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Abstract—Spectrum sharing between radar and communica-
tions systems, as a means to address spectrum crunch, is an active
research area. This paper considers Complex-valued Additive
White Gaussian Noise (C-AWGN) communication systems co-
existing with pulsed radar systems, and characterizes perfor-
mance from two angles: 1) the effect of radar interference on a
communications system is examined in terms of average error
rate, constellation design, and Shannon capacity, and 2) the effect
of communications interference on a radar system is examined
in terms of the Receiver Operating Characteristic (ROC).

I. INTRODUCTION

Spectrum sharing between radar and communications sys-
tems has been a topic of interest as a potential solution to
rapidly increasing demand for wireless spectrum. When both
systems co-exist in the same spectrum, interference is unavoid-
able and some modifications to existing systems should be
considered to account for the extra interference.

Several approaches to radar-communications spectrum shar-
ing have been proposed in the open literature. For example,
one straightforward interference mitigating solution is to split
the available resources (in time or frequency) through policy
so that each system operates independently and interference
is avoided altogether. However, the two systems are limited to
either accessing separate portions of the resources simultane-
ously or taking turns accessing the full resources. For example,
a dynamic framework supporting needs-based resource distri-
bution while enabling normal use of high performance cellular
infrastructure was proposed in [1] so that each isolated user
(with allocated bandwidth) can request multiple carriers so
as to access larger instantaneous bandwidth. Another solution
is to modify one system such that the performance degrada-
tion caused by interference is within a tolerable level. The
authors in [2] presented a modified Wi-Fi receiver with an
interleaver and a log-likelihood ratio mapping function, and
two radar pulse detection approaches that can mitigate the
radar interference. Much recent work has focused on the co-
design of the coexisting radar-communications systems [3]
(and references therein), with a particular focus on waveform
design. Many of these waveform design problems utilize the
characteristics of the other signal so as to improve each
system’s performance [4]-[7].

Before embarking in a full co-design, it is important to
assess the performance of unaltered systems and understand
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Figure 1: System diagram for co-existing systems.

what happens if the transmit sides of both systems are kept
unaltered, which is the main focus of this work. These insights
into the performance of unaltered systems can help guide
future research directions in co-design synergies. This invited
paper overviews the work of the Authors on the performance
limits of unaltered co-existing and interfering communications
and radar systems. The findings of this work are relevant
for systems where changing the hardware may be too costly,
but further digital signal processing of the baseband received
signal is viable.

This paper investigates the performance limits of (separate
and unaltered) radar and communications systems interfering
with one another as shown in Figure 1. Our contributions
are as follows. The error rate performance, the constellation
design, and the Shannon capacity of a communications system
in the presence of radar interference is presented in Section II.
The detection performance of a radar system with interfering
communications signals is presented in Section III. Section IV
concludes the paper.

II. PERFORMANCE BOUNDS OF A COMMUNICATIONS
SYSTEM CO-EXISTING WITH A RADAR SYSTEM

In this section, we first propose a model for radar inter-
ference to communications. We then investigate the error rate
performance of a single-carrier communications system suffer-
ing from the radar interference and propose two constellation
designs optimized for this particular system. Finally, we assess
the error rate performance of a multi-carrier system.

A. On Modeling the Channel

Radar systems periodically transmit radar pulses of large
amplitude and short duration while communications systems
send signals of significantly lower power, smaller bandwidth,



and 100% duty-cycle. This implies that a narrowband com-
munication system experiences the radar signal as an ap-
proximately amplitude-constant additive interference in the
frequency domain. This amplitude can be accurately estimated
from the knowledge of the slowly varying parameters of the
radar waveform in the frequency domain. The phase, however,
may change rapidly due to multipath propagation. It has been
shown in [8] that the joint distribution of the radar amplitude
and phase consists of a finite number of amplitudes, and
conditioned on the amplitude the phase can be considered
uniform. In general, one amplitude dominates the others, and
the radar signal’s joint distribution can be approximated by a
uniform phase at that deterministic dominant amplitude. With
these considerations in mind, we propose a simple model for
two coexisting systems that captures some key performance
bottlenecks and highlights various operating regimes.

B. Single-Carrier Communications Systems

In this section, for single-carrier communications systems
interfered by a radar signal, we first derive the Symbol Error
Rate (SER) for optimal and suboptimal detectors, and then
we present optimal signal constellation designs subject to two
different criteria: (a) to maximize the transmission rate under a
power budget and an SER constraint, and (b) to minimize the
SER under a power constraint and a fixed rate condition. We
conclude with the characterization of the Shannon capacity.

The discrete-time complex-valued received signal at the
communications receiver with pulsed radar interference is

Y =VSX +V1e’® + Z, (1)

where S is the average Signal-to-Noise Ratio (SNR) of the
communications signal, X is the equally-likely unit-energy
complex-valued transmitted symbol from the constellation
X = {x1,...,xp} of size M, | is the Interference-to-Noise
Ratio (INR) of the radar signal, © is the radar phase uniform
in [0,27), and Z is a zero-mean unit-variance proper-complex
Gaussian noise. The random variables (X, ©, Z) are mutually
independent and the pair (S, 1) is known and fixed.

Optimal Decoder: The likelihood function for the received
signal in (1) is given by the Rice-like distribution

TSR ()
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The optimal Maximum Likelihood (ML) receiver chooses the
following estimate of the transmitted symbol [9, Eq.(2)]

#OPD(y) := arg min |y—v/Sz|?—In I, (2\ﬂ|y—\@x|), (3)
TeEX

where I denotes the modified Bessel function of the first kind
of order zero. We can approximate the ML receiver in (3) in
two regimes (weak and strong radar interference) as follows.

Suboptimal Decoders: When | < S, we have Ip(z) = 1 for
|z| < 1[10, Eq.(9.6.12)], and thus the receiver in (3) chooses
an estimate
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Figure 2: SERs of all decoders for a 64-QAM at S = 20 dB.

That is, weak radar interference is treated as Gaussian noise.
The receiver in (4) is referred to as the Treat Interference as
Noise (TIN) decoder and its SER at low INR [11, Eq.(16)] is

%ZE@ Q( mm \/>cos( ))
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where dmin = ming.p2¢ |2x — 2¢| is the minimum Euclidean
distance between the constellation symbols.

When | > S, we have Io(z) = el*l for |z| > 1 [10,
Eq.(9.7.1)], and thus the receiver in (3) chooses an estimate

y) = argel)rclin (ly — VSz| — \/I)2 (6)
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The expression in (6) implies that the receiver attempts to
cancel the radar interference; in doing so, part of the com-
munications signal is also cancelled, and the channel reduces
to a real-valued phase-fading Gaussian channel as in (7). The
receiver in (7) is referred to as the Interference Cancellation
(IC) decoder and its SER at high INR [11, Eq.(21)] is
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Figure 2 plots the SER vs normalized INR in dB for the 64-
QAM constellation at S=20 dB. It shows that the SER of the
TIN and IC decoders in (5) and (8), respectively, yield fairly
tight upper bounds on the SER of the optimal ML decoder
in (3). The SER increases with | in the low INR regime and
reaches its highest at | = S, then it slightly decreases but does
not become 1 —1/M = 10799968 since the radar interference
can be canceled. Similar observations hold for all S’s and all
constellations. Notice that all three decoders exhibit the same
SER curves at low INR up to lgg = 0.1S4g = 2, marked by x.

Given that the channel with weak radar interference in (4)
still behaves as an AWGN channel, commonly-used modu-
lation schemes designed for the AWGN-only channel such as
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Figure 3: Designed constellations that minimize the SER in (9) at
Sas = 20 and lgg = 0.25S48, 1.4S4s and 2Sgs for M = 16.

QAM and PSK can still be used. However, those constellations
might not be suitable for the real-valued phase-fading channel
when the radar interference is strong as in (7). Thus, we
present next two constellation design approaches.
Constellation Design for Minimizing the Error Rate: The
constellation yielding the lowest error rate subject to fixed
constellation size M and power constraints is formulated as

POPD(M) = min  P,(X)
st. Exex[| X2 <1, |X] =M,

(9a)
(9b)

where P,(X) is the SER of the ML receiver for constellation
X. As there is no closed-form for the optimal SER, we use its
approximations in (5) at low INR and (8) at high INR in (9) to
optimize the location of the equally-likely constellation points.
Constellation Design for Maximizing the Transmission Rate:
Given constraints on the power and SER, the optimization
problem for the constellation with largest cardinality is

M©OPD(g) = max |X|
st. Exex[|X]?] <1, Po(X) <e.

(10a)
(10b)

Figure 3 shows the SER-minimized designed constellations
for M =16 at S = 20 dB and | = 5,28, 40 dB, representing
low, middle and high INR regimes, respectively. The designed
constellation is shaped as a concentric hexagon for | < S, and
morphs into an unequally-spaced PAM for | > S. At high INR,
one of the two real-valued dimensions is lost. Thus, it makes
intuitive sense that the points are placed along one dimension.

The constellations in Figure 3, compared to classical ones,
yield the lowest error rates at all INR ranges, though PAM
is quite competitive at high INR, as it can be observed in
Figure 4. This actually suggests that when a communications
system is interfered by a strong radar signal, it is not necessary
to design a constellation as PAM is sufficient when using
the IC decoder. The shapes of the designed constellations
maximizing the transmission rates are the same as the ones
minimizing the error rates, as seen in [12, Table II and III].
Note that even though PAM achieves comparable maximum
transmission rate as the (designed) uneven PAM at high INR,
the uneven PAM still outperforms PAM at high SNR.

Shannon Capacity: The insights that emerged from the
performance analysis of uncoded communications systems
align with those obtained when considering the Shannon
capacity of the channel model in (1).

The capacity achieving input distribution for this channel
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Figure 4: SER Comparison of the SER-minimized designed
constellations with classical ones for M = 16 and S = 20 dB.

has independent modulo and phase, where the phase is uni-
formly distributed in [0, 27) in [13]. The modulo is, however,
discrete with countably infinite many mass points but only
finitely many of them in any bounded interval. Hence, finding
the exact weight and location of the modulo mass points
corresponds to an infinite dimensional optimization problem.
Numerical evaluations [13, Section V] show that the capacity
can be well approximated by restricting the cardinality of the
amplitude mass points to some finite value that should increase
with the SNR. Also, a Gaussian distribution well approximates
the capacity, both in weak and strong radar interference
regimes [13, Section V]. Moreover, at high INR, in agreement
with (7), the capacity is equal to a half of the interference-
free complex-valued channel capacity, i.e. % log(1+S), and a
Gaussian distributed input achieves it [13, Theorem 2].

C. Multi-Carrier Communications System

OFDM-based systems have been widely used in current
high speed networks unlike narrowband single-carrier systems
as presented previously. Here we consider a general OFDM
communications system of N subcarriers and L OFDM blocks
with additive white Gaussian noise and radar interference.

In [12], we assumed that the OFDM receiver samples at
the sampling period of T's in synchrony with the transmitted
symbols, and the radar signal arrives randomly at the receiver
Ty seconds after the communications signal. The unknown
time delay T}; is modeled as uniformly distributed and causes
the received signal to be correlated in both time and frequency.
The optimal ML receiver decodes N subcarriers and L blocks
altogether. Suboptimal receivers are categorized based on what
correlation in the received signal is leveraged: the subt ime
decoder considers only the correlation in time; the subfreqg
decoder considers the correlation in frequency only; and the
subnone decoder considers the received signal as uncor-
related (symbol-by-symbol detector). The detailed channel
model is not reported here for sake of space, but can be found
in [12, Section III]. Note that fading was not considered.

The performance of the receivers in terms of BLock Error
Rate (BLER) and SER are given by [12, Eq.(35)-(37)], which
are evaluated via Monte Carlo simulation. Numerical results
concluded that the subfreqg decoder generally performs



slightly better than the subnone decoder but it does not
perform as well as the subtime decoder. This indicates
that accounting for time correlation (i.e. decoding several
OFDM blocks at once at the expense of increased complexity)
is critical for good performance. The use of the subtime
decoder is recommended if the computation time is a major
constraint since the computation time of the optimal decoder
increases with the constellation size. Note that the error rates
increase with the constellation size, and an increase in the
radar pulse width degrades the performance of the system.

D. Conclusions and Future Work

The error rate analysis showed that a single-carrier com-
munications receiver should treat the radar interference of
weak power as Gaussian noise, while the receiver should
estimate the radar interference of strong power and cancel
it. The latter, however, causes a loss of half the degrees of
freedom. The constellation designed by either minimizing the
error rate or maximizing the transmission rate tends to a
hexagonal shape in the weak radar regime, while it tends to
an unevenly-spaced PAM in the opposite regime. The received
signal at a multi-carrier OFDM communications receiver is
correlated in both time and frequency due to the unknown
time lag between radar and communications signals. The
suboptimal decoders are categorized into three types based
on the correlation. Numerical evaluations showed that the
suboptimal time-correlated receiver yields the lowest error rate
(slightly lower than the optimal one) among all the suboptimal
receivers. How these results change in the presence of coded
systems is an interesting area of future work.

III. PERFORMANCE BOUNDS OF A RADAR SYSTEM
CO-EXISTING WITH A COMMUNICATIONS SYSTEM

In this section, we consider the performance of a radar
system in the presence of interfering communications signals,
the complementary aspect of the analysis in Section II. We
first propose a statistical model for communications interfer-
ence to radar, motivated by existing theoretical models and
supported by original simulations. We then assess the impact
of communications interference on the probabilities of false
alarm and detection for a cell-averaging adaptive-threshold
radar detector—which is known to have a Constant False Alarm
Rate (CFAR) in AWGN only. Our results suggest potential
strategies for improving radar detection in the presence of
communications interference for future work.

A. On Modeling the Channel

A statistical distribution for the interference must be spec-
ified to model the effects of communications interference on
radar detection. Thus, we examine existing theoretical inter-
ference models before turning toward original simulations.

Theoretically, while some spectrum sharing studies (cf. [2])
assume a Gaussian model for communications interference
to radar, non-Gaussian models also have theoretical justifi-
cation in some scenarios. Theoretically justified non-Gaussian
interference models include the spherically invariant models
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Figure 5: Empirical kurtosis of simulated interference, compared
with kurtosis of four fitted models, for the case of single-user
OFDM with slow Rician fading and fixed location and path loss.

of [14], the alpha-stable models of [15], and the models
developed by Middleton in [16]. In addition, we have con-
ducted empirical simulation studies of wireless communica-
tions interference [17], and these also suggest both Gaussian
and non-Gaussian interference statistics, depending on the
situation. In our simulations, we assume perfect alignment of
radar and communications carrier frequencies. We generate
random OFDM communications signals, apply Rician fading,
apply a path loss model of (1 4+ r)~ as a function of
radial distance r (where v > 1 is a path loss exponent
depending on the particular propagation environment), sum the
results, and pass the composite received interference through a
linear frequency modulated (LFM) radar matched filter. Some
example statistical results are presented in Figure 5. As shown
in this figure, the compounding effects of OFDM signaling
and slow Rician fading lead to heavy-tailed statistics at the
output of the matched filter, which are well modeled by the K
distribution. Further, in other results we observe that when the
locations of the communications transmitters are randomized
(and hence path loss via the path loss function (1 + 7)~"),
even more heavy-tailed statistics can result. In general, we
find that non-Gaussian statistics may result from averaging
over random wireless channel and network effects, such as
multipath fading, transmitter motion, and transmitters turning
ON and OFF.

In conclusion, we propose the following Probability Density
Function (PDF) for the magnitude A; of the interference
output of the radar matched filter:

a 2a

Fasa) =) +p5p 5 (3 Koo (5 Jrosa), )

where p, a, and A are parameters of the distribution, §(-) is the
Dirac delta function, I'(-) is the Gamma function, K, () is a
modified Bessel function of the second kind, and the indicator
function equals one for non-negative values of its argument
and zero otherwise. This model subsumes several Gaussian
and non-Gaussian models as special cases.

B. Radar Receiver Operating Characteristic (ROC)

Using the statistical model (11) for wireless communi-
cations interference described in the previous section, we
assess the impact of such interference on radar detection.



Specifically, we compute the probability of false alarm (FPga)
and probability of detection (FPp) for a cell-averaging adaptive-
threshold radar detector operating in communications interfer-
ence modeled by (11).! The cell-averaging adaptive-threshold
detector makes decisions about whether a target is present
(Hy) or not (Hy) by comparing the matched filter output Y
in the delay-Doppler cell-under-test (CUT) with a threshold
set adaptively based on the sample average energy in the
matched filter outputs Yi,...,Yx in N neighboring delay-
Doppler cells:

N
17 ‘y|2 > T% Z?\/’Zl |Yn|27
Oa ‘le S T% Zn:l |YTL|27
where 7 is a design parameter related to the probability of

false alarm Ppy in AWGN only.
In (12), we model the N + 1 matched filter outputs

Py) = (12)

Y. Y1,...,Yn as
Y, = VIA; e’ + Z,, forn=1,..., N, (13)
v VIAei®r 4+ 7, under H, (14)
| VSei®s + V14,671 + Z, under Hy,

where S is the SNR; Og is a random signal phase uniform
on [0,27); | is the mean INR (“mean” since the interfer-
ence is modeled as random); A;, Az 1,...,A; n are random
interference amplitudes distributed according to (11), with
A set so that E[A?] = 1; ©7,011,...,07 x are random
interference phases uniform on [0,27); and Z,7,...,Zy
are i.i.d. circular Gaussian noise terms with mean-square of
unity. Finally, although in general the interference amplitudes
Ar,Ars,...,Ar v and phases ©7,0y 1,...,0; n could have
an arbitrary joint statistical behavior, for the sake of analytical
tractability we qualitatively bound this joint behavior using
the two extreme cases of: (i) One random realization of
A=A = - =A;yand O =071 = - =01 N
across all delay-Doppler cells (“slow” interference), and (ii)
N +1 i.i.d. realizations of both the amplitude and phase across
all cells (“fast” interference).

Based on this statistical model for the cell-averaging radar
detector (12), we compute its probability of false alarm Ppa =
E[¢(Y)|Ho] and probability of detection Pp = E[¢p(Y)|H1],
in order to assess how its detection performance varies with
the statistical characteristics of the interference. The details
of this derivation are presented in [17], and the complete
set of computed results is available in [18]. Here we simply
summarize the primary findings. Communications interference
impacts the cell-averaging radar detector (12) via two types
of mechanisms: (i) Model mismatch, and (ii) Boost in the
background noise level. We discuss each of these in turn.

Model mismatch: The cell-averaging detector (12) is de-
signed to maintain CFAR, assuming that any background
noise, clutter, and interference is well modeled as AWGN.

! Adaptive-threshold radar detectors such as this adjust a detection threshold
adaptively to maintain a steady false alarm rate, even when noise levels are
fluctuating.
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When the AWGN assumption is violated, through either non-
Gaussian statistics or non-white correlation in time, unex-
pected detection behavior can result.

The effects of non-Gaussian interference on radar detection
are illustrated in Figure 6. This figure shows the Pp-Ppa curves
for three non-Gaussian distributions (11) compared with a
Gaussian distribution with equivalent mean INR. In Figures 6—
7, each marker style corresponds to a fixed choice of the scalar
7 in (12) and indicates the drift in operating point caused
by violation of the Gaussian assumption.> As can be seen in
the figure, heavy-tailed non-Gaussian interference can cause
dramatic increases to the probability of false alarm Pga relative
to Gaussian interference with equivalent mean INR.

The effects of non-white interference on radar detection are
illustrated via the contrast between Figures 6 and 7, the former
corresponding to “fast” (white) interference, and the latter
to “slow” interference. In the specific calculations plotted in
Figures 6-7, notice that the deleterious effects of interference
are tempered by the slow coherence time of the interference
in the latter figure relative to the former. In any case, the

For example, if one had set 7 to achieve a probability of false alarm
Prpn = 107° under Gaussian interference, under heavy-tailed interference
with o = 0.2, one actually observes a probability of false alarm Prs ~ 1073,
as shown by the triangular markers in Figure 6.



response of the detector can vary significantly depending on
the coherence time of the interference.

Boost in the background noise level: Even when wireless
communications interference is well modeled as AWGN, it
still increases the background noise level, and this can cause
significant and insidious detection losses, even at relatively
low INR (e.g. about —6 to —2dB mean INR at the output of
the matched filter) (cf. [18]). This phenomenon is reminiscent
of results obtained experimentally by NTIA in [19], although
we note that potentially different system configurations and
definitions of INR make direct comparison difficult.

C. Conclusions and Future Work

Thus, both Gaussian and non-Gaussian statistical mod-
els may describe wireless communications interference, de-
pending on the modeling situation. When interference is
not well modeled as AWGN, mean INR is insufficient to
characterize interference effects on the cell-averaging radar
detector, and additional interference characteristics such as
kurtosis/impulsiveness and coherence time also impact radar
detection performance. Finally, communications interference
increases the background noise level, and this can cause
significant, insidious detection losses at relatively low INR.

Future work should examine innovative ways to improve
radar detection in the presence of wireless communications
interference. For example, when communications interference
is non-Gaussian, innovative adaptive thresholds (cf. [20]) and
non-linear alternatives to the matched filter (cf. [14], [21]-
[23]) may improve radar detection performance. In addition,
two of the Authors have submitted work for IEEE publication
that uses linear, periodically time-varying (LPTV) filtering to
effectively cancel a certain class of digital communications
interference to radar.

IV. CONCLUSIONS

This paper overviews known bounds on the performance
of an unaltered communications system interfering with a
radar system, and vice versa. These results will be used
to benchmark the performance of actual co-design schemes,
where both systems are altered in order to facilitate spectrum
sharing. Moreover, such co-designs — in which the commu-
nications and radar performance metrics should have well
defined operational meanings — will have to be compared
with the ultimate (Shannon-like) limits of co-existing systems
such as that initiated in [3]. This research was supported
by the National Science Foundation under the Enhancing
Access to Radio Spectrum (EARS) program, grant award
number 1443967 and 1443971. The contents of this article are
solely the responsibility of the Authors and do not necessarily
represent the official views of the NSF.
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