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Abstract—The capacity of the Interference Channel with Cog-
nitive Relay, a channel model which generalizes the broadcast,
interference and cognitive interference channels, is still an open
question. To make progress towards understanding this complex
channel, we first consider the binary linear deterministic model
that approximate the Gaussian channel at high SNR. We consider
symmetric channel gains and show achievability of a tightened
version of a previously known outer bound for almost all channel
parameters. Of particular interest in this channel model is how
the cognitive relay may be used to simultaneously relay as well as
cancel/neutralize interference at two receivers. The achievability
schemes used to prove capacity use combinations of three main
strategies at the cognitive relay that we term bit cancellation,
bit sharing, and bit (self)cleaning. We highlight the capacity
achieving schemes in the different regimes, pointing out some
of the interesting new behaviors seen at the cognitive relay.

I. INTRODUCTION

The Interference Channel with a Cognitive Relay (IFC-CR)
consists of a two-user interference channel, which models
the communication between two interfering source-destination
pairs, in which communication is aided through the pres-
ence of a relay. This relay is cognitive in the sense that it
non-causally, or before transmission commences, knows the
messages of both sources. The Cognitive Relay (CR) may
thus be exploited to relay the messages to the sources, or
may use its cognitive message knowledge to simultaneously
cancel/neutralize the interference at one, or both destinations.
The main technical insight from the study of such a channel
is how this non-causal knowledge of the sources’ messages at
the CR may be best exploited.

The IFC-CR generalizes numerous well studied networks. In
particular, the IFC-CR reduces to: (a) the interference channel
[1] by not using the CR; (b) the broadcast channel [2] by not
using the two sources; (c) the cognitive interference channel
[3] by not using one the two sources.

The IFC-CR model is of theoretical interest because of its
generality and as a further step towards an understanding of the
capacity region for general multi-terminal network problems.
It is also practically motivated in the context of femto-cell net-
works. In particular, the interference channel models a legacy
or existing cellular system with two base-stations wishing to
communicate to two terminal nodes. One might be interested
in understanding how the addition of a third base-station (e.g.
a femto-cell) may aid in the communication by, for example,
mitigating interference, introducing user cooperation, etc. In

this new system, the assumption that the new base-station
has full, a priori knowledge of both the legacy base stations’
messages provides an outer bound on what may be achieved
in practice with partial and causal message knowledge.

Past work. Limited work exists on the IFC-CR, whose
capacity in general remains unknown. Here we focus on the
past work for the case where the relay has non-causal message
knowledge and is in-band, that is, the CR shares the same
channel as the two source-destination pairs. We note however
that significant work exists in this channel model with causal
cognition at the relay (see for example [4]–[6] and references
therein) which we shall not review here for sake of space.

The IFC-CR was first considered in [7], where an achievable
rate region was proposed. This rate region was improved upon
in Gaussian noise in [8], and again for a general discrete
memoryless channel in [9]. In terms of outer bounds, [8]
first proposed a sum-rate outer bound for the Gaussian noise
channel. The first outer bound for a general memoryless IFC-
CR was derived in [10], which was tightened for a class of
semi-deterministic channels in the spirit of [11]. The tightened
outer bound was shown to be capacity for a class of high-
SNR linear deterministic approximation [12] to the Gaussian
IFC-CR in the absence of interfering links, and for several
other special cases; the insight from the capacity achieving
schemes was used to show capacity to within 3 bits/sec/Hz
in the Gaussian IFC-CR without interfering links in [13].
Finally, in [14], capacity of the general IFC-CR with very
strong interference at one destination was proven.

Contributions. To make progress towards the capacity of
this relatively complex channel, here we seek the full capacity
region of the linear deterministic high SNR approximation of
the Gaussian IFC-CR, which correspond to the generalized
degrees of freedom of the Gaussian channel [1]. For sake of
space, we focus on the symmetric scenario in which the two
direct links, the two interfering links, and the two cognitive
links are equal (yielding two normalized parameters). One
may view the results obtained here as a generalization of the
one-dimensional W-curve of [1] for the interference channel,
which describe the normalized sum-rate versus the normalized
strength of the interfering links, to a second dimension which
represents the relative strength of the CR-to-destination links.

Paper Organization. After defining the channel model
in Section II and stating a tightened version of the outer
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Fig. 1. The symmetric high SNR approximation of the Gaussian IFC-CR.

bound in [10] we outline three key strategies employed by
the CR, namely, bit sharing, bit cancellation, and bit (self)
cleaning, to achieve capacity for almost all channel parameters.
Several interesting new achievability strategies emerge whose
Gaussian counterparts would be of interest to understand in
the longer term. Section IV concludes the papaer.

II. CHANNEL MODEL AND KNOWN OUTER BOUND

We first introduce the linear deterministic IFC-CR channel
model, which captures the behavior of the Gaussian IFC-CR
at high SNR, before outlining a tightened version of the outer
bound in [10]. This outer bound will naturally lead to dividing
the channel parameters into several regimes where the outer
bound simplifies.

Channel Model. The high SNR approximation of the
Gaussian IFC-CR is the deterministic channel

Yu = Sm−nuuXu ⊕ Sm−nucXc ⊕ Sm−nuuXu, , (1)

for (u, u) ∈ {1, 2}×{1, 2}, u 6= u, where S is the binary shift
matrix of dimension m := max{n11, n12, n1c, n21, n22, n2c},
where all inputs and outputs are binary column vectors of di-
mension m, and where the symbol ⊕ denotes the component-
wise modulo-2 addition of the binary vectors [12]. Source 1
(resp. 2) encodes message W1 of rate R1 (resp. W2 of rate
R2) into its channel input X1 (resp. X2); the messages are
assumed independent. Message W1 (resp. W2) is destined for
destination 1 (resp. 2) that must decode it from its channel
output Y1 (resp. Y2). The two sources are aided by a CR that
encodes both messages into the channel input Xc. We adopt
standard definitions for codebooks, probability of error, and
achievable rate pair (R1, R2) [15]. The capacity is the set of
all achievable rates, which we seek to determine.

In this work we only consider the symmetric version of the
channel in (1), that is, a channel whose gains satisfy

n11 = n22 := nS > 0 (2a)
n12 = n21 := α nS , α ≥ 0 (2b)
n1c = n2c := β nS , β ≥ 0 (2c)

We also parameterize the rates as

Ru := ru nS , ru ≥ 0, u ∈ {1, 2}. (3)

Fig. 2. Regimes of operation for the linear deterministic IFC-CR, where
α := nI/nS and β := nC/nS .

Fig. 1 shows the symmetric high SNR approximation of the
Gaussian IFC-CR considered in this work.

Outer Bound. With the parameterization in (2) and (3) the
outer bound in [10, Th.III.3] becomes

r1 ≤ max{1, β}, (4a)
r2 ≤ max{1, β}, (4b)

r1 + r2 ≤ [1−max{α, β}]+ + β + max{1, α} (4c)
r1 + r2 ≤ max{1, β} apply for α = 1 only (4d)
r1 + r2 ≤ 2 max{1− α, α, β}+ MLP (4e)

2r1 + r2 ≤ max{1, β, α}+ max{1− α, α, β}
+ max{1− α, β}+ MLP (4f)

r1 + 2r2 ≤ max{1, β, α}+ max{1− α, α, β}
+ max{1− α, β}+ MLP (4g)

with MLP := 2min{α, β}.
Remark on Tightening the Outer Bound of [10]. We

note that the bounds in (4f) and (4g) are tighter than the
ones reported in [10, eq.(5f)-(5g)] where terms of the type
H(Y1|V21, X2) were trivially upper bounded by H(Y1|X2) ≤
nS max{1−α, α, β} (please refer to [10] for the definition of
V21 and for the derivation of the rate bounds in (4)). A more
careful bounding yields H(Y1|V21, X2) ≤ nS max{1− α, β}
as in (4f) and (4g).

Parameter Regimes Definition. The outer bound in (4)
naturally leads to the division of the channel parameters (α, β)
in (2) into six parameter regimes based on the different max
and min operations in (4), as shown in Fig. 2. In [10], the
outer bound in (4) was shown to be achievable in two cases:
a) when α = 0, and b) when 1 > β > α (Regime V in Fig. 2).
In this paper we show capacity for all the remaining regimes
except for α ∈ [1/2, 1] and β ∈ [0, α] (Regimes VI.2, VI.3
and VI.4 in Fig. 2) and speculate on what is missing.

For the figures, the signals in blue-ish tones represent bits
from Tx1 to Rx1 (interference at Rx2), and red-ish tones
represents bits from Tx2 to Rx2 (interference at Rx1). When
two different colors are represented side-by-side in the same
bit vector it means that these bits are superposed, i.e., their
modulo-2 sum is transmitted.
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Fig. 3. Basic transmission techniques at the cognitive relay.

III. CAPACITY FOR THE LINEAR DETERMINISTIC IFC-CR

To show capacity we will use achievability schemes where
the general behavior of the CR may be grouped into three dif-
ferent coding strategies, which we refer to as: Bit Cancellation,
Bit Sharing and Bit (self) Cleaning, as described next.

a) Bit Cancellation: The CR may be used to can-
cel/neutralize unwanted interference, as illustrated in Fig. 3(a).
For illustrative purposes we only show the received signal at
receiver Rx1. The CR carries the interference message such
that it overlaps exactly with the interference message. Due to
the component-wise modulo 2 additions of the receiver, the
interference is completely removed.

b) Bit Sharing: When the relay link is stronger than
both the interference and direct links, i.e., β > max{α, 1},
the CR may transmit bits above the interference and direct
links, which are thus received cleanly at both receivers (due
to symmetry). The CR can share these bits among the users.

c) Bit (self) Cleaning: An interesting new achievability
strategy, which we term Bit Cleaning, is shown by example in
Fig.3(b) for Rx1. Here, the CR transmits a linear combination
of the two signals such that interference (in red in this case,
at Rx1) is canceled. At first glance, the desired information
(in blue) appears to be interfering with itself. A closer look
shows that X1 and the desired portion of Xc are strictly shifted
versions of each other. This means that if at least one bit,
shown as a1 on Fig. 3(b), is cleanly received from the CR,
this bit may be used to sequentially clean and decode the
remaining bits. In this case, the reason both Tx1 and the CR
transmit the same messages (one might imagine having Tx1
send nothing in this example) is because of what happens at
Rx2; we must really consider both received signals and this
is an illustrative example only. Bit (self) cleaning often arises
when the CR wishes to cancel interference at one receiver,
which ends up interfering with itself at the other. In this case,
this self-interference must be “cleaned”.

We now show achievability of the outer bound in (4) using
a combination of the bit cancellation, bit sharing and bit (self)
cleaning strategies. Due to space constraints, we group some
of the regimes which have similar achievability strategies,
mentioning how these examples may be tailored to the related
regimes. We also highlight some of the most conceptually

interesting strategies, where we see behavior not encountered
in other channels and which highlights the dual role of the
CR: to relay for and cancel interference at two receivers
simultaneously. In the remaining Figs. 4 and 5 for clarity we
drop the ⊕ symbol between the three received bit-vectors at
each receiver, which is understood as in Fig. 3. In Figs. 4 and
5, blocks of bits denoted by Ai are desired at Rx1, blocks of
bits Bj are desired at Rx2.

Capacity for α = 1. The capacity for α = 1 is r1 + r2 ≤
max{1, β} (i.e., bound (4d) only) which is trivially achieved
by time division between the cases where one source is silent
and the CR fully helps the other source; in this case the two
channel outputs are statistically equivalent and the IFC-CR is
effectively a compound Multiple Access Channel (MAC).

Outer Bound for α 6= 1. We divide the parameters into
two cases. When (4f), (4g) and (4e) are redundant, that is for
max{α, β} ≥ 1 (all but Regimes V and VI in Fig. 2), the
region in (4) simplifies to

r1 ≤ max{1, β}, (5a)
r2 ≤ max{1, β}, (5b)

r1 + r2 ≤ β + max{1, α}. (5c)

and otherwise, that is for max{α, β} < 1, in which case only
Regime VI must be considered since capacity for Regime V
was proved in [10]. The outer bound region in (4) for Regime
VI, that is for 0 < β < α < 1, simplifies to

r1 ≤ 1, (6a)
r2 ≤ 1, (6b)

r1 + r2 ≤ 2− α+ β, (6c)
r1 + r2 ≤ 2 max{1− α, α}+ MLP (6d)

2r1 + r2 ≤ 1 + max{1− α, α}
+ max{1− α, β}+ MLP (6e)

r1 + 2r2 ≤ 1 + max{1− α, α}
+ max{1− α, β}+ MLP (6f)

with MLP := 2β.

Capacity for Regimes I and II: α > max{1, β}. We
start with Regime I and II, whose achievability schemes are
relatively straightforward. We only show the optimal strategy
for Regime I (β ≤ 1), and describe how this may be extended
to Regime II (β ≤ α). Since the relative amount of cognition
represented by β is fairly small in Regime I (β ≤ 1), the
channel in this regime resembles an IFC. As such we further
divide Regime I into two sub-cases, in a manner similar to the
sub-divisions seen in the W-curve in [1]. In particular, there
is a conceptual boundary between the Strong (i.e., capacity
is a pentagon) and the Very Strong (i.e., capacity is a square)
interference regimes at α = 2 in the IFC; in our case a similar
split occurs at α+ β = 2 (where (5a)+(5b) = (5c) for β < 1).
For α + β ≥ 2, β < 1 capacity may be achieved by Xc = 0
or alternatively by the bit cancellation scheme in Fig. 4(a).



An almost identical strategy to that in Fig. 4(a), with some
bit repetition in X1 and X2 as for the IFC [16], is capacity
achieving in Regime I when α < 2 and in Regime II (where
more interference can be cancelled since β is larger in Regime
II than in Regime I).

Capacity for Regimes III and IV: β > max{1, α}.
We now look at Regimes III and IV, focussing on the
more involved Regime III from which we can easily derive
achievability for Regime IV. To show capacity we only show
achievability of the corner point r1 = β, r2 = α of the
region in (5), which is sufficient by symmetry of the channel.
Fig. 4(b) shows the strategy that achieves capacity at this
corner point, which is one of the most involved cases where
all three general strategies being used at the same time. In
particular, in Fig. 4(b) at Rx1: the portion of the cognitive
message from β − α to 0 is easily decoded (bit-sharing);
the portion from β − α + 1 to β − α uses interference/bit
cancellation by the CR; this last decoded portion is then used
to clean the self-interference in the bottom portion (from β to
β − 1) of the received signal, while the remaining portion is
able to be decoded thanks to interference cancelation by the
CR. Thus, Rx1 receives the full r1 = β. At Rx2, interference
cancelation and bit (self) cleaning is used to obtain the full
r2 = α bits. This scheme may be extended to Regime IV
which uses only the top and bottom portions of Regime III’s
strategies – using only bit canceling and bit sharing and no
bit (self) cleaning.

Capacity for Regime V: 0 < α < β < 1. We pay special
attention to Regime V because the strategy that achieves
capacity is slightly counter-intuitive. The strategy we propose
here is similar to that shown in [10]. The capacity region in
(4) has only one corner point given by r1 = r2 = 1. The
capacity achieving scheme is shown in Fig. 4(c). One of the
most interesting aspects of this strategy is that the top portion
of cognitive message is left empty, which may seem counter-
intuitive as the CR, with knowledge of all messages, should be
able to use all its bits without harm. However, including bits
here would not improve rates as the direct link is already able
to convey these bits directly, and the CR is only really needed
to simultaneously cancel the interference at both receivers. The
receivers then use bit (self) cleaning to recover the bits.

Capacity for Regime VI.1 Due to the complexity of the
outer bound region in (6), Regime VI is further divided it into
four sub-regimes, which also correspond to a generalization
of the division of the W-curve in [1] as β is again relatively
small in this regime. The boundary between Regimes VI.1 and
VI.2 occurs at 2α = 1, that between Regimes VI.2 and VI.3
at β + 3α = 2, and that between Regimes VI.3 and VI.4 at
β + α = 1. We note that these boundaries reduce to those of
the W-curve in weak interference for β = 0.

The capacity for Regime VI is so far only known for α ≤ 1
2 ,

that is, for Regime VI.1. Achievability of the corner point
r1 = 1, r2 = 1−2α+2β in (6) may be shown with a strategy
of bit cancelation and bit (self) cleaning at both receivers, as
illustrated in Fig. 5(a).

What could be missing for Regimes VI.2, VI.3 and VI.4?
The capacity region for the remaining Regimes VI.2, VI.3 and
VI.4 remain unknown. These regimes are related to the most
involved area of the W-curve in [1] for the IFC in moderately
weak interference (i.e., for α ∈ [1/2, 1]) and as such it is not
surprising that these are also the most difficult cases for the
IFC-CR. At this point we conjecture that the way [10, Theorem
III.2] was bounded is too loose, and that it is in these sub-
regimes that it manifests. In particular, the multi-letter portion
(MLP) of the outer bounds in [10, Theorem III.2], given by

MLP := 1/N
(
I(V12(XN

2 );V1c(XN
c ))I(V21(XN

1 );V2c(XN
c ))

)
,

(we defer all definitions and notation to [10]), was bounded
in the symmetric case as

MLP ≤ min{H(V12(X2)), H(V1c(Xc))}
+ min{H(V21(X1)), H(V2c(Xc))} ≤ nS 2 min{α, β}, (7)

noting that the entropy of a discrete random variable is non-
negative. We believe that the bound in (7) does not accurately
capture the correlation between Xc and (X1, X2). Essentially
the bound in (7) asserts that Xc can be simultaneously
maximally correlated with both X1 and X2. However, if Xc

is maximally correlated with X1, i.e., Xc = X1, then it is
independent of X2 (recall that X1 and X2 are independent
because carry independent messages); in this case the MLP
expression would be min{α, β} rather than 2 min{α, β}.
Fig. 5(b) shows a strategy for Regime VI.2 that achieves
r1 = 1, r2 = β, rather than the corner point r1 = 1, r2 = 2β
from the outer bound region in (6).

Tightening the bounds in (4e), (4f) and (4g) so as to capture
the correlation among transmitted signals, and/or to derive
another bound of the form 2R1 + R2 or R1 + 2R2 (such
a bound was needed for the IFC with rate-limited receiver
cooperation [17]) is the subject of ongoing investigation.

A possible strategy for Regime VI.2. Of further interest
is to note that several of the derived achievable schemes in
this section, which may be used to achieve capacity on the
boundary between different sub-regimes, use very interesting
techniques. As an example, in Fig. 5(c) we show achievability
on the boundary of Regime VI.1 and VI.2. In Fig. 5(c) we see
that the CR signal, which is received at the lowest level in this
regime, sends a combination of four signals rather than two
(the maximal of any of the previous known capacity-achieving
schemes). In particular, the top A1 and A2 portions of the
signal at Rx1 are interference free; they must be summed
together to recover the B1 at Rx1 (which is not interfered by
the B2 part of the signal from Tx2 because the CR performed
bit cancellation). Then, it uses the B1 to (self) bit clean and
obtain part A3 of its intended signal. While it is still unclear,
it appears that in this more complex region of the parameter
space, more sophisticated schemes at the cognitive relay such
as this one may be needed. This, as well as deeper connections
with network coding, is the subject of ongoing work.
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Fig. 4. Capacity Achieving Strategy for some of the regimes of Fig. 2.
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IV. CONCLUSION

In this paper we investigated the capacity of the symmetric
Gaussian interference channel with a cognitive relay at high
SNR by means of the linear deterministic model. We tightened
a known outer bound and showed its achievability in almost
all parameter regimes by a combination of Bit Cancellation,
Bit Sharing and Bit (self) Cleaning at the cognitive relay. The
capacity region remains unknown in the case of moderately
weak interference and weak cognition. In this case we conjec-
ture that the currently best known outer bound may be loose.
Tightening of the outer bound, as well as determining the
approximate capacity region of the Gaussian IFC-CR channel
at finite SNR is subject of ongoing investigation.
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