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Abstract—Spectrum sharing between radar and communica-
tions systems is currently under investigation because of the
high demand for new wireless services and shortage of available
bandwidth. To effectively design their coexistence, it is crucial
to understand how current unaltered radar and communication
systems would affect one another. This paper investigates the
effect of radar interference on an uncoded data communication
system where the optimal Maximum-A-Posteriori decoder is used
and where the bandwidth of the radar system is much larger than
the one of the communication system. Conclusions depend on
how the radar interference power, measured by the Interference-
to-Noise ratio (INR), compares with the intended signal power,
measured by the Signal-to-Noise ratio (SNR). For the case
of real-valued modulation schemes, three regimes emerge: (a)
Treat interference as Gaussian noise: when INR<SNR it is
optimal to use the threshold decoder for Gaussian noise only.
The probability of error increases with INR. (b) Interference
cancellation: when INR�SNR the optimal receiver estimates the
radar interference and subtracts it from the received signal; in the
process of canceling interference, part of the useful signal is also
cancelled, which reduces the effective SNR at the receiver. The
probability of error exhibits an irreducible error floor, which can
be exactly characterized and behaves like a narrow-band fading
channel with multiplicative fading that is perfectly known at the
receiver. (c) When INR≈SNR, the probability of error attains its
maximum value, thus indicating that there is a worst operating
INR for any given SNR.

I. INTRODUCTION

Due to limited spectrum resources and increasing demand
for wireless communications deployment, DARPA (Defense
Advanced Research Projects Agency) has launched the SS-
PARC (Shared Spectrum Access for Radar and Communi-
cations) program to encourage research in this direction [1].
The NSF (National Science Foundation) also has a dedicated
crosscutting program for Enhancing Access to the Radio
Spectrum [2], [3]. The spectrum of interest for sharing is
the S-band (2-4 GHz), in which several radar systems (i.e.,
air surveillance and weather) and wireless communication
systems (i.e., Wi-Fi and WLAN) operate. The economical
implications of successful spectrum sharing, as well as the
technical challenges of maintaining integrity under spectrum
sharing for each individual system, are difficult to understate.

A. Past Work
The effects of interference between radar and commu-

nications systems were already considered in the 50s [4],
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but have only recently really come to the forefront because
of the many-fold increase of wireless data traffic due to
smartphones, tablets and real-time video streaming. The
longer term goal may be to modify radar and communications
systems to co-exist (see [5] and references therein). However,
to effectively design co-existence systems, it is also important
to first understand the impact of unaltered systems on one
another. In this vein, there are two important avenues to visit:
how communications signals affect the performance of radar
systems [6]–[12], and the reverse: how radar signals affect the
bit error rate (and other metrics) of communications signals.
This paper is interested in analytically characterizing the latter;
we hence expand only upon the prior work in this domain, of
which there is relatively little, to the best of our knowledge.

In [13], the authors simulate the effect of a rotating radar
on a WiMax receiver, demonstrating the effect on bit and
packet error rates, and [14] qualitatively proposes a model
for how radar receivers may saturate the receivers of other
services. In [15], coexistence issues for WiMax and radar
systems in the S-band are again discussed qualitatively. In [16]
the feasibility of dynamic spectrum sharing between air traffic
control radar and wireless communications systems is inves-
tigated via a numerical simulation. In [17] spectrum sharing
between multiple-input multiple-output (MIMO) radar system
and a communication system modeled as MIMO interference
channel is considered, where a zero-forcing precoder for radar
transmitter which completely eliminates the radar interference
to communication users is proposed and the impact on both
the radar and communication systems is investigated.

While Bliss et al. venture into the theoretical analysis which
looks at a tradeoff between communications information rate
and a novel radar estimation rate [18], [19], we are not aware
of an analytical model available to justify and predict the
effect of unaltered radar interference on the bit error rate for
communication systems. This is what we pursue.

B. Contributions

Our approach to understanding the co-existence between
radar and communications systems is to first derive and
analyze the optimal performance of a communication system
in the presence of an unaltered radar system. We are not
aware of any other works which attempt such an analytical
characterization.

To do so, we need a tractable model. Radar signals typically
consist of periodic pulses of large amplitude and short dura-



tion, while communication signals usually have significantly
lower power levels, 100% duty cycle and much smaller
bandwidth. This implies that each narrowband subcarrier in
an OFDM-based communication system experiences the radar
interference as an approximately amplitude-constant additive
interference. This amplitude can be accurately estimated from
the knowledge of the (slowly varying) parameters of the radar
waveform and the relative geometry between the radar trans-
mitter and the communication receiver. The phase however
changes very rapidly due to multi-path propagation; the worst
case scenario is when such a random phase is uniformly
distributed. With these considerations in mind, we build a
simple model for when a radar and a communications system
operate in the same frequency band, which captures some
key performance bottlenecks and highlights different operating
regimes. Extensions are discussed in the conclusion.

The major contributions of this work are as follows. For
an uncoded BPSK (Binary Phase Shift Keying) communica-
tion scheme with AWGN (Additive White Gaussian Noise)
and additive interference, with known constant amplitude
and unknown random phase uniformly distributed in [0, 2π],
we analyze the BER (Bit Error Rate) performance for an
optimal MAP (Maximum-a-Posteriori) decoder. We identify
three different regimes of operation depending on the relative
value of the radar interference power, measured by the INR
(Interference to Noise Ratio), and the intended signal power,
measured SNR (Signal to Noise Ratio). They are:

1) Treat interference as Gaussian noise: when INR ≤ SNR
we show that it is optimal to use the BPSK threshold
decoder as if the interference were Gaussian noise. This
is optimal when INR = 0 and intuitively it should be
optimal for small INR. What is interesting here is that
the ‘small INR’ regime actually encompasses the whole
interval INR ∈ [0,SNR]—at least for sufficiently large
INR and SNR, but it is actually slightly larger for small
SNR. As expected, the BER increases with INR and this
increase can be exactly characterized.

2) Interference cancellation: when INR � SNR we show
that it is optimal at the communication receiver to
estimate the phase of the radar interference (as the phase
of the received signal) and subtract its contribution from
the received signal. Intuition would suggest that when
INR is huge compared to all other signals in the systems,
its contribution could be perfectly cancelled and thus
the BER performance would be as if again INR = 0
(in line with the capacity achieving scheme for the two-
user interference channel in the very strong interference
regime [20]). What is interesting here is that, in the
process of canceling the radar interference, part of the
useful signal is also cancelled. This in turn reduces the
effective SNR at the communication receiver and thus
the BER exhibits an irreducible error floor in the limit
for INR → ∞. This error floor is exactly characterized
here and it effectively behaves as if the desired signal is
affected by a multiplicative/narrow-band fading known
perfectly at the receiver.

3) Intermediate regime: when INR u SNR, the BER attains
its maximum value, thus indicating that there is a worst
operating INR for any given SNR.

In a nut-shell, what the analysis points out is that the effect
of a wide-band additive radar interference, of much larger
power than the communication data signal, under optimal
MAP receiver is the same as that of a multiplicative/narrow-
band fading known perfectly at the receiver. This provides
a nice model for spectrum sharing that can benefit for the
large body of work already done for narrow-band fading
channels with fading known perfectly at the receiver [21].
The difference here, compared to standard fading models, is
that the multiplicative interference is distributed as the cosine
square of a uniformly distributed random variable. This type
of fading distribution has not been extensively studied except
for the capacity of the “phase-noise non-coherent” Gaussian
fading channel, for which the capacity achieving distribution is
known to be discrete with countably infinite mass points [22],
and whose asymptotic capacity when SNR is very large scales
as 1/2 · log(1 + S) as opposed to the coherent case capacity
that scales as log(1 + S) [23].

The paper is organized as follows. The system model is
presented in Section II. The optimal BER for a BPSK MAP
decoder is discussed in Section III. Section IV concludes the
paper.

II. SYSTEM MODEL

As per the discussion in Section I, the effect of a short duty-
cycle radar pulse on a narrowband data communication system
can be modeled as follows. At the communication receiver, the
discrete-time complex-valued received signal is

Y =
√
SX +

√
IejΘ + Z, (1)

where X is the transmitted symbol from the constellation X =
{x1, ..., xN} of unit energy and equally likely points, Θ is the
random phase of the radar interference uniformly distributed
in [0, 2π], and Z is a zero-mean unit-variance proper-complex
Gaussian noise. The random variables (X,Θ, Z) are indepen-
dent. For the (without loss of generality) normalizations used
in this paper, S is average SNR at the communication receiver,
while I is the average INR. In the following we assume that
the pair (S, I) is known at the receiver and fixed.

Our goal is to understand the average probability of error
Pr[X 6= X̂], where X̂ is the estimate at the communication
receiver of the transmit signal X , for the AWGN with additive
radar interference in (1).

III. OPTIMAL MAP DECODER AND ERROR RATE
ANALYSIS

Let the channel conditional distribution be indicated as

fY |X,Θ :=
1

π
e−|Y−

√
SX−

√
IejΘ|2 .

The optimal MAP receiver, when the received signal is Y = y,
chooses as estimate of the transmit constellation point

ˆ̀(y) = arg max
`∈[1:N ]

Pr[X = x`|Y = y]



= arg max
`∈[1:N ]

EΘ[fY |X,Θ(y|x`,Θ)]

= arg min
`∈[1:N ]

(
|y −

√
Sx`|2 − lnEΘ[e2<{(y−

√
Sx`)
√
Ie−jΘ

]
)

= arg min
`∈[1:N ]

(
|y −

√
Sx`|2 − ln I0(2

√
I|y −

√
Sx`|)

)
,

where I0 is the modified Bessel function of the first kind of
order zero, which satisfies [24, eq(9.7.1)]

I0(z) =
ez√
2πz

(
1 + o(1)

)
for z →∞, z ∈ R+. (2)

For simplicity in the following we consider the BPSK case,
that is, X = {+1,−1} with equal probability, but the analysis
extends to a general real-valued modulation scheme. In this
case the MAP implements the function

B̂(y) =

{
0 LLR(y) > 0

1 LLR(y) ≤ 0
: (3)

where the log-likelihood ratio LLR(y) is

LLR(y) = ln
Pr[B = 0|Y = y]

Pr[B = 1|Y = y]
= ln

fY |B(y|0)

fY |B(y|1)
(4)

= ln
E
[
fY |B,Θ(y|0,Θ)

]
E
[
fY |B,Θ(y|1,Θ)

] (5)

=
(
|y −

√
S|2 − ln I0(2

√
I|y −

√
S|)
)

(6)

−
(
|y +

√
S|2 − ln I0(2

√
I|y +

√
S|)
)

(7)

= 4
√
Syre + g(y), (8)

with yre := <{y}, yim := ={y}, and g(y) is expressed as

g(y) = ln I0

(
2
√
I |y −

√
S|
)
− ln I0

(
2
√
I |y +

√
S|
)

(9)

= 2
√
I (|y −

√
S| − |y +

√
S|) + o(1) (10)

= −4
√
Syre ·

2
√
I√

D1 +
√
D2

+ o(1), (11)

D1 := |y −
√
S|2 = (yre −

√
S)2 + y2

im, (12)

D2 := |y +
√
S|2 = (yre +

√
S)2 + y2

im, (13)

where in (10) we used the asymptotic expansion in (2) where
it is assumed that I� S� 1 and I→∞, and thus as a result,
the optimal LLR can be approximated as

LLR(y) ≈ LLR(y) := 4
√
S yre

(
1− 2

√
I√

D1 +
√
D2

)
, (14)

where D1 and D2 are defined in (12) and (13), respectively.
For the BER analysis we shall use the detector based on
LLR(y) to upper bound the optimal probability of error.
Clearly, from (14) we see that the optimal LLR for I� S� 1
performs a subtraction that can be thought of as interference
cancellation. It is instructive at this point to plot the optimal
decoding regions based on (9), and to numerically evaluate the
BER performance.

Fig. 1(a) shows the optimal decision regions based on (8),

with g(.) given in (9), in the plane (yre, yim) for S = 5 dB
and I = 6 dB; while Fig. 1(b) shows the approximately
optimal decision region based on (14). We would like to draw
the reader’s attention to the ellipsoidal-like region around the
origin in Fig. 1. When SNR ≥ INR (a case not reported here
for sake of space), such ellipsoidal-like region do not exist and
the decision regions are determined solely by sign(yre), as for
the case of AWGN only. Only when SNR < INR those regions
may appear; in this case it is interesting to note that within
the ellipsoidal-like region the decision variable is −sign(yre),
while outside the decision variable is +sign(yre). This may be
seen analytically by working out the condition under which
the expression in (14) has the same sign as sign(yre), which
results in the ellipse 1 <

y2
re
I +

y2
im

I−S . The ellipsoidal-like
region enlarges as INR increases; for large enough INR, the
decision regions for the optimal and suboptimal decoders are
almost undistinguishable, thus attesting to the tightness of the
approximation in (14) for I� S� 1.

Fig. 2 shows the BER performance for the optimal decoder
in (8), the suboptimal decoder in (14), and the baseline AWGN
decoder based on sign(yre), as a function of I for a fixed S.
Also shown are the asymptotic BER values for I = 0 and
I → ∞. We point out that for higher S values the difference
in performance between the optimal decoder in (9) and the
suboptimal in (14) vanishes, as in this high SNR regime the
approximation used for (11) becomes tighter and tighter. We
notice that the optimal BER is not monotonic in I for a fixed
S: it increases from its lower bound value Q(

√
2S) when I = 0

up to about I = 7.5 dB (1.5 times the value of SNR in dB),
then it decreases and flattens out to E[Q(

√
2S cos2(Θ))], as

we shall show later. It can be seen that at around INR ≈
SNR, the probability of error reaches its maximum value. The
interesting observation is hence that the BER for I→∞ does
not fall back to its I = 0 value, as one could have thought
based on the intuition that a very strong interference could be
estimated perfectly and thus subtracted off the received signal.
If, at very high INR, the interference cancellation intuition
is correct, then the ‘error floor’ in the BER means that the
cancellation operation completely removes the interference but
in the process also removes part of the useful signal. We
mathematically formalize this intuition next.

The optimal BER can be bounded as follows

Pr[error] = Pr[X̂ 6= 1|X = 1] (15)
= Pr[LLR(Y ) < 0|X = 1] (16)
≤ Pr[LLR(Y ) < 0|X = 1] (17)

= Pr

[
Yre

(
1− 2

√
I√

D1 +
√
D2

)
< 0|X = 1

]
(18)

≈ Pr[cos2(Θ)
√
S + Z ′ < 0] (19)

= E[Q(
√

2S cos2(Θ))], (20)

where the approximation in (19) comes from considering the
Taylor expansion of the optimal LLR at I → ∞ and finding
that the equivalent real-valued noise Z ′ in this regime, for



(a) Optimal decision regions. (b) Approximately optimal decision regions.

Fig. 1. Optimal and approximately optimal decision regions for BPSK signaling in the plane (yre, yim) for S = 5 dB and I = 6 dB.

Fig. 2. BER for BPSK with S = 5 dB vs. I in dB.

fixed Θ, is

Z ′ := cos2(Θ)Zre + sin(Θ) cos(Θ)Zim

∼ N (0, 1/2 · cos2(Θ))

and where N (·, ·) denotes the real-valued Gaussian distribu-
tion and Q(·) the Q-function. The expression in (20) matches
the numerical evaluation and shows that

lim
I→∞

Pr[error] = E[Q(
√

2S cos2(Θ))]. (21)

The BER expression in (21) can be interpreted as follows.
The effect of a wide-band additive radar interference, of
much larger power than the communication data signal,
under the optimal MAP receiver is the same as that of
a multiplicative/narrow-band fading known perfectly at the
receiver. This provides a nice model for spectrum sharing that
can benefit for the large body of work already done for narrow-

Fig. 3. BER vs. S and I in dB.

band fading channels with fading known perfectly at the
receiver [21]. The difference here, compared to standard fading
models, is that the multiplicative interference is distributed as
the cosine square of a uniformly distributed random variable
—as opposed to Rayleigh or Rice distributed one.

Similarly to Fig. 2, which shows a log-scale BER vs. I in dB
(normalized by S in dB), Fig. 3 shows the BER in linear scale
versus S and I in dB for the optimal MAP decoder. It can be
seen that at fixed SNR (dB), the BER increases with INR (dB)
up to some point around INR (dB) ≈ SNR (dB) then the BER
starts to decrease and flattens out to the asymptote given in
(21). Note also the ridge around INR = SNR (an undesirable
operating point) and that along this ridge, as expected, as SNR
increases, the probability of error decreases.

As mentioned previously, the error rate analysis extends
verbatim to a general real-valued constellation. Fig. 4 shows
the symbol error rate vs. I of an 8-PAM modulation with S =



Fig. 4. BER for 8-PAM with S = 10 dB vs. I in dB.

10 dB. It can be seen that the probability of error behaves as in
AWGN for I ≤ S and that it has an ‘error floor’ for I� S� 1;
this ‘error floor’ is exactly determined by the average error rate
of the fading channel

√
2 cos2(Θ)X + Z, Z ∼ N (0, 1) and

admits an expression similar to the one in (21) for the BPSK
case. At IdB ≈ 2SdB, the error probability attains its maximum
value.

IV. CONCLUSIONS

In this paper, we studied the error rate performance
of uncoded real-valued modulation schemes in a complex-
valued Gaussian channel with additive constant-amplitude
and random-phase radar-induced interference. We derived the
expression for the optimal MAP decoder and we gave a
tight, simple, closed-form asymptotic expression in the regime
where the radar interference power is much larger than the
SNR of the intended signal. Interestingly, we showed that
the probability of error exhibits an irreducible error floor,
which can be exactly characterized and behaves like a narrow-
band fading channel with multiplicative fading that is perfectly
known at the receiver.

Going forward, we believe that similar conclusions apply to
general complex-valued (uncoded) modulation schemes. When
considering actual wireless fading channels, this seems to
imply that the channel model of interest, from the point of
view of the communication receiver, is that of a narrowband
fading model where the effective fading is the product of two
terms: one corresponding to the classical (say Rayleigh or
Rice) fading for the SNR, and the other due to the radar
interference cancellation. Analysis of this model, as well as
extensions to multi-channel/OFDM channel, channel-coded
systems and multi-user channels, are interesting avenues of
current investigation.
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