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Abstract—This work considers different K-user extensions of
the two-user cognitive interference channel model. The models
differ by the cognitive abilities of the transmitters. In particular,
the primary message sharing model, in which only one user is
cognitive and knows all messages, and the cumulative message
sharing model, in which a user knows the messages of all users
with lesser index, are analyzed.

The central contribution is the characterization of the sum-
capacity of both models under a strong interference condition,
which amounts to having one receiver in the network that can
decode all transmitted signals without loss of optimality. The sum-
capacity is evaluated for the Gaussian noise channel, as well as
the conditions on the channel gains that grant strong interference.

I. INTRODUCTION

Cognitive Radio (CR) has emerged as a promising technol-
ogy to help alleviate spectrum scarcity. Wireless networks, in
which certain nodes are equipped with CR technology to allow
them to make more intelligent use of the spectrum, are termed
cognitive networks. In cognitive networks, secondary users
equipped with CR technology are assumed to coexist with
licensed primary users (without CR capabilities). Secondary
users exploit their knowledge of the network state, which they
acquire thanks to their CR abilities, to communicate while
controlling the performance degradation to the existing pri-
mary users. Cognitive network operation may be categorized
as underlay, overlay and interweave [1]. This work focuses on
the information theoretic overlay model, in which cognitive
users a priori know the messages on the primary users.

Past Work. The information theoretic model for overlay
two-user CR was introduced in [2]. To the best of our knowl-
edge, the state-of-the-art on general inner and outer bounds,
and on exact and approximate capacity results, is in [3], [4].
In particular, our work aims to extend the two-user strong
interference capacity region result of [5] to multiple users.
Due to the complexity of characterizing the capacity region
of a general K-user channel, as a first step we investigate
the sum-capacity of multiuser cognitive channels under strong
interference. Limited results are available for CR channels
with more than two users, due to the complexity of the problem
and the many different message sharing possibilities.

In [6], [7] the authors considered a channel of two primary
users and one cognitive user and provided the capacity region
under strong interference, where the channel reduces to a
compound MAC. In [8] a channel model that consists of
one primary user and K − 1 parallel cognitive users was

considered and the capacity under very strong interference was
derived by using lattice codes. In [9] the authors classify CR
channels with three users as primary message sharing (PMS),
cumulative message sharing (CMS), or cognitive only message
sharing (CoMS). In PMS, one cognitive user knows the
messages of the other two primary users; in CMS, the channel
consists of one primary user, with index 1, and two cognitive
users where each cognitive user knows the message of the
users with lesser index; in CoMS, the channel consists of one
primary user and two cognitive users that knows the primary’s
messages. In [10] we derived a general capacity upper bound
for the CMS model and showed that the symmetric (all direct
links have the same strength and all cross links have the same
strength) sum-capacity in Gaussian noise can be achieved to
within a constant gap. In this paper we consider a classification
similar to [9] but for arbitrary number of users by focusing in
particular on PMS and CMS under strong interference.

Contributions. The main contributions of this work are as
follows. Result 1: a sum-rate outer bound valid for any number
of users under a certain strong interference condition, which
amount to having one receiver that can decode all transmitted
signals without loss of optimality. The bound takes the same
form for both PMS and CMS models, but over different sets
of input distributions. The bound does not contain auxiliary
random variables and is therefore computable for many chan-
nels of interest, including the Gaussian channel. The bound
is not the classical compound MAC result of similar strong
interference capacity results. Result 2: We present coding
schemes that achieve the sum-rate outer bound for both PMS
and CMS in strong interference. Result 3: For the Gaussian
noise channel, we explicitly characterize the set of channel
gains satisfying the strong interference condition and compare
our results with [5] (for the 2-user case) and [6], [7] (for
the 3-user case). Since we only focus on sum-capacity, our
outer bound holds under more relaxed conditions than [6], [7].
Moreover, our approach extends beyond the 3-user Gaussian
case to any number of users and to any memoryless channel.

Paper Organization. Section II describes the channel
model. Section III contains our sum-rate outer bound for
arbitrary number of users under strong interference. Sec-
tion IV shows the achievability of the sum-rate outer bound.
In Section V we evaluate the sum-capacity and the strong
interference condition in Gaussian noise. Section VI concludes
the paper. Proofs may be found in Appendix.



II. CHANNELMODEL

We use the following notation convention: [n1 : n2] is the
set of integers from n1 to n2 ≥ n1; Y j is a vector of length
j with components (Y1, . . . , Yj); Ij is the identity matrix of
dimension j; for an index set A ⊆ [1 : K] we let XA =
{Xj , j ∈ A} or RA =

∑
∈ARj (which one is usually clear

form the context).
The general memoryless K-user cognitive interference

channel (K-CIFC) consists of K source-destination pairs
sharing the same physical channel and is formally defined by
channel inputs Xi ∈ Xi, channel outputs Yi ∈ Yi, i ∈ [1 : K],
and a memoryless channel P(Y1, . . . , YK |X1, . . . , XK). A
code with non-negative rate vector (R1, . . . , RK) and block-
length N is defined by: messages Wi, uniformly distributed
over [1 : 2NRi ] and independent of all other random variables,
encoding functions XN

i

(
WMi

)
with Mi ⊆ [1 : K], and

decoding functions Ŵi

(
Y N

i

)
, for i ∈ [1 : K]. The capacity

region is the set of all rate tuples (R1, . . . , RK) for which
there exist a sequence of codes indexed by the block-length N
such that P (N)

e := maxi∈[1:K] P[Ŵi 6= Wi]→ 0 as N → +∞.
We focus on two message assignments (M1, . . . ,MK):
1) PMS: Mi = {i}, i ∈ [1 : K − 1], and MK = [1 : K],
2) CMS: Mi = [1 : i], i ∈ [1 : K].

PMS and CMS are shown in Fig. 1(a) and Fig. 1(b), respec-
tively, for the case of K = 4 users.

III. OUTER BOUND

Our first result is a sum-capacity outer bound under a set
of strong interference conditions:

Theorem 1. For the K-CIFC-PMS and the K-CIFC-CMS
satisfying the following condition ∀j ∈ [2 : K]

I(X[j:K];Yj |X[1:j−1]) ≤ I(X[j:K];Yj−1|X[1:j−1]), (1)

the sum-capacity is upper bounded by
K∑

j=1

Rj ≤ I(X[1:K];Y1), (2)

for all input distributions PX1,...,XK
that factor as

1) PMS:
∏K−1

j=1 PXj
PXK |X1,...,XK−1 ,

2) CMS: PX1,...,XK
.

Proof: The proof can be found in the Appendix.
Remarks:
1) The condition in (1) intuitively says that for all j ∈

[2 : K], given that the signals (X1, . . . , Xj−1) have
been removed, receiver j can decode the remaining
signals (Xj , . . . , XK) at a lower rate than receiver j−1,
which somehow implies that receiver j − 1 can ‘better
decode’ signal Xj than the indented receiver j. Of all the
receivers, receiver 1 is the ‘most powerful’ and the sum-
capacity in (2) can be interpreted as ‘joint decoding’ of
all transmit signals at receiver 1.

2) For K = 2 the PMS and the CMS models coincide
and the condition in (1) reduces to [5, Eq. (93)], that is,
I(X2;Y2|X1) ≤ I(X2;Y1|X1) for all PX1,X2 .

3) In [10] we derived the following sum-capacity upper
bound for CMS case without any restriction

K∑
j=1

Rj ≤
K∑

j=1

I(Yj ;X[j:K]|X[1:j−1], Y[1:j−1]). (3)

We notice that (3) and Theorem 1 coincide for channels
that satisfy the following degradedness condition

X[j:K] → Yj−1 → Yj given X[1:j−1], (4a)
∀j ∈ [2 : K] and for all possible PX1,...,XK

. (4b)

For the 3-user Gaussian channel, we shall see that the
condition in (1) is less restrictive than (4).

IV. INNER BOUND

A. Achievable Scheme for K-CIFC-CMS

With CMS, message W1 is known to all users. Thus all
users may cooperate in sending message W1 to receiver 1. In
order to achieve the sum-outer bound, all users beam form to
receiver 1 as in a MISO channel to achieve

R1 = I(X[1:K];Y1),
R2 = . . . RK = 0,

for some PX1,...,XK
. Hence, when the condition in (1) is

satisfied for all input distributions, the sum-capacity of the
K-CIFC-CMS is given by (2).

B. Achievable Scheme for K-CIFC-PMS

With PMS, messages W1 through WK−1 are known at
transmitter K. Here we propose a simple achievable scheme
where users 1 through K − 1 use independent i.i.d. coding
(like in point-to-point channels) and user K superposes its
own message to the codewords generated by the other users.
All destinations are required to decode all messages, where
non-intended messages are decoded non-uniquely [11]. The
achievable region is therefore the intersection of K multiple
access channels (with the difference that XK can be correlated
to all other mutually independent inputs) given by

RS +RK ≤ min
j∈[1:K]

I(XS ;Yj |XSc),

for all S ⊆ [1 : K − 1]\∅ and

RK ≤ I(XK ;YK |X[1:K−1]).

The achievable sum-rate is therefore obtained by S = [1 :
K − 1]. To meet the sum-rate outer bound in (2) we need to
impose the extra condition that

I(X[1:K];Y1) ≤ I(X[1:K];Yj), j ∈ [2 : K], (5)

for the distribution that attains the largest value in the sum-
rate upper bound. Hence, when in addition to the condition
in (1) being satisfied for the set of input distributions with the
prescribed factorization, also the condition in (5) is satisfied,
the sum-capacity of K-CIFC-PMS is given by (2).
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(a) K-CIFC-PMS with K = 4.
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(b) K-CIFC-CMS with K = 4.

V. THE GAUSSIAN NOISE CASE

The power-constrained complex-valued single-antenna K-
user Gaussian noise channel is described by the following
input/output relationship

Yj =
∑

k∈[1:K]

hjkXk + Zj , j ∈ [1 : K], (6)

where the channel gains hjk ∈ C, (i, j) ∈ [1 : K]2, are
constant and known to all terminals, the noises are without
loss of generality zero mean, unit variance proper-complex
Gaussian random variables (their correlation does not matter
as the receivers do not cooperate), and the inputs are subject
to power constraint E[|Xk|2] ≤ 1, k ∈ [1 : K].

A. Outer bound

In the next subsections we aim to evaluate Theorem 1 for
the channel in (6). To do so, we need to identify the channels
for which the strong interference condition in (1) holds for all
input distributions with the proper factorization depending on
the message sharing mechanism. Next we argue that for the
power-constrained Gaussian channel, the strong interference
condition must be verified only for those input distributions
that meet the power constraint with equality for each user. The
idea is that all other distributions are suboptimal in the sense
that one can find another distribution with provably better
performance. The proof is by contradiction. Assume that there
is an optimal input distribution for which user k ∈ [1 : K]
uses E[|Xk|2] = Pk ≤ 1 with a user k∗ such that Pk∗ < 1.
Consider now a new communication scheme in which user k∗

sends Xk∗,new = Xk∗ +X ′k∗ where Xk∗ is the signal that was
assumed optimal with power Pk∗ < 1 and X ′k∗ ∼ N (0, 1−Pk)
is independent of everything else and has rate

R′k∗ = log

(
1 + min

j∈[1:K]

|hjk∗ |2(1− Pk∗)
1 + (

∑
`∈[1:K]

√
|hj`|P`)2

)
> 0

Now, the rate of the new message is such that X ′k∗ can be
decoded by all users by treating the signals assumed optimal
as noise (no matter what their correlation structure is); after
that, X ′k∗ is removed for the received signal and the system
is equivalent to the one assumed optimal. Now, since the
rate of user k∗ can be increased by R′k∗ > 0 we reached
a contradiction. This shows that all users must use their

full power. Therefore, for the power constrained Gaussian
channel, one can repeat the same steps of the converse by
considering only those input distributions that meet the power
constraint with equality for all users. This implies that the
strong interference condition must be verified only by these
distributions (rather than all possible input distributions).

B. Sum-Capacity for the K-CIFC-CMS

The sum-capacity upper bound in (2), by the ‘Gaussian
maximizes entropy’ theorem [11], yields

K∑
k=1

Rk ≤ max
Σx

log
(
1 + hH

1 Σxh1

)
= log

(
1 +

( ∑
k∈[1:K]

|h1k|
)2)

, (7)

since we can consider any input covariance matrix Σx. The
sum-capacity in (7) is valid under the condition in (1), which
amounts to verifying

h(Yj |X[1:j−1]) ≤ h(Yj−1|X[1:j−1]) j ∈ [2 : K], (8)

over all proper-complex Gaussian distribution that meet the
power constraint with equality [5]–[7].

The sum-capacity is achieved by beam forming (see Sec-
tion IV-A) with

Xk = exp{−j∠h1k} U, k ∈ [1 : K], U ∼ N (0, 1). (9)

C. Sum-Capacity for the K-CIFC-PMS

Consider an input covariance matrix:

Σx =
[
IK−1 ρ
ρH 1

]
: ‖ρ‖2 ≤ 1 (10)

where ρ ∈ CK−1×1 is a vector of correlation coefficients. The
sum-capacity upper bound in (2), by the ‘Gaussian maximizes
entropy’ theorem [11], is maximized by a jointly Gaussian
input with covariance (10). We therefore obtain the following



sum-capacity upper bound, for hH
1 = [h11, h12, . . . , h1K ],

K∑
j=1

Rj ≤ max
Σx in eq.(10)

log
(
1 + hH

1 Σxh1

)

= log

1 +

|h1K |+
√ ∑

j∈[1:K−1]

|h1j |2

2
 (11)

attained by ρj = λh∗1j for λ : ‖ρ‖2 = 1. This optimal choice
of correlation coefficients implies RK = 0. The sum-capacity
in (11) is valid under condition (1), which amounts to verifying

h(Yj |X[1:j−1]) ≤ h(Yj−1|X[1:j−1]) j ∈ [2 : K], (12)

for all proper-complex Gaussian distributions with covariance
matrix as in (10) [5]–[7].

The sum-rate in (11) is achievable by (see also Section IV-B)

Xj = Tj i.i.d. N (0, 1), j ∈ [1 : K − 1], (13a)

XK =
K−1∑
j=1

Tjρj : |ρj | ∝ |h1j |, j ∈ [1 : K − 1], (13b)

under the condition in (5), that is,

hH
1 Σxh1 ≤ hH

j Σxhj , ∀j ∈ [2 : K − 1], (14)

hH
j := [hj1, hj2, . . . , hjK ] (15)

for the choice of correlation coefficients implied by (13). Since
RK = 0, the condition in (14) need not to hold for j = K as
receiver K does not have anything to decode.

D. The case K = 2
For the 2-user case CMS and PMS coincide. The sum-

capacity is given by (7), i.e., R1 = log(1 + (|h11| + |h12|)2)
and R2 = 0, under the condition in (8) for K = j = 2, which
is equivalent to

log(1 + |h22|2) ≤ log(1 + |h12|2)⇐⇒ |h22|2 ≤ |h12|2.

The achievability condition in (14) does not play a role for
K = 2 because R2 = 0.

Remark: The strong interference condition |h22|2 ≤ |h12|2
is equivalent to [5, eq.(87)]. However, the strong interference
capacity region in [5, Theorem 5] also requires [5, eq.(88)].
This is the case since in order to determine the sum-capacity
only less restrictive conditions are needed compared to the
case where the whole capacity region must be characterized.

E. The case K = 3 with CMS

For CMS and K = 3 we consider all jointly Gaussian inputs
with covariance matrix given by

Cov

X1

X2

X3

 =

 1 ρ1 ρ2

ρ∗1 1 ρ3

ρ∗2 ρ∗3 1

 : |ρi| ≤ 1, i = 1, 2, 3,

|ρ3 − ρ1ρ
∗
2|2 ≤ (1− |ρ1|2)(1− |ρ2|2).

For CMS the optimal sum-rate in (7) is obtained for R1 =
log(1 + (|h11| + |h12| + |h13|)2), R2 = R3 = 0 by beam

forming. The condition in (8) is: for j = 3, by proceeding
similarly to the case K = j = 2 discussed previously in
Section V-D, we have

|h33|2 ≤ |h23|2, (16)

and for j = 2 we must find the channel gains that satisfy

log(1 + hH
2 Sh2) ≤ log(1 + hH

1 Sh1)

h∗2 :=
[
h22

h23

]
,h∗1 :=

[
h12

h13

]
,S :=

[
1− |ρ1|2 ρ3 − ρ1ρ

∗
2

ρ∗3 − ρ∗1ρ2 1− |ρ2|2
]
,

which is equivalent to[
h22

h23

]
= ξ

[
h12

h13

]
: |ξ| ≤ 1. (17)

Remark: The condition in (17) corresponds to the ‘degraded
channel condition when conditioning on X1’ in (4). Given
the message structure of CMS, there are so many coding
possibilities at the transmitters that the channel conditions
under which joint decoding of all messages at the least
cognitive receiver is optimal only includes a form of ‘degraded
channel’. This suggests that for CMS and generic channel
gains, other decoding strategies are sum-capacity optimal, see
for example the symmetric sum-capacity result in [10]. Notice
that here we did not ask for the conditions under which joint
decoding of all messages at all receivers is optimal, i.e., when
the channel reduces to compound MAC. If we were to ask
for which channel gains joint decoding of all messages at a
‘more cognitive receiver’ than receiver 1 is optimal, we would
generally find different conditions than the one in (17).

F. The case K = 3 with PMS

For PMS and K = 3 we consider all jointly Gaussian inputs
with covariance matrix given by

Cov

X1

X2

X3

 =

 1 0 ρ2

0 1 ρ3

ρ∗2 ρ∗3 1

 : |ρ2|2 + |ρ3|2 ≤ 1.

For PMS the optimal sum-rate is obtained when R1 + R2 =
log(1 + (|h13| +

√
|h11|2 + |h12|2)2), R3 = 0. The condition

in (8) for j = 3 is as (16), while for j = 2 is

|h22|2 + |h23|2 + 2|h22h
∗
23 − h12h

∗
13| ≤ |h12|2 + |h13|2 (18)

which includes the ‘degraded condition’ in (17).
The condition for achievability in (14) evaluated for j = 2

imposes that the channel gains satisfy

hH
1 Sh1 ≤ hH

2 Sh2, h∗1 :=

h11

h12

h13

 ,h∗2 :=

h21

h22

h23

 ,
S := Cov

X1

X2

X3

with
ρ2 = h∗11√

|h11|2+|h12|2
,

ρ3 = h∗12√
|h11|2+|h12|2

.
(19)

Remark: Interestingly, the condition in (18) is equivalent
to [5, eq.(88)].



G. Comparison with similar work

It is not straightforward to compare our sum-capacity results
with prior work. In particular, in [7, Th. 4] the capacity region
of the 3-user Gaussian CIFC with real-valued channel gains
in strong interference with PMS was derived. Eight channel
gain conditions are imposed [7, Th. 4] in order to derive
the whole capacity region; in this work we consider complex-
valued channel gains and our two channel gain conditions are
subsets of those in [7, Th. 4] (i.e. two channel gain relations
in [7, Th. 4] are equivalent to (16) and (18) in this work). The
channel gain relationship imposed by the achievability scheme
in (14) is however different from that in [7] since in the latter
all receivers decode all messages as in a compound MAC;
here we consider only the sum-capacity and hence we do not
impose as restrictive decoding conditions for achievability as
those in [7].

VI. CONCLUSION

Little work exists on cognitive interference channels with
more than 3 pairs of users. We make progress by considering
a general K-user cognitive interference channel and derive
its sum-capacity under a set of strong interference conditions.
Our outer bound imposes fewer conditions than prior work
for the case of K = 3 users. In addition, in contrast to most
strong interference capacity results, our achievability scheme
does not reduce to a compound multiple access channel. This
in turn makes it challenging to compare the strong interference
channel gain conditions with prior work for K = 3. We
note that our outer bound is computable for any K and
that our strong interference sum-capacity result holds for any
memoryless channel (and not just in Gaussian noise).

APPENDIX

In order to obtain the sum-rate upper bound in (2) we first
present the following Lemma, which is an extension to any K
of [5, Lemma 5] (for CMS) and [6, Lemma 1] (for PMS):

Lemma 2. If per-letter condition in (1) is satisfied for all
prescribed input distributions then

I(XN
[j:K];Y

N
j |XN

[1:j−1]) ≤ I(X
N
[j:K];Y

N
j−1|XN

[1:j−1]), (20)

for all input distributions PXN
1 ,...,XN

K
, N ∈ N, that factor as

1) PMS:
∏K−1

j=1 PXN
j
PXN

K |XN
1 ,...,XN

K−1
,

2) CMS: PXN
1 ,...,XN

K
.

We are now ready to present the proof of Theorem 1: For
εN > 0 : εN → 0 as N → +∞, we have

N

K∑
j=1

(Rj − εN )
(a)

≤
K∑

j=1

I(Wj ;Y N
j )

(b)

≤
K∑

j=1

I(Wj ;Y N
j |W[1:j−1]) ≤

K∑
j=1

I(XN
j ;Y N

j |XN
[1:j−1])

(c)
=

K−1∑
j=1

I(XN
j ;Y N

j |XN
[1:j−1]) + I(XN

K ;Y N
K |XN

[1:K−1])

(d)

≤
K−1∑
j=1

I(XN
j ;Y N

j |XN
[1:j−1]) + I(XN

K ;Y N
K−1|XN

[1:K−1])

(e)
=

K−2∑
j=1

I(XN
j ;Y N

j |XN
[1:j−1]) + I(XN

[K−1:K];Y
N
K−1|XN

[1:K−2])

(f)

≤
K−2∑
j=1

I(XN
j ;Y N

j |XN
[1:j−1]) + I(XN

[K−1:K];Y
N
K−2|XN

[1:K−2])

. . .
(g)

≤ I(XN
[1:K];Y

N
1 )

(h)

≤
N∑

t=1

I(X1t, . . . , XKt;Y1t)

(i)

≤ NI(X[1:K];Y1|Q)
(j)

≤ NI(X[1:K];Y1),

where: (a) follows from Fano’s inequalities H(Wj |Y N
j ) ≤

NεN , ∀j ∈ [1 : K], (c) from the independence of messages,
the definition of encoding functions (for all Mj ⊆ [1 : j],
j ∈ [1 : K]) and data processing inequality, (d), (f) and (g)
from the condition in (1) for j = K, j = K − 1, up to j = 2
and Lemma 2, (h) from chain rule of entropy, conditioning
reduces entropy and memoryless property of the channel, (i) by
introducing a time-sharing random variable Q ∼ Unif[1 : N ]
and independent of everything else, and (j) by conditioning
reduces entropy.
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