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Abstract—This paper studies the Layered Packet Erasure
Broadcast Channel (LPE-BC) with Channel Output Feedback
(COF), which is a high-SNR approximation of the fading Gaus-
sian BC, proposed by Tse and Yates in 2012 for the case without
COF. This model is also a multi-layer generalization of the Binary
Erasure Channel (BEC). In a past work, the Authors derived
inner and outer bounds to the rate region (set of achievable rates
with backlogged arrivals) of the LPE-BC with COF; here, the
arrival region (set of exogenous arrival rates for which packet
arrival queues are stable) for the same model is analyzed. For the
case of K = 2 users and Q ≥ 1 layers, the known achievable rate
region and the derived arrival region coincide; both strategically
employ a network-coding based retransmission protocol. For the
case of Q = 2 layers, sufficient conditions are given for the
achievable arrival region to coincide with the known converse
rate region, thus showing that in those cases the optimal rate
and arrival regions coincide.

I. INTRODUCTION

In this paper, we study the stability region of the Layered
Packet Erasure Broadcast Channel (LPE-BC) with Channel
Output Feedback (COF), and compare it with the capacity
region. The capacity region characterizes the largest set of
simultaneously achievable message rates that can be reliably
transmitted [1]. The capacity region assumes that all users, or
nodes, have messages, or packets, to send at all times, that is,
that the packet arrival queues are infinitely backlogged. The
stability region instead assumes that packets arrive stochasti-
cally, and may be queued before transmission. The networked
system is called stable if the packet queues are asymptotically
finite, with finite packet delays. In [2], the stability region is
defined as the closure of the set of all arrival rate vectors that
can be stably supported by the network. In the following, rate
region refers to an achievable message rate region, which can
not be larger than the capacity region; similarly, arrival region
refers to an achievable arrival rate region, which can not be
larger than the stability region. While for some networks the
capacity and stability regions are equivalent [3], in general the
stability region in queueing theory is a subset of the capacity
region in information theory [2]. A form of duality exists
between the two regions [4], which is somewhat understood
for multiple access channels [5], but general conditions under
which the two regions coincide for general networks are not
known.

The motivation to study the capacity and stability regions
of the LPE-BC with COF is as follows. In wireless communi-
cations, the Additive White Gaussian Noise fading Broadcast
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Channel (AWGN-BC) models the downlink communication
between one base-station and multiple users. While capacity
is known in some settings [1], one notable exception is the
fading AWGN-BC where the fading Transmitter Channel State
Information (TxCSI) is not available. This model was studied
in [6], where the Layered Packet Erasure Broadcast Channel
(LPE-BC) model was proposed to approximate the AWGN-
BC without TxCSI in the high SNR regime. In the LPE-BC,
at each channel use, the base station sends a vector of inputs
(or layers of packets) and each receiver receives a random
number of layers. The missing layers are said to have been
“erased.” Once a layer is erased, all the layers with larger
indices are also erased. The LPE-BC is a generalization of
the Binary Erasure Broadcast Channel (BEC-BC). The BEC-
BC has a single layer that is received or erased; the LPE-BC
has multiple layers, which may be erased or received in the
correlated fashion stated above. Note that COF enables the
transmitter to know the number of layers that were erased at
each receiver, that is, it becomes causally aware of the TxCSI.

Past Work: The capacity region of the LPE-BC without
COF was determined in [6]. In [7], the capacity and stability
regions of a 2-user BEC-BC with COF were derived and
found to coincide. Several algorithms to achieve these regions
were constructed, based on using the COF to determine which
packets were received at the unintended receiver only, and
then use this information to opportunistically and efficiently
network code such packets. In [8], [9], the capacity region
for the 3-user BEC-BC, as well as for two types of K-user
symmetric and spatially independent BEC-BCs with one-sided
fairness constraints, with COF were derived. In our prior
work [10], we studied the general LPE-BC with COF and
derived inner and outer bounds to the capacity region.

Contributions: In past work, only special cases of the
LPE-BC were considered. In this paper, we derive an achiev-
able stability region for LPE-BC with COF for K = 2 users
and Q ≥ 1 layers. Our scheme uses network coding across all
layers and all users in case retransmissions are needed. Our
inner bound to the stability region and outer bound to the
capacity region are analytically and numerically compared.
Conditions are given under which these two regions match
for the case of K = 2 users and Q = 2 layers; hence, for such
channels both the capacity region and the arrival region are
fully characterized, and they coincide. Our proof techniques
here (for the case of any number of layers) differs from that
of [7] (for a single layer): we do not rely on a “Markov chain”-
argument as [7] but rather on a “concentration to the mean



”-argument.

II. SYSTEM MODEL AND MAIN RESULTS

For the rest of this paper, we use capital letters to represent
the random variables (apart from rates which are capital R’s
which are not random, to conform with standard information
theoretic notation) and small letters to indicate the fixed num-
ber or the expectation of the corresponding random variables.

The LPE-BC consists of one transmitter that communicates
to K receivers. At each channel use (slot) the transmitter
sends Q symbols (packets, or layers), where each symbol
is from a finite input alphabet X ; the input is denoted as
XQ := (X1, . . . , XQ) ∈ XQ. The LPE-BC is characterized
by the random vector (channel state) N := (N1, . . . , NK) ∈
[0 : Q]K, where Nk denotes how many layers have been
successfully received by user k ∈ [K]. The channel output for
user k ∈ [K] is Yk := XNk = (X1, . . . , XNk

) for Nk > 0,
that is, layers (XNk+1, . . . , XQ) have been erased; if Nk = 0
then all layers have been erased and we set Yk = e for some
constant “erasure” symbol e. The channel state N is assumed
to be independent and identically distributed (i.i.d.) across
time slots, that is, the channel is memoryless. The case Q = 1
and X = GF(2) is the well studied K-user BEC-BC.

A. Capacity Region – backlog arrivals

In this setup, the transmitter has K queues of packets, one
per receiver, and all the queues have infinitely many packets.
The transmitter must convey |X |nRk packets reliably to user
k ∈ [K] in n channel uses. Note that the rate Rk is measured
in number of packets per channel use. Let (W1, . . . ,WK) be
the messages to be sent to the users. With COF the transmitter
sends XQ

t (W1, . . . ,WK,N
t−1), where XQ

t (·) is the encoding
function at time t ∈ [n]. We assume that all receivers by time
t = n know Nn. User k estimates Ŵk(Y nk ,N

n), k ∈ [K].
The probability of error is P (n)

e = Pr[∪k∈[K]Ŵk 6= Wk]. The
capacity region is the convex closure of the set of all message
rate-tuples (R1, . . . , RK) ∈ RK

+ for which limn→∞ P
(n)
e = 0.

In our past work [10] we showed that with COF one has:

Theorem 1 (Bounds on the Capacity Region [10]). For the
LPE-BC with COF, let Cout and C in denote outer and inner
bounds to the capacity region, respectively. We have

Cout =
{

(R1, . . . , RK) ∈ RK
+ :

∑
k∈[K]

ωkRk ≤ (1)

∑
q∈[Q]

max
k∈[K]

(
ωπ(k) Pr[max(Nj : j ∈ {π(k), . . . , π(K)}) ≥ q]

)
,

for all (ω1, . . . , ωK) ∈ RK
+ and all permutations π of [K]

}
,

C in = {(R1, R2) ∈ R2
+ : t(unc) + t(NC) ≤ t

for some t ≥ 0, ku,q ≥ 0, q ∈ [Q], u ∈ [2]}, (2)

Ru := (
∑
q∈[Q]

ku,q)/t, ∀u ∈ [2], (rate),

t(unc) := max
q∈[Q]

(
t(unc)
q

)
, (duration of Phase1),

t(unc)
q :=

k1,q + k2,q

Pr[max(N1, N2) ≥ q]
,∀q ∈ [Q],

t(NC) := max
u∈[2]

(
k(rem)
u

E[Nu]

)
, (duration of Phase2),

k(rem)
u :=

[ ∑
q∈[Q]

k(rem)
u,q − (t(unc) − t(unc)

q ) Pr[Nu ≥ q]
]+
,∀u ∈ [2].

k(rem)
u,q := ku,q

(
1− Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]

)
,
∀q ∈ [Q],
∀u ∈ [2].

Note: the outer bound Cout in (1) is for any number of
users, while the inner bound C in in (2) is for K = 2 users
only. Extension of the scheme that attains C in to more than
K = 2 users requires being able to track which subset of non-
intended users has received a certain packet; this is the same
stumbling block as in the single-layer case in [8] for K ≥ 4.

B. Stability Region – random arrivals

In this setup, the transmitter maintains K packet queues, one
per receiver, and exogenous packets arrive randomly at each
queue. Let Au,t be the packets that arrived at the beginning
of slot t ∈ N and are intended for user u ∈ [K]. Let
At := (A1,t, . . . , AK,t) be the vector of exogenous arrivals,
assumed to be i.i.d. over time, with average arrival rates
λu := E[|Au,t|], u ∈ [K], Let Qu,t be the queue that contains
the packets that still need to be transmitted to user u ∈ [K]
at time t ∈ N (i.e., it includes the exogenous packets Au,t, as
well as those packets that were not yet delivered to user u at
previous times, as described next). With COF, the transmitter
sends XQ

t (Qt,N
t−1), for some encoding function XQ

t (·).
User u ∈ [K] applies decoding function Du,t(Y

t
u ,N

t) that
returns the packets that could be retrieved error-free by using
all channel outputs and all channel states available to it up to
time t ∈ N. A successfully received packet is removed from
its queue; this can be tracked at the transmitter thanks to COF.
The evolution of the queue length over time is given by

|Qu,t| =
[
|Qu,t−1|+ |Au,t| − |Du,t|

]+
, t ∈ N, u ∈ [K], (3)

where | · | denotes the number of packets and [v]+ denotes
the positive part of v (i.e., [v]+ = max{0, v}). The stability
region is the convex closure of the set of all arrival rate-tuples
(λ1, . . . , λK) ∈ RK

+ for which the process of queue lengths
{(|Q1,t|, . . . , |QK,t|)}t∈N is stable1.

In Appendix we shall show:

Theorem 2 (Achievable Stability Region (novel result)). For
the LPE-BC with COF and K = 2 users, the following region
is an inner bound to the stability region

S in :=
{

(λ1, λ2) ∈ R2
+ : λk :=

∑
q∈[Q]

λk,q, k ∈ [2], (4)

λ1,q + λ2u,q

Pr[max(N1, N2) ≥ q]
< 1,∀q ∈ [Q],

1From [7]: The process {Xt}t∈N, where Xt = (X1,t, . . . , XK,t), is
stable if the following holds at all points of continuity of some cumu-
lative distribution function F (x): limt→∞ Pr[Xt ≤ x] = F (x) and
limmin(x1,...,xK)→∞ F (x) = 1, where x := (x1, . . . , xK) and Xt ≤ x
means coordinate-wise inequalities. The process {Xt}t∈N is substable if
limmin(x1,...,xK)→∞ lim inft→∞ Pr[Xt ≤ x] = 1. If the processes
{Xi,t}t∈N are substable for all i ∈ [K], then the process {Xt}t∈N is
substable. In our case, {Xt}t∈N will represent the process of queue lengths.



∑
q∈[Q]

λu,q + λū,q
Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]
< E[Nu],∀u ∈ [2],

(u, ū) ∈ [2]2 : u 6= ū, for some λu,q ≥ 0, u ∈ [2], q ∈ [Q]
}
.

Note: extension of S in to more than two users incurs the
same problem as discussed for C in earlier. The region in (4)
recovers the result in [7] when Q = 1.

C. Optimality

We have C in ⊆ C ⊆ Cout from Theorem 1, and S in ⊆ S
from Theorem 2, where S is the stability region and C the
capacity region. We also know [2] that S ⊆ C. It can be
easily shown that C in can be written in the same form as
S in, by replacing message rates with average arrival rates; the
proof is not reported here for sake of space. Next, we find
conditions under which S in = Cout, for Q = 2 layers and
K = 2 users, thus showing that under such conditions one
has S = C. This result confirms the similarity between the
capacity and stability regions already observed in [5], [7].

Let

A := max
q∈[2]

(
Pr[max(N1, N2) ≥ q]

Pr[N1 ≥ q]
,

)
, (5a)

B := min
q∈[2]

(
Pr[max(N1, N2) ≥ q]

Pr[N1 ≥ q]
,

)
, (5b)

C := max
q∈[2]

(
Pr[N2 ≥ q]

Pr[max(N1, N2) ≥ q]
,

)
, (5c)

D := min
q∈[2]

(
Pr[N2 ≥ q]

Pr[max(N1, N2) ≥ q]
,

)
, (5d)

where clearly A ≥ B ≥ 1 ≥ C ≥ D ≥ 0. Rewrite the outer
bound in (1) as

R1 +
R2

A
≤ E[N1], (6a)

BR1 +R2 ≤ E[max(N1, N2)], (6b)

R1 +
R2

C
≤ E[max(N1, N2)], (6c)

DR1 +R2 ≤ E[N2]. (6d)

We give the sufficient optimality conditions as follows.

Theorem 3. The stability region inner bound in Theorem 2
coincides with capacity region outer bound in Theorem 1
for the LPE-BC with COF for the case of K = 2 users
and Q = 2 layers when the following two conditions are
verified: (C1) either bound (6b) or bound (6c) is redundant,
and (C2) either Pr[N1≥2]

Pr[N1≥1] ≥
Pr[max(N1,N2)≥2]
Pr[max(N1,N2)≥1] ≥

Pr[N2≥2]
Pr[N2≥1] or

Pr[N2≥2]
Pr[N2≥1] ≥

Pr[max(N1,N2)≥2]
Pr[max(N1,N2)≥1] ≥

Pr[N1≥2]
Pr[N1≥1] .

Intuition: The conditions in Theorem 3 may be interpreted
as follows. User u ∈ [2] is more likely to receive a packet
from layer 1 than user ū ∈ [2] where ū 6= u, while at
the same time user ū is more likely to receive a packet
from layer 2 than user u. It is fairly straightforward to
see that when Pr[N1≥2]

Pr[N1≥1] = Pr[N2≥2]
Pr[N2≥1] = Pr[max(N1,N2)≥2]

Pr[max(N1,N2)≥1] ,
both (6b) and (6c) are redundant and the outer bound be-
comes identical to the inner bound; under this condition
we obtain the capacity region C = {(R1, R2) ∈ R2

+ :

TABLE I: Joint PMF Pr[(N1, N2) = (i, j)].

j = 0 j = 1 j = 2 Pr[N1 = i]
i = 0 0.088 0.178 0.264 0.530
i = 1 0.011 0.018 0.075 0.104
i = 2 0.131 0.110 0.125 0.366

Pr[N2 = j] 0.230 0.306 0.464
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Fig. 1: Capacity and stability region for the channel in Table I.

max
(

R1

E[N1] + R2

E[max(N1,N2)] ,
R2

E[max(N1,N2)] + R2

E[N2]

)
≤ 1}

that has the same form as the capacity region derived in [7]
for the single layer BEC-BC with COF; in other words, in this
special case, the two-layer LPE-BC behaves as the one-layer
BEC-BC where 1− ε1 = Pr[N1 ≥ 1] + Pr[N1 ≥ 2] = E[N1],
1 − ε2 = E[N2], 1 − ε12 = E[max(N1, N2)] correspond to
the notation in [7].

D. Numerical Evaluations

We conclude this section by giving an example where
the achievable stability region in Theorem 2 coincides with
the outer bound of capacity region in Theorem 1, i.e., the
conditions in Theorem 3 are satisfied.

Consider the channel in Table I, in which both users have a
more reliable look at layer 2 than at layer 1; here the channel
states are correlated at each channel use. The outer bound
in Theorem 1 is the convex-hull of the following rate pairs:
P1 = (0, 1.234), P2 = (0.302, 1.035), P3 = (0.366, 0.912),
P4 = (0.836, 0). If all four bounds in (6) were active, the
outer bound would be a convex hull of at most 6 corner points
(including the point (0,0), two corner points on the R1 and
R2 axes, and 3 other non-trivial corner points). Here, we only
have two non-trivial corner points, points P2, P3. We know the
bound in (6a) and the one in (6d) are always active. Hence,
either the bound in (6b) or the one in (6c) is redundant. Here is
a case where either (6b) or (6c) is redundant. For this channel,
Pr[max(N1,N2)≥1]

Pr[N1≥1] > Pr[max(N1,N2)≥2]
Pr[N1≥2] , Pr[N2≥1]

Pr[max(N1,N2)≥1] >
Pr[N2≥2]

Pr[max(N1,N2)≥2] and A = 1.940, B = 1.926, C = 0.844,
D = 0.658 in (5). This is an example where the erasures are
correlated and for which we obtain the optimal capacity and
stability regions.

III. CONCLUSIONS

This paper analyzed the stability region of the LPE-BC with
COF. The LPE-BC extends the classical (single-layer) BEC-
BC and approximates the fading AWGN-BC at high SNR. Our
achievable stability region uses network coded retransmissions



of the packets received by the non-intended user only (a key
element also for the single-layer binary erasure BC with COF)
and across all layers. Conditions under which the obtained
stability region inner bound coincides with the capacity region
outer bound are given, thus establishing optimality. Future
work includes determining a set of conditions under which
the proposed scheme is optimal, extending the analysis to
more than two users, and ultimately deriving constant gap
approximations to the capacity of the fading AWGN-BC
without TxCSIT but with COF.

APPENDIX

A. Protocol Description

We consider a protocol based on network coded retransmis-
sions. Based on COF, the transmitter decides which packet to
send next, and knows which packets have been successfully
received by each user. The assumption of global state knowl-
edge at all terminals allows users to keep track of which
packets have been sent and which have been successfully
received. Moreover, when a network coded packet is sent,
we assume that the code (i.e., set of coefficients used for a
linear combination) has been agreed upon in advance and is
known to all terminals; every terminal knows the codebook.

The protocol works in epochs. During each epoch, a certain
(random) number of packets have to be successfully deliv-
ered to the users by employing the coding scheme for the
‘backlogged’ case in Theorem 1. The beginning of a new
epoch is a renewal event for the system. Epoch m ∈ N
starts at time T [m] and ends at time T [m + 1]. Denote
L[m] := T [m + 1] − T [m] as the number of time slots
in epoch m, where each packet is transmitted in one slot.
Epoch m + 1 starts at time T [m + 1] (right after the end of
epoch m), employing the same procedure as in epoch m. At
the beginning of epoch m, Ku[m] :=

∑
t∈L[m−1] |Au,t| new

exogenous packets need to be transmitted to user u ∈ [2].
Epoch m ends when all Ku[m] packets have been delivered
successfully to user u, thus L[m] are random.

The transmitter maintains Q + 2 queues, denoted by
Q01, Q02, · · · , Q0Q, Q1, Q2. For each user u, the average
arrival rate λu = E[Au,t] is expressed as λu =

∑
q∈[Q] λu,q =∑

q∈[Q] E[Au,q;t] where Au,q;t is the number of exogenous
packets assigned for user u on layer q at slot t, for some
λu,q ≥ 0 and q ∈ [Q]. At the beginning of epoch m, no
packet is assigned to queue Qu (i.e., there are no overheard
packets at the start of an epoch as the previous epoch ends
after all packets are delivered), and each of the Ku[m] packets
is assigned independently at random with probability λu,q/λu
to queue Q0q . Let Ku,q[m] be the (random) number of packets
that are assigned to queue Q0q, and destined to user u.

The protocol works as follows. All packets, whether they
are destined to user 1 or 2, are transmitted on a first-come-
first-served policy from Q0q . If a packet transmitted from Q0q

is successfully received by at least one of the users, the packet
leaves Q0q; otherwise, it goes back to Q0q; if the packet from
Q0q is erased at the intended user u and received by the other
user, that packet is placed in Qu.At any time slot t:
• all queues are empty: this epoch ends;

• all Q0q’s are non-empty: a packet from Q0q is transmitted
on layer q.

• some Q0q’s are empty, and all Qu’s are non-empty: if
∃q, p ∈ [Q] : p 6= q,Q0q = ∅, Q0p 6= ∅ and Qu 6=
∅,∀u ∈ [2], then we transmit a network coded packet
(by using linear network coding with packets from Q1

and Q2) on layer q, and a packet from Q0p on layer p;
• some Q0q’s are empty, and some Qu’s are empty: if
∃q, p ∈ [Q] : p 6= q,Q0q = ∅, Q0p 6= ∅ and
∃u 6= ū : Qu 6= ∅, Qū = ∅, then we transmit an uncoded
packet from Qu on layer q, and an uncoded packet from
Q0p on layer p;

• all Q0q’s are empty, and some Qu’s are empty: if Q0q =
∅,∀q ∈ [Q] and either Q1 6= ∅ or Q2 6= ∅, then we
transmit uncoded packets from all the non-empty Qu’s
on all layers.

B. Stability Analysis

In this section, we use Lyapunov drift analysis and show
that if the arrival rates are within the region S in, then
the Markov chain {Ku,q[m], u ∈ [2], q ∈ [Q]}m∈N is
ergodic. The ergodicity implies that there exists a station-
ary distribution, which implies that the stochastic process
{|Q01;t|, |Q02;t|, . . . , |Q0Q;t|, |Q1;t|, |Q2;t|}t∈N characterizing
the number of packets in queues is stable. Let us define a
Lyapunov function

v(k) := max
{ k1,q + k2,q

Pr[max(N1, N2) ≥ q]
,∀q ∈ [Q],∑

q∈[Q]

k1,q

E[N1]
+
∑
q∈[Q]

k2,q

E[N1]

Pr[N1 ≥ q]
Pr[max(N1, N2) ≥ q]

,

∑
q∈[Q]

k2,q

E[N2]
+
∑
q∈[Q]

k1,q

E[N2]

Pr[N2 ≥ q]
Pr[max(N1, N2) ≥ q]

}
, (7)

where k is the vector containing all the ku,q’s, ku,q is the
number of packets for user u in queue Q0q at the beginning
of epoch m. Let |k| :=

√
(
∑
q∈[Q] k1,q)2 + (

∑
q∈[Q] k2,q)2,

K[m] := (Ku,q[m],∀u,∀q),m ∈ N. From [7, Theorem 6], to
show the ergodicity of the Markov chain we need that

E
[
v(K[m+ 1])

∣∣K[m] = k
]
<∞ (8)

holds for k inside a bounded region, and for some ε > 0

E
[
v(K[m+ 1])

∣∣K[m] = k
]
≤ (1− ε)v(k) (9)

holds for k outside a bounded region for all m ∈ N.
Next, we characterize v(K[m+1]). Denote by Ĝu,q(k) the

number of packets destined to receiver u on layer q that arrived
to the system during epoch m, given that there are k packets
at the beginning of epoch m. Let Ĝ(k) := (Ĝu,q(k),∀u,∀q).
Considering the definitions and the operation of the scheme,
we obtain

Ku,q[m+ 1] = Ĝu,q(k) =
∑

l∈L[m]

|Au,q;l|, u ∈ [2], q ∈ [Q],

v(K[m+ 1]) = v(Ĝ(k)).



Now that we showed v(K[m + 1]) = v(Ĝ(k)), our next
step is to characterize E[v(Ĝ(k))]

v(k) . However, we should first
define some important limits.

We showed in [10] that L[m], the time needed to success-
fully complete the transmission of k packets, has a sharp
concentration to its mean value E [L[m]] = v(k) when
|k| → ∞. Since we assume that the number of packets to
be transmitted is large enough at each epoch, also L[m] has
a sharp concentration at v(k), i.e., for every ε > 0, we have

lim
m→∞

Pr[∪∞i=m{|L[m]− v(k)| > ε}] = 0. (10)

Based on [11, Proposition 1.1], we have L[m]
a.s.−−→ v(k), as

m→∞. Thus,

lim
|k|→∞

L[m]

v(k)
= 1, lim

|k|→∞

E[L[m]]

v(k)
= 1. (11)

As |k| → ∞, L[m] → ∞, using the strong law of large
numbers, we have lim|k|→∞

∑
l∈L[m] |Au,q;l|

L[m] = λu,q.
Now we return to our original goal of characterizing

E[v(Ĝ(k))]
v(k) . By Wald’s equation [12, Theorem 12],

E[Ĝu,q(k)] = E[
∑

l∈L[m]

|Au,q;l|] = λu,qE[L[m]] (12)

and considering (11), we have

lim
|k|→∞

Ĝu,q(k)

v(k)
= lim
|k|→∞

Ĝu,q(k])

L[m]

L[m]

v(k)
= λu,q, (13)

lim
|k|→∞

E[Ĝu,q(k)]

v(k)
= lim
|k|→∞

λu,qE[L[m]]

v(k)
= λu,q. (14)

According to [11, Corollary 4.1.], (14) implies that the se-
quence

{
Ĝu,q(k)
v(k) , u ∈ [2], q ∈ [Q]

}
is uniformly integrable.

Moreover, v(Ĝ(k))
v(k) is uniformly integrable since the sum

and the maximum of uniformly integrable functions are also
uniformly integrable. Let λ := (λu,q,∀u ∈ [2], q ∈ [Q]).
By (13), we can write

lim
|k|→∞

v(Ĝ(k))

v(k)
= lim
|k|→∞

max
{

Ĝ1,q(k) + Ĝ2,q(k)

Pr[max(N1, N2) ≥ q]v(k)
,∀q ∈ [Q],

∑
q∈[Q]

Ĝ1,q(k)

E[N1]v(k)
+

∑
q∈[Q]

Ĝ2,q(k)

E[N1]v(k)

Pr[N1 ≥ q]
Pr[max(N1, N2) ≥ q]

,
∑
q∈[Q]

Ĝ2,q(k)

E[N2]v(k)

+
∑
q∈[Q]

Ĝ1,q(k)

E[N2]v(k)

Pr[N2 ≥ q]
Pr[max(N1, N2) ≥ q]

}
= v(λ)

and since v(Ĝ(k))
v(k) is uniformly integrable, we have

lim
|k|→∞

E[v(Ĝ(k))]

v(k)
= v(λ).

Next, for some ε > 0, pick k(ε) large enough such that
|k| > k(ε); pick λ in S in, so that v(λ) ≤ 1− ε. As a result,

E[v(Ĝ(k))]

v(k)
≤ v(λ) +

ε

2
≤ 1− ε+

ε

2
= 1− ε

2
. (15)

The inequality in (15) shows that the condition in (9)
is satisfied. Let us now focus on the condition in (8),
and characterize E[v(Ĝ(k))]. It is quite straightforward to
show that E[L[m]] < ∞ when |k| ≤ k(ε). By (12), we
have E[Ĝu,q(k)] < ∞. This indicates that the sequence{
Ĝu,q(k), u ∈ [2], q ∈ [Q]

}
is uniformly integrable by [11,

Corollary 4.1], and v(Ĝ(k)) is uniformly integrable since the
sum and the maximum of uniformly integrable functions are
also uniformly integrable. Thus, E[v(Ĝ(k))] < ∞, and this
concludes that the condition in (8) holds.

Now that we showed that both conditions in (8) and
(9) are satisfied, we can conclude that the Markov Chain
{Ku,q[m], u ∈ [2], q ∈ [Q]}m∈N is geometrically er-
godic by following [7, Theorem 6]. Also, {|Q01;t|, |Q02;t|,
. . . , |Q0Q;t|, |Q1;t|, |Q2;t|}t∈N is regenerative concerning the
renewal process characterizing the time needed for successive
returns of the process {(Ku,q[m], u ∈ [2], q ∈ [Q])}m∈N
to the all-zero state. The renewal process is nonlattice
and the regenerative process is right-continuous and has
left-hand limits. This implies that there exists a distribu-
tion function F (x) satisfying the conditions in definition
such that {|Q01;t|, |Q02;t|, . . . , |Q0Q;t|, |Q1;t|, |Q2;t|}t∈N con-
verges in distribution to it by [12, Theorem 20]. Finally,
we conclude that if the arrival rates are in the interior
of the region S in, then the stochastic process

{
|Q01;t|,

|Q02;t|, . . . , |Q0Q;t|, |Q1;t|, |Q2;t|
}
t∈N representing the length

of queues is stable. This concludes the proof.
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