels with one
oblivious receiver, we derived a capacity result to within a
constant gap; the gap is zero for fully deterministic channels,
thereby providing an exact capacity characterization. We also

3In order to get the sum-rate, let n = N2 − 1 ∈ N and consider either
N = Nd(a) : na := Nd(a)2 − 1 ≤ a ∈ R

+ or N = Nd(b) : nb := Nd(a)2 −
1 ≤ b ∈ R

+ in the expression y(n) := Ig(min(n, a)) + Ig(min(n, b)) −
Ig(n) that appears in the sum-rate. It follows easily that for N = Nd(a) :
y = Ig(min(na , b)) ≥ Ig(min(na , nb)) ≥ Ig(min(a, b)) − 1

2 log(4), and for
N = Nd(b) : y = Ig(min(a, nb)) ≥ Ig(min(na , nb)) ≥ Ig(min(a, b)) −
1
2 log(4), where the term 1

2 log(4) is due to the “integer penalty”.
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derived the exact capacity region for a general memoryless
interference channel with one oblivious receiver in the regime
where the non-oblivious receiver experiences very strong inter-
ference.

We next proceeded to the Gaussian noise channel, where,
unlike past work on oblivious receivers, we were able to
demonstrate performance guarantees. For the symmetric case
we derived the gDoF region and the capacity region to within a
constant gap of 1

2 log (12πe) ≈ 3.34 bits (per channel use per
user). Surprisingly, this lack of codebook knowledge at one
receiver does not impact the gDoF at all, and only the Gaussian
capacity region to within a constant gap, compared to having
full codebook knowledge. We believe this is because even
though the mapping from codewords to messages may not
be known, this does not prevent the receiver from estimating
(for example by symbol-by-symbol demodulation)
and removing the effect of the interfering codeword
itself.

An interesting future direction is to consider a generalization
with lack of interfering codebook knowledge at both receivers,
where one might surmise that both inputs would have discrete
components. However, this generalization is highly non-trivial
and significantly more mathematically challenging, and was
left as an open problem in [2]. The major issue that arises when
both users employ discrete inputs is the need to compute the
cardinality and minimum distance of the sum of two discrete
sets. These quantities are not only difficult to compute in gen-
eral, but are also very sensitive to whether channel gains are
rational or irrational (this is an open problem in additive com-
binatorics). For progress on this problem see our conference
work [21], [22].

We studied the performance of mixed inputs on the
Gaussian IC. Its application to oblivious and asynchronous
ICs somewhat surprisingly implies that much less “global
coordination” between nodes is needed than one might initially
expect: synchronism and codebook knowledge might not be
critical if one is happy with “approximate” capacity results.
Why discrete inputs are able to resolve these issues might
be because even simple expressions such as I (X1; Y1) +
I (X2; Y2), which do not appear to employ joint decoding, may
still capture some form of “interference estimation”. Extension
to other ICs and to more than two users are subject of current
investigation.

APPENDIX A
PROOF OF THEOREM 10

We proceed to evaluate the rate region in Proposition 3
with the inputs in (22a). With the chosen inputs, the outputs
are

Y1 = h11
√

1 − δ1 X1D + h11
√

δ1 X1G

+h12
√

1 − δ2 X2Gc + h12
√

δ2 X2Gp + Z1,

Y2 = h21
√

1 − δ1 X1D + h21
√

δ1 X1G

+h22
√

1 − δ2 X2Gc + h22
√

δ2 X2Gp + Z2.

The achievable region in (8) with Q = ∅, U2 = X2Gc

reduces to

R1 ≤ I (X1; Y1|X2Gc)

= h(Y1|X2Gc) − h(Y1|X1, X2Gc)

= h(h11
√

1 − δ1 X1D + h11
√

δ1 X1G

+h12
√

δ2 X2Gp + Z1)

−h(h12
√

δ2 X2Gp + Z1)

= h

⎛
⎝
√

|h11|2(1 − δ1)

1 + |h11|2δ1 + |h12|2δ2
X1D + Z1

⎞
⎠

−h(Z1) + Ig
(
|h11|2δ1 + |h12|2δ2

)
− Ig

(
|h12|2δ2

)
,

therefore, by Theorem 8, we can further lower bound the rate
of user 1 as

R1 ≤ Id

(
N,

|h11|2(1 − δ1)

1 + |h11|2δ1 + |h12|2δ2

)

+Ig

( |h11|2δ1

1 + |h12|2δ2

)
,

thus proving (23a).
For the rate of user 2 we have

R2 ≤ I (X2; Y2)

= h
(

h21
√

1 − δ1 X1D + h21
√

δ1 X1G

+h22
√

1 − δ2 X2Gc + h22
√

δ2 X2Gp + Z2

)

−h
(

h21
√

1 − δ1 X1D + h21
√

δ1 X1G + Z2

)

= h

⎛
⎝
√

|h21|2(1 − δ1)

1 + |h21|2δ1 + |h22|2 X1D + Z2

⎞
⎠ − h(Z2)

+Ig
(
|h21|2δ1 + |h22|2

)

−h

⎛
⎝
√

|h21|2(1 − δ1)

1 + |h21|2δ1
X1D + Z2

⎞
⎠ + h(Z2)

−Ig
(
|h21|2δ1

)

therefore, by Theorem 8, we can further lower bound the rate
of user 2 as

R2 ≤ Id

(
N,

|h21|2(1 − δ1)

1 + |h21|2δ1 + |h22|2
)

+ Ig

( |h22|2
1 + |h21|2δ1

)

−Ig

(
min

(
N2 − 1,

|h21|2(1 − δ1)

1 + |h21|2δ1

))

thus proving (23b).
Finally for the sum-rate we have

R1 + R2 ≤ I (X1, X2Gc; Y1) + I (X2; Y2|X2Gc)

= h(h11
√

1 − δ1 X1D + h11
√

δ1 X1G

+h12
√

1 − δ2 X2Gc + h12
√

δ2 X2Gp + Z1)

−h(h12
√

δ2 X2Gp + Z1)

+h(h21
√

1 − δ1 X1D + h21
√

δ1 X1G

+h22
√

δ2 X2Gp + Z2)

−h(h21
√

1 − δ1 X1D + h21
√

δ1 X1G + Z2)
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therefore, by Theorem 8, we can further lower bound the
sum-rate as

R1 + R2 ≤ Id

(
N,

|h11|2(1 − δ1)

1 + |h11|2δ1 + |h12|2
)

+Ig
(
|h11|2δ1 + |h12|2

)

−Ig
(
|h12|2δ2

)

+Id

(
N,

|h21|2(1 − δ1)

1 + |h21|2δ1 + |h22|2δ2

)

+Ig
(
|h21|2δ1 + |h22|2δ2

)

−Ig

(
min

(
N2 − 1,

|h21|2(1 − δ1)

1 + |h21|2δ1

))

−Ig
(
|h21|2δ1

)

thus proving (23c).
Remark 6: For future use, we specialized the

derived achievable rate region for the power splits
δ1 = 1

1+|h21|2 and δ2 = 1
1+|h12|2 inspired by [19]; we

thus have that the following region is achievable for
any N ∈ N

R1 ≤ Id

⎛
⎝N,

|h11|2a

1 + |h11|2
1+|h21|2 + b

⎞
⎠ + Ig

⎛
⎝

|h11|2
1+|h21|2
1 + b

⎞
⎠,

(39a)

R2 ≤ Id

(
N,

|h21|2a

1 + a + |h22|2
)

+ Ig

( |h22|2
1 + a

)

−Ig
(

min
(

N2 − 1, |h21|2a
))

, (39b)

R1 + R2 ≤ Id

⎛
⎝N,

|h11|2a

1 + |h11|2
1+|h21|2 + |h12|2

⎞
⎠

+Ig

( |h11|2
1 + |h21|2 + |h12|2

)
− Ig (b)

+Id

⎛
⎝N,

|h21|2a

1 + a + |h22|2
1+|h12|2

⎞
⎠ + Ig

⎛
⎝

|h22|2
1+|h12|2
1 + a

⎞
⎠

−Ig
(

min
(

N2 − 1, |h21|2a
))

. (39c)

where a := |h21|2
1+|h21|2 ∈ [0, 1] and b := |h12|2

1+|h12|2 ∈ [0, 1].
In the symmetric case the region in (39c) is further lower

bounded by

R1 ≤ Ig

(
min

(
N2 − 1,

SNR · INR
1 + SNR + 2INR

))

−1

2
log

(πe

3

)
+ Ig

(
SNR

1 + 2INR

)
, (40a)

R2 ≤ Ig

(
min

(
N2 − 1,

INR2

(1 + INR)(1 + SNR) + INR

))

−1

2
log

(πe

3

)
+ Ig

(
SNR

1

2

)

−Ig

(
min

(
N2 − 1,

INR2

1 + 2INR

))
, (40b)

R1 + R2 ≤ Ig

(
min

(
N2 − 1,

SNR · INR
(1 + INR)2 + SNR

))

−1

2
log

(πe

3

)
+ Ig

(
INR + SNR

1 + INR

)

−Ig

(
INR

1 + INR

)

+Ig

(
min

(
N2 − 1,

INR2

1 + SNR + 2INR

))

−1

2
log

(πe

3

)
+ Ig

(
SNR

1 + 2INR

)

−Ig

(
min

(
N2 − 1,

INR2

1 + 2INR

))
. (40c)

APPENDIX B
GAP DERIVATION FOR THE MODERATELY

WEAK INTERFERENCE REGIME

In order to show achievability to within a constant gap of the
outer bound in (28f) by means of the achievable region in (38)
(a further lower bound to the region in (40c)), we distinguish
two cases.

Case 1 [Regime Corresponding to α ∈ [2/3,1] in
Fig. 4(c)]: Assume that the sum-rate in eq.(38c) is
redundant; under this condition we match the corner
point of the rectangular achievable region, given by
(R1, R2) = (eq.(38a), eq.(38b)), to

R(G-IC mod P1)
out :

R1 = Ig

(
INR + SNR

1 + INR

)
, (41a)

R2 = Ig (SNR) − Ig (INR) + Ig(INR + SNR)

−Ig

(
INR + SNR

1 + INR

)
, (41b)

and

R(G-IC mod P2)
out :

R1 = Ig (SNR) − Ig (INR) + Ig(INR + SNR)

−Ig

(
INR + SNR

1 + INR

)
, (42a)

R2 = Ig

(
INR + SNR

1 + INR

)
, (42b)
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which were obtained from the intersection of the sum-
rate outer bound in (28c) with either (28e) or (28f).
In particular, for the corner point in (41b) we use x
in (38d) (which corresponds to N in (35)), and for the
corner point in (42b) we use x in (38e) (which corresponds
to N in (36)).

The gap is readily computed as follows: for the corner point
in (41b) we have

	1 = eq.(41a) − eq.(38a)|x in (38d)

≤ Ig

(
INR + SNR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)

−Ig

(
INR2

1 + SNR + 2INR

)
+ 1

2
log(4) + 1

2
log

(πe

3

)

≤ 1

2
log (2) + 1

2
log (4) + 1

2
log

(πe

3

)

= 1

2
log

(
8πe

3

)
,

and

	2 = eq.(41b) − eq.(38b)|x in (38d)

≤ Ig (SNR) − Ig (INR) + Ig(INR + SNR)

−Ig

(
INR + SNR

1 + INR

)
− Ig

(
SNR

2

)

+Ig

(
INR2

1 + SNR + 2INR

)

−Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
+1

2
log

(πe

3

)

≤ 1

2
log (2) + 1

2
log

(πe

3

)

= 1

2
log

(
2πe

3

)
, since INR ≤ SNR in weak interf.,

while for the corner point in (42b) we have

	1 = eq.(42a) − eq.(38a)|x in (38e)

≤ Ig (SNR) − Ig (INR) + Ig(INR + SNR)

−Ig

(
INR + SNR

1 + INR

)

−Ig

(
SNR

1 + 2INR

)
− Ig

(
SNR · INR

(1 + INR)2 + SNR

)

+1

2
log (4) + 1

2
log

(πe

3

)

≤ 1

2
log (2) + 1

2
log (4) + 1

2
log

(πe

3

)

= 1

2
log

(
8πe

3

)
,

and

	2 = eq.(42b) − eq.(38b)|x in (38e)

≤ Ig

(
INR + SNR

1 + INR

)
− Ig

(
SNR

2

)

+Ig

(
SNR · INR

(1 + INR)2 + SNR

)

−Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
+ 1

2
log

(πe

3

)

≤ 1

2
log (2) + 1

2
log

(πe

3

)

= 1

2
log

(
2πe

3

)
, since INR ≤ SNR in weak interf.

Case 2 [Regime Corresponding to α ∈ [1/2, 2/3] in
Fig. 4(d)]: Assume that the sum-rate in (38) is not redundant,
that is after simple algebraic manipulation,

1 + min
(
x |x in (38d), x |x in (38e)

)

<
(1 + 2INR)(1 + SNR

2 )

(1 + INR)(1 + SNR) + INR︸ ︷︷ ︸
∈[0.7358,1] for INR≤SNR≤INR(1+INR) see Appendix C

· (1 + INR)(1 + INR + SNR)

(1 + INR)2 + SNR︸ ︷︷ ︸
=1+x |x in (38e)

,

which implies

x |x in (38d) ≤ x |x in (38e). (43)

Under the condition in (43) we match one of the corner point
of the pentagon-shaped achievable region in (38) to

R(G-IC weak P1)
out :

R1 = 3Ig

(
INR + SNR

1 + INR

)

−Ig (SNR + INR) − Ig (SNR) + Ig (INR), (44a)

R2 = Ig (SNR) − Ig (INR) + Ig (SNR + INR)

−Ig

(
INR + SNR

1 + INR

)
, (44b)

and

R(G-IC weak P2)
out : (45a)

R1 = Ig (SNR) − Ig (INR) + Ig (SNR + INR)

−Ig

(
INR + SNR

1 + INR

)
, (45b)

R2 = 3Ig

(
INR + SNR

1 + INR

)

−Ig (SNR + INR) − Ig (SNR) + Ig (INR), (45c)

which were obtained from the intersection of the sum-
rate outer bound in (28d) with either (28e) or (28f).
In particular, for the corner point in (44b) we use x in (38d)
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	1 = eq.(44a) − (eq.(38c) − eq.(38b))|x in (38d)

≤ 2Ig

(
INR + SNR

1 + INR

)
− Ig (SNR + INR) − Ig (SNR) + Ig (INR) + Ig

(
INR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)

+Ig

(
SNR

2

)
+ Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
− 2Ig

(
INR2

1 + SNR + 2INR

)
+ 1

2
log (4) + 1

2
log

(πe

3

)

= 1

2
log

⎛
⎜⎝
(

SNR
2 + 1

) (
INR

INR+1 + 1
) (

INR2

INR+(INR+1) (SNR+1) + 1
)

(INR + 1)
(
INR + SNR

INR+1 + 1
)2

(
INR2

2 INR+SNR+1 + 1
)2 (

SNR
2 INR+1 + 1

)
(SNR + 1) (INR + SNR + 1)

⎞
⎟⎠

+1

2
log (4) + 1

2
log

(πe

3

)

= 1

2
log

⎛
⎝ (2 INR + 1)2

(
SNR

2 + 1
)

(2 INR + SNR + 1)

(INR + 1) (SNR + 1) (2 INR + SNR + INR SNR + 1)

⎞
⎠ + 1

2
log

(πe

3

)

≤ 1

2
log(6) + 1

2
log (4) + 1

2
log

(πe

3

)
= 1

2
log (8πe) (46)

	2 = eq.(44b) − eq.(38b)|x in (38d)

≤ Ig (SNR) − Ig (INR) + Ig (SNR + INR) − Ig

(
INR + SNR

1 + INR

)
− Ig

(
SNR

2

)

+Ig

(
INR2

1 + SNR + 2INR

)
− Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
+ 1

2
log

(πe

3

)

= 1

2
log

⎛
⎝

(
INR2

2 INR+SNR+1 + 1
)

(SNR + 1) (INR + SNR + 1)(
SNR

2 + 1
) (

INR2

INR+(INR+1) (SNR+1)
+ 1

)
(INR + 1)

(
INR + SNR

INR+1 + 1
)
⎞
⎠+ 1

2
log

(πe

3

)

= 1

2
log

(
2 (SNR + 1) (2 INR + SNR + INR SNR + 1)

(INR + 1) (SNR + 2) (2 INR + SNR + 1)

)
+ 1

2
log

(πe

3

)

≤ 1

2
log (2) + 1

2
log

(πe

3

)
= 1

2
log

(
2πe

3

)
, (47)

	1 = eq.(45b) − eq.(38a)|x in (38e)

≤ Ig (SNR) − Ig (INR) + Ig (SNR + INR) − Ig

(
INR + SNR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)

−Ig

(
SNR · INR

(1 + INR)2 + SNR

)
+ 1

2
log

(πe

3

)
+ 1

2
log(4)

= 1

2
log

⎛
⎝ (SNR + 1) (INR + SNR + 1)(

SNR
2 INR+1 + 1

)
(INR + 1)

(
INR SNR

SNR+(INR+1)2 + 1
) (

INR + SNR
INR+1 + 1

)
⎞
⎠

+1

2
log (4) + 1

2
log

(πe

3

)

= 1

2
log

(
(2 INR + 1) (SNR + 1)

(INR + 1) (2 INR + SNR + 1)

)
+ 1

2
log (4) + 1

2
log

(πe

3

)

≤ 1

2
log (2) + 1

2
log (4) + 1

2
log

(πe

3

)
= 1

2
log

(
4πe

3

)
, (48)

	2 = eq.(45c) − (eq.(38c) − eq.(38a))|x in (38e)

≤ 2Ig

(
INR + SNR

1 + INR

)
− Ig (SNR + INR) − Ig (SNR) + Ig (INR) + Ig

(
INR

1 + INR

)
+ 1

2
log

(πe

3

)

= 1

2
log

(
(1 + 2INR)((1 + INR)2 + SNR)

(1 + INR)2(1 + SNR)(1 + INR + SNR)

)
+ 1

2
log

(πe

3

)

≤ 0 + 1

2
log

(πe

3

)
= 1

2
log

(πe

3

)
(49)
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(which corresponds to N in (35)), and for the corner point
in (45c) we use x in (38e) (which corresponds to N in (36)).

The gap is readily computed as follows: for the corner point
in (44b) see (46) and (47) while for the corner point in (45c)
see (48) and (49). This concludes the proof.

APPENDIX C
MINIMUM OF A FUNCTION

The minimum of the function

f (x, y) = (1 + 2y)(1 + x
2 )

(1 + y)(1 + x) + y
, for (x, y) ∈ R

2+
such that 1 ≤ y ≤ x ≤ y(1 + y),

is found by first taking the partial derivative with respect to
x , given by ∂ f

∂x = − 2y2+7y+3
2(2x+y+xy+1)2 which is easily seen to be

monotone decreasing in x therefore attaining the minimum

f (y(1 + y), y) = 2y3 + 3y2 + 5y + 2

2y3 + 6y2 + 6y + 2
, for 1 ≤ y.

Now by taking the partial derivative with respect to y, given

by ∂ f
∂y =

(
3y2−4y−1

)
2(y+1)4 and setting it equal to zero we see that

the minimum occurs at y =
√

7+2
3 . Hence, the minimum of the

function occurs at f
(√

7+2
3

(
1 +

√
7+2
3

)
,

√
7+2
3

)
= 0.7359.

Conditions on the second derivatives can be easily checked to
verify that indeed the claim stationary point is a global min-
imum (even easier still, by plotting the function for example
with Matlab).
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