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Abstract—Achievable error exponent regions of a two-way
additive white Gaussian noise (AWGN) channel, where two
terminals exchange a fixed number of messages M , are derived.
In particular, error exponent regions for M = 2 messages under
expected power and M = 3 messages under almost sure power
constraints are considered. For M = 2 messages the use of active
feedback is shown to lead to an error exponent gain over that
when feedback / interaction is ignored. For M = 3 messages and
asymmetric channels, it is shown that the error exponent of the
weaker channel may be improved through active feedback, at the
expense of a decreased error exponent of the stronger direction.
This may, for sufficiently asymmetric channel gains, outperform
the error exponent region achieved by having both terminals
operate independently of one another (ignoring the possibility of
sending feedback for the other).

I. INTRODUCTION

Error exponents characterize the rate of decay of the prob-
ability of error with blocklength as a function of the channel
parameters and number of messages (or rate). Here, we focus
for the first time on the two-dimensional error exponent region
of the two-way additive white Gaussian noise channel

Y1 = X1 +X2 +N1, N1 ∼ N (0, σ2
1) (1)

Y2 = X1 +X2 +N2, N2 ∼ N (0, σ2
2) (2)

where for i = 1, 2, Xi ∈ R are the channel inputs, Yi ∈ R are
the channel outputs and Ni are independent Gaussian noises
each independent and identically distributed. In a two-way
AWGN channel two terminals exchange messages through a
shared channel, and channel inputs at time i may be a function
not only of the messages, but also of the past channel outputs
available at that terminal (termed interaction, or adaptation).

When the additive Gaussian noises are independent and
memoryless, the two-dimensional capacity region decomposes
into two parallel one-way, interference-free channels, forming
a rectangular capacity region. Interaction, or adapting current
channel inputs to past channel outputs, does not increase
the capacity region. Similarly, in the one-way memoryless
AWGN channel, feedback (even perfect) does not increase the
capacity region. However, it is known that perfect feedback
can dramatically increase the error exponents of the one-way
channel [1]–[3], and that even noisy feedback may do so in
some scenarios [4]–[7] (to be described in detail later).
In a two-way setting, data and potential “feedback” share
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the same time, frequency, and power resources over noisy
channels. The central question is whether interaction may
improve the two-way error exponent region over that where
the two directions act as two one-way channels (no feedback is
sent). We address this problem at zero-rate, where M = 2 and
M = 3 messages are transmitted by each user. A full version
of this paper with proofs in the Appendix is accessible at:
https://www.ece.uic.edu/bin/view/Devroye/Publications

A. Past work: AWGN error exponents at zero rate

Shannon [8] demonstrated that one can transmit at positive
rates R while guaranteeing that the probability of error Pe(n)
tends to zero as the blocklength n → ∞, and defined the
reliability, or error exponent, for a channel at rate R as:

E(R) = lim
n→∞

− 1

n
logPe(n) (3)

where Pe(n) is the smallest probability of error that can be
achieved by a code of rate R with blocklength n. Let Xi,k

denote the input of terminal i at time k. Two types of power
constraints are commonly considered:
• Almost sure (AS) power constraint:

∑n
k=1X

2
i,k ≤ nP ,

• Expected (EXP) power constraint: E
[∑n

k=1X
2
i,k

]
≤ nP .

To the best of our knowledge, error exponents for the two-
way AWGN channel have not been studied. Most related is
the work on error exponents of the one-way AWGN channel at
zero rate; we omit the large body of work on one-way AWGN
channels with feedback at positive rates, see for example [9],
[10] and the references therein.

For the transmission of M messages, let EFB

(
M, Pσ2 ,

PFB
σ2

FB

)
denote the error exponent of a one-way channel with noisy
feedback (FB) and forward and back channel SNRs of P

σ2 , and
PFB
σ2

FB
. We drop the third argument and the subscript for channels

without FB, and use the super-scripts AS,EXP to denote the
power constraint. Shannon [11] demonstrated achievability of
the following exponent for AS power constraints for a one-way
channel without FB using a simplex code:

EAS
(
M,

P

σ2

)
=

P

σ2

M

4(M − 1)
. (4)

While it is known that feedback cannot improve the capacity
of memoryless channels, Pinsker [3] showed that the use of
noiseless feedback (σ2

FB → 0) improves the error exponent for
any fixed M ≥ 3 up to P

2σ2 . This is not the case for M = 2,



since for binary transmission no improvements are possible
for an AS power constraint even with perfect feedback [12].

More relevant to the study of two-way AWGN channels are
one-way AWGN channels with noisy feedback, as studied by
Yamamoto and Burnashev [7], [13]–[15] and Kim et al. [4]–
[6] for M = 2 and M = 3, using active (receiver may encode
information to be sent over the feedback link) and passive (no
encoding, simply sends the output) feedback.

1) Error exponents for M = 2: We outline results for active
feedback, as this is most relevant to the two-way channel
where re-encoding in the reverse link is natural (and may
mimic passive). Kim et al. [5] showed for the channel in Fig.
1, that for an EXP power constraint in the forward, and either
AS or EXP power constraints on the FB link, achievable and
inachievable error exponent expressions are:
1) AS power constraint:

∑n
k=1 g

2
k(Y k) ≤ nPFB

EAS
FB

(
2, P, σ2, PFB, σ

2
FB

)
≥ P

2σ2
+

2PFB

σ2
FB

(5)

EAS
FB

(
2, P, σ2, PFB, σ

2
FB

)
≤ P

2σ2
+

2
√

(PFB + σ2
FB)PFB

σ2
FB

(6)

2) EXP power constraint: E
[∑n

k=1 g
2
k(Y k)

]
≤ nPFB

EEXP
FB

(
2, P, σ2, PFB, σ

2
FB

)
≥ 2P

σ2
+

2PFB

σ2
FB

(7)

EEXP
FB

(
2, P, σ2, PFB, σ

2
FB

)
≤ (8)

(
√
P + σ2 +

√
P )2

σ2
+

(
√
PFB + σ2

FB +
√
PFB)2

σ2
FB

Fig. 1. One-way AWGN channel with Active Noisy Feedback

2) Error exponents for M ≥ 3: Kim et al. [6] stud-
ied the reliability for M ≥ 3 messages subject to
the Peak Energy constraint (PE) on the forward channel,
Pr
{∑n

i=1 f
2
i (m, Ỹ i−1) ≤ nP

}
= 1,∀m ∈ {1, 2, ...,M},

and passive feedback, demonstrating:

EPE
FB

(
M,

P

σ2
, s

)
≥ P

2σ2

(
1− 3(M − 2)

M(s2 − 2s+ 4) + 3(M − 2)

)
,

(9)
where parameter s ∈ [0, 1] characterizes the feedback noise
variance σ2

FB(s). For M = 3 a sufficiently small σ2
FB(s) < 1

4 ,
yields a gain over the non-feedback error exponent of Eq. (4).

II. DEFINITIONS

We study the two-way AWGN channel [16], [17] of Fig-
ure 2, where messages transmitted from the i-th terminal
(i ∈ {1, 2}) are denoted by Mi, selected uniformly from
Mi := {1, 2, · · · ,M}, and transmitted to terminal 3− i. The
channel model in (1)-(2) may be equivalently represented as

Fig. 2. Two-Way AWGN Channel Model.

Y2 = X1 + N2, Y1 = X2 + N1 since each user knows its
own transmission and hence may subtract it. Let Xk

i denote
the sequence of xi variables of length k, where this length k
should be clear from context.

A
(
P1

σ2
2
, P2

σ2
1
, n
)

blocklength-n code consists of two en-
coding and two decoding rules. Each terminal’s encoding
rule comprises a set of n functions xi,k : {1, 2, ...,M} ×
Y k−1i → Xi, k = 1, ...n, leading to the k-th channel inputs
Xi,k = xi,k

(
Mi, Y

k−1
i

)
, subject to either EXP or AS power

constraints of Pi in each direction. The decoding rule for the i-
th terminal φi estimates the received message based on Y ni as:
φi : Yni ×Mi →M3−i, i = 1, 2. Let PXe12

(
M, P1

σ2
2
, P2

σ2
1
, n
)

=∑
m1,m2

Pr(φ1(yn1 ,m1) 6= m2|m1,m2 sent) and similarly

PXe21

(
M, P1

σ2
2
, P2

σ2
1
, n
)

denote the probability of error in the
forward and backward directions simultaneously achieved by a
particular (P1

σ2
2
, P2

σ2
1
, n) code subject to X ∈ {AS,EXP} power

constraints for the two-way AWGN channel.

Definition 1. A pair of error exponents(
E12

(
M, P1

σ2
2
, P2

σ2
1

)
, E21

(
M, P1

σ2
2
, P2

σ2
1

))X
is called achievable

at zero rate under X power constraint for the two-way
AWGN channel, if there exists a

(
P1

σ2
2
, P2

σ2
1
, n
)

code such that
for large n, simultaneously

− 1

n
logPXe12

(
M,

P1

σ2
2

,
P2

σ2
1

)
> E12

(
M,

P1

σ2
2

,
P2

σ2
1

)
, and

(10)

− 1

n
logPXe21

(
M,

P1

σ2
2

,
P2

σ2
1

)
> E21

(
M,

P1

σ2
2

,
P2

σ2
1

)
. (11)

Definition 2. The error exponent region for the two-way
AWGN channel at zero rate corresponds to the union over
all achievable error exponent pairs (E12, E21)X , where we
will often drop the arguments of Eij for notational simplicity.

III. CONTRIBUTIONS

The study of two-way error exponents highlights the tension
between the dedication of resources to one terminal’s own
transmission versus the interactive encoding of the message
and received signals to possibly aid in the transmission of the
other terminal’s message (through, for example, feedback).
Improving the other user’s error exponent may come at the
price of reducing one’s own. This setting differs from one-
way settings where all resources are exclusively used to
communicate one message. Our results – an initial charac-
terization of two-way error exponents at zero-rate – rely on
carefully tailored schemes for one-way communications with
feedback. We summarize the main propositions next, some are



immediately obvious, and further details are provided in the
Appendix of the longer online version.

One simple achievability scheme for both transmitters to act
as two one-way channels, with no power allocated to FB.

Proposition 1. Under both AS and EXP power constraints the
following error exponents are achievable

E12

(
M,

P1

σ2
2

,
P2

σ2
1

)
≥ P1

σ2
2

M

4(M − 1)
, (12)

E21

(
M,

P1

σ2
2

,
P2

σ2
1

)
≥ P2

σ2
1

M

4(M − 1)
. (13)

This proposition follows directly from Shannon [11].

A simple upper bound for the AS power constraint is
obtained by providing perfect output feedback information
to both transmitters (like two one-way channels with perfect
feedback). This yields the outer bound region below.

Proposition 2. The error exponent region for AS power
constraints is bounded by:

EAS
12

(
M,

P1

σ2
2

,
P2

σ2
1

)
≤ P1

2σ2
2

, EAS
21

(
M,

P1

σ2
2

,
P2

σ2
1

)
≤ P2

2σ2
1

.

We conclude from Proposition 1 and 2, that the error
exponent region for M = 2 subject to an AS power constraint
corresponds exactly to the one obtained by non-feedback
transmission in each direction. For the EXP power constraint,
Proposition 1 and the following Proposition 3, in which Kim et
al’s achievability scheme [5] for a one-way noisy FB channel
is time-shared in the two directions, are the best error exponent
regions the authors have been able to derive to date.

Proposition 3. An achievable error exponent region for M =
2 under EXP power constraints is the union over all error
exponent pairs (E12, E21)EXP over λ ∈ [0, 1] for which:

EEXP
12

(
M = 2,

P1

σ2
2

,
P2

σ2
1

)
≥ λK1

2P1

σ2
2

+ (1− λ)J2
2P2

σ2
1

(14)

EEXP
21

(
M = 2,

P1

σ2
2

,
P2

σ2
1

)
≥ λK2

2P2

σ2
1

+ (1− λ)J1
2P1

σ2
2

(15)

for K1,K2 ∈ [0, 1
λ ] and J1, J2 ∈ [0, 1

1−λ ] such that λKi +
(1− λ)Ji ≤ 1 for i = 1, 2.

For M = 3 messages we consider asymmetric P1

σ2
2
< P2

σ2
1

as we have been unable to yield gains over Proposition 1 for
symmetric SNRs. Noisy feedback appears to need to be much
less noisy than the direct link to provide gains [6].

Proposition 4. An achievable error exponent region for M =
3 under an AS power constraint and using passive feedback
is the union over all error exponent pairs (E12, E21)AS over
λ, λ1, s ∈ [0, 1] satisfying:

EAS
21

(
M = 3,

P1

σ2
2

,
P2

σ2
1

)
≥ 3

8
λ
P2

σ2
1

(16)

EAS
12

(
M = 3,

P1

σ2
2

,
P2

σ2
1

)
≥ (17)

min

{
P1

σ2
2

λ1(s2 − 2s+ 4)

8
,
P2

σ2
1

3s2λ1(1− λ)

32
,
P1

σ2

(
1− λ1

4

)
2

}
.

The last expression may be reduced by equating terms 1 and
3, leaving λ1 as a function of s as λ1 = 4

s2−2s+5 , yielding:

EAS
12

(
M = 3,

P1

σ2
2

,
P2

σ2
1

)
≥ (18)

min

{
P1

σ2
2

(
s2 − 2s+ 4

2(s2 − 2s+ 5)

)
,
P2

σ2
1

3s2(1− λ)

8(s2 − 2s+ 5)

}
.

The above follows from using a non-feedback transmission
for M2 in λn channel uses, and [6] (Section II-B) for M1 in
the remaining (1− λ)n channel uses.

Proposition 5. An achievable error exponent region for M =
3 under an AS power constraint and using active feedback is
the union over all error exponent pairs (E12, E21)AS over all
λ ∈ [0, 1] and s ∈ [0, 1] satisfying:

EAS
21

(
M = 3,

P1

σ2
2

,
P2

σ2
1

)
≥ 3

8
λ
P2

σ2
1

(19)

EAS
12

(
M = 3,

P1

σ2
2

,
P2

σ2
1

)
≥

min

{
P1

σ2
2

(
1

2

s2 − 2s+ 4

s2 − 2s+ 5

)
,

3

8
(1− λ)

P2

σ2
1

}
. (20)

An inachievability outer bound for M = 2 under EXP
power constraints follows directly from using the outer bound
for the one-way channel using active feedback of [5] in each
direction, as in (8). This appears to be loose.

Proposition 6. An outer bound on the error exponent region
for M = 2 under EXP power constraint corresponds the union
over all error exponent pairs that satisfy:

EEXP
12

(
M = 2, P1, σ

2
2 , P2, σ

2
1

)
≤ (21)(√

P1 + σ2
2 +
√
P1

)2
σ2
2

+

(√
P2 + σ2

1 +
√
P2

)2
σ2
1

EEXP
21

(
M = 2, P1, σ

2
2 , P2, σ

2
1

)
≤ (22)(√

P2 + σ2
1 +
√
P2

)2
σ2
1

+

(√
P1 + σ2

2 +
√
P1

)2
σ2
2

.

IV. SKETCH OF MAIN RESULT: PROPOSITION 5

For the channel in Figure 2, with P2

σ2
1
> P1

σ2
2

, an AS power
constraint, consider a two-phase transmission scheme of n
channel uses split as in Figure 3, where λ, λ1, λ2 ∈ [0, 1],
and λ3 = 1− λ1 − λ2.

Fig. 3. Time-sharing approach for the transmission of M1 and M2.

Then, we define the simplex code C (Ω, Eω) for the trans-
mission of three symbols ω ∈ Ω := {ω1, ω2, ω3} from the i-th



transmitter with stage duration j, using symbol energy Eω and
as the code with codewords Xj

i (ω) of length j:

Xj
i (w) =


√
Eω · (0, 1, 0, ..., 0), if ω = ω1
√
Eω · (−

√
3

2 ,− 1
2 , 0, ..., 0), if ω = ω2

√
Eω · (+

√
3

2 ,− 1
2 , 0, ..., 0), if ω = ω3

. (23)

For the first λn channel uses, terminal 2 uses code
C (M2, λnP2) to transmit m2 ∈M2 = {1, 2, 3} as codewords
Xλn

2 (m2) over the stronger link, yielding E21

(
M, P1

σ2
2
, P2

σ2
1

)
=

3
8λ

P2

σ2
1

, from (4). The remaining power of (1− λ)nP2 is used
to provide feedback for the transmission of M1. The latter
involves (1−λ)n channel uses over three stages: transmission,
active feedback, and retransmission, as in Figure 3.

Transmission: During (1 − λ)nλ1 channel uses, message
m1 is transmitted as codeword Xλ1n

1 (m1). The encoder of
terminal 1 uses the simplex code C (M1, λ1nP1). The signal
received at terminal 2 is decoded using a protection region for
each transmitted codeword (see Fig. 5 in [6]), parametrized
by s ∈ [0, 1]. A transmission error in this stage occurs if yλ1n

2

is received in the wrong protection region or between the two
wrong codewords 2 and 3 (that is within A′23; WLOG assume
m1 = 1 is sent), then let this error event be denoted as ET .
The achievable error exponent of this stage is derived from
P(ET ) as in Eq. 7 of [6] as:

lim
n→∞

− 1

n
log (P(ET )) := EET ≥

λ1P1

8σ2
2

(s2 − 2s+ 4). (24)

Active feedback: If the received signal is not within a
protection region then terminal 2 determines that the true
message could be one out of two possible candidates, namely,
one of the most likely codeword pair q = {m̂11 , m̂12}. Then,
for A′12, A

′
13, A

′
23 defined as in [6, Fig. 5] we set:

q =


{1, 2}, if yλ1n

2 ∈ A′12
{2, 3}, if yλ1n

2 ∈ A′23
{1, 3}, if yλ1n

2 ∈ A′13

(25)

Let Q be the set of q values defined above. Then, this decision
is sent back to terminal 1 encoded as Xλ2n

2 (q) using the
simplex code C (Q, (1− λ)nP2) over the strongest link 1← 2.
Terminal 1 estimates q as q̂ = {m̃11 , m̃12}, by means of the
decoding regions of Fig. 4.

Fig. 4. Decoding regions for active feedback. Here, d′′ =
√

3(1− λ)nP2

and d′′1 =
√

(1− λ)nP2.

The decoder errs if after this stage if q 6= q̂, that is, assuming
M1 = 1 is sent, either of the following events occur, all given

that the transmission stage yielded a signal received outside
the protection regions:

EAFB1
=
{(
yλ2n
1 ∈ R13 ∪R23

)
∩
(
yλ1n
2 ∈ A′12

)}
EAFB2 =

{(
yλ2n
1 ∈ R12 ∪R23

)
∩
(
yλ1n
2 ∈ A′13

)}
.

Let P(EAFB) denote the probability that either of the two events
happen. Then P(EAFB) ≤ P(EAFB1

) + P(EAFB2
) = 2P(EAFB1

),
and it can be shown that the corresponding error exponent is:

lim
n→∞

− 1

n
log (P(EAFB)) := EEAFB ≥

3

8
(1− λ)

P2

σ2
1

. (26)

Retransmission: At this point, both terminals have esti-
mates of the two most likely codewords, q = {m̂11 , m̂12}, and
q̂ = {m̃11 , m̃12}, which we assume are the same otherwise this
is counted as an error in the feedback stage. Next, terminal 1
uses antipodal signaling to transmit the true codeword among
these two candidates using the remaining power:

Xλ3n
1 =
√

(1− λ1)nP1 · (+1, 0, ..., 0), if m1 = min{m̃11 , m̃12}√
(1− λ1)nP1 · (−1, 0, ..., 0), if m1 = max{m̃11 , m̃12}

(0, 0, ..., 0), otherwise.

Decoding: Following [6], terminal 2 decodes M1 immediately
at the end of the transmission stage if yλ1n

2 is received within
a protection region. Otherwise, the decoder finds the most
likely codeword pair and sends it back to terminal 1. After
the feedback stage, terminal 2 waits for the retransmission
signal which is used along with the result of the transmission
stage to determine m̂1 using the decoding rule (27), as in [6]
for the case of a one-way channel with passive feedback:

m̂1 = arg min
m1∈{m̂11

,m̂12
}
||x(1−λ)n1 (m1)− y(1−λ)n2 || (27)

= arg min
m1∈{m̂11

,m̂12
}(

||xλ1n
1 (m1)− yλ1n

2 ||2 + ||xλ3n
1 (m1)− yλ3n

2 ||2
) 1

2

. (28)

The decoder errs in this stage if, given that the transmission
stage led to a signal outside the protection regions and the
feedback led to q = q̂, the following event occurs:

ERT = {m1 ∈ q = {m̂11 , m̂12}∩ (29)
m1 ∈ q̂ = {m̃11 , m̃12} ∩ m̂1 6= m1} .

Then, the error exponent (30) can be derived in a similar way
as P(E2) in Section II-A of [6] yielding:

lim
n→∞

− 1

n
log (P(ERT)) := EERT ≥

(
1− λ1

4

)
P1

2σ2
. (30)

The overall error exponent expression for the 1 → 2
direction is derived from Equations (24), (26) and (30), as the
minimum of the three stages’ decays, for parameter s ∈ [0, 1]:

E12

(
M,

P1

σ2
2

,
P2

σ2
1

)
≥ (31)

min

{
λ1P1

8σ2
2

(s2 − 2s+ 4),
3

8
(1− λ)

P2

σ2
1

,

(
1− λ1

4

)
P1

2σ2

}
.



Equating the first and third terms, related to terminal’s 1
transmissions, allows expressing λ1 as a function of s: λ1 =

4
s2−2s+5 . This reduces the number of argumens of (31) to two,
which leads to (20). Note that if P2

σ2
1
>> P1

σ2
2

, (20) is dominated
by the first term, and consequently, determined by the choice
s, λ ∈ [0, 1] (size of protection region and amount of power
allocated to the 1 ← 2 link). The maximum error exponent
for the 1→ 2 direction is thus 2

5
P1

σ2
2

, yielding a gain of 6.67%

gain over the 3
8
P1

σ2
2

achieved without interaction/feedback. This
gain results from a choice of s = 0. However, from (20), we
see that in general, any choice of s ∈ (0, 1) leads to an error
exponent gain in the 1 → 2 direction over the feedback-free
transmission if λ ≤ 1− 16

15

(
SNR1

SNR2

)
.

V. ERROR EXPONENT REGION NUMERICAL COMPARISONS

Figure 5(a) shows achievable error exponent regions for
the two-way AWGN channel for the transmission of two
messages. The solid line denotes the achievable region using
active feedback under the EXP power constraint (Proposition
3) and the dotted line (lower left) the achievable region for
independent transmissions in both directions without feedback
and AS power constraint (Proposition 1) which coincides with
Proposition 2. Note how the active noisy feedback greatly
improves the achievable region. The dashed line region corre-
sponds to the loose outer bounds of Proposition 6.

Error exponent regions for M = 3 are shown in Fig. 5(b).
The region of Proposition 1 is shown by the solid line rectangle
(independent feedback-free transmission for each direction).
The region of Proposition 5 is shown with a dashed line. Note
the benefit of active feedback for the 1 → 2 direction over
the error exponent (E12 = 0.75) attained by feedback-free
transmissions in both directions.This comes at the expense of
a reduction in the error exponent in the 1 ← 2 direction.
For the evaluated SNR pair the highest exponent in the 1→ 2
direction is attained at E12 = 0.8. Given the SNR ratio SNR2

SNR1
=

8 used for Fig. 5(b), one can characterize the values of λ for
which pairs of the form (E12 = 0.8, E21)AS are achievable,
as for 0 ≤ λ ≤ 13/15. For 13/15 < λ ≤ 1, no gain in
E12 is possible even though terminal 2 allocates power (and
hence decreases its own E21) to provide feedback to terminal
1. Moreover, a dotted line depicts Proposition 4. Note that for
the evaluated SNRs, passive feedback is unable to provide a
gain for the 1 → 2 direction, event though terminal’s 2 error
exponent is significantly exacerbated.

When SNR2

SNR1
→ ∞, then E12 → ∞. The other direction

however, can be seen as a one-way channel with perfect
feedback, for which E12 → SNR1

2 (or E12 ≤ 1 in Figure 5(b)).

VI. CONCLUSION

Error exponents for the two-way AWGN channel are for
the first time investigated. Our findings for M = 2 under
EXP constraints and general SNRs and for M = 3 under
AS constraints in non-symmetric SNR settings, show that
feedback/interaction can be exploited towards improving the
error exponent region (unlike the capacity result, in which the
two directions decouple entirely). For the asymmetric setting,

Fig. 5. Comparisons of error exponent regions for M = 2 and M = 3.

the error exponent of the weaker link may be increased at the
cost of a small decrease on the error exponent of the stronger
link. Ongoing work seeks to extend results for M = 2 under
EXP constraints to M = 3.
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APPENDIX

A. Probability of error analysis for the achievability scheme
for M = 3 under AS power constraint and non-symmetric
SNR.

As indicated in Section IV, messages M1 and M2 are
transmitted in different stages. The first λn channel uses are
used for transmitting M2, using a non-feedback transmission
over the strongest link. Transmitter at terminal 2 takes
advantage of the high SNR by sending its own message
while saving some power to help the other direction once
M2 is transmitted. The transmission of M1 is performed
in the remaining (1 − λ)n channel uses over three stages:
transmission, active feedback and retransmission. This
communication scheme is based on extending the approach
proposed in [6], with the remarkable difference of using
encoded feedback instead of passive feedback. Equation (20)
from Proposition 5 represents an achievable error exponent in
the 1→ 2 direction as the minimum between error exponents
of the different stages, coupled by s and λ parameters. During
each stage’s description, we provide some definitions that
are required for the upcoming derivations. Moreover, for
illustration purposes, consider Figure 6 and the simplex code
C (M1, λ1nP1) for the transmission stage, and Figure 4 and
the simplex code C (Q, (1− λ)nP2) for the active feedback
stage.

Note first that the transmission of M1 lasts for (1 − λ)n
channel uses, and that terminal 1 is required to transmit only
during transmission and retransmission stages. Therefore we
use λ1 as a power splitting parameter that determines the
fraction of power used for each stage, λ1P1 and (1 − λ1)P1

respectively. This is not the case of terminal 2, since it utilizes
all the remaining power available after the transmission of
M2 to provide feedback during the transmission of M1. It is
understood that minimum distance decoding is used for all
our derivations.

Definitions for transmission stage.
Decoding of the signal transmitted in this stage is realized
by means of a protection region (as it is proposed in [6])
established for each transmitted codeword. These regions are
defined in Equation (32) for a parameter t ∈ [0,

√
3−1
2 ],

geometrically linked to parameter s ∈ [0, 1], as indicated
for the conditions stated in [6], and depicted in Figure 6.
Each Bm1 region defines a safety zone for the corresponding
codeword m1 ∈ {1, 2, 3}, such that all signals received within
a protection region are immediately declared as the respective
codeword linked to such protection region.

Bm1 =
{
yλ1n
2 : ||xλ1n

1 (m1)− yλ1n
2 || ≤ ||xλ1n

1 (m′1)− yλ1n
2 || ,

for m′1 6= m1∣∣∣||xλ1n
1 (m′1)− yλ1n

2 || − ||xλ1n
1 (m′′1)− yλ1n

2 ||
∣∣∣ ≤ td′,

for m′1,m
′′
1 6= m1}

(32)

Figure 6 illustrates regions A′12, A
′
13, A

′
23 as well. These

regions are different from those called protection regions in

Fig. 6. Protection regions defined in [6] and used for the M1 transmis-
sion stage. Here, d1 =

√
λ1nP1, d4 = s

2
d1, d′ =

√
3λ1nP1, and

d5 =

√
λ1nP1

4σ2
2

(s2 − 2s+ 4).

the sense that all the signals they receive in may be associated
with two distinct codewords, following their definition in [6].
Assuming WLOG the transmission of M1 = 1, we observe
that the probability of error in this stage is linked to the the
error event we denote by ET (presented in Equation (34))
which represents a signal received at terminal 2 that is in the
wrong protection region (B2 ∪ B3) or within an ambiguous
region that does not include M1 = 1, i.e. the received signal
lies in A′23.

Definitions for the active feedback stage:
Given the transmission of M1 = 1, and in the event that
terminal 2 received the signal outside the protection regions,
i.e. yλ1n

2 ∈ A′12 ∪ A′13, our communication scheme makes
terminal 2 to take a hard decoding decision about the received
signal, by means of sending back to terminal 1 the most
likely codeword pair q. Terminal 2 uses the simplex code
C (Q, (1− λ)nP2) for this transmission, which is decoded at
terminal’s 1 end by using the decoding regions depicted in
Figure 4, defined as:

Rm1,m′
1

=
{
yλ2n
1 : ||xλ2n

2 (q = {m1,m
′
1})− y

λ2n
1 || (33)

≤ ||xλ2n
2 (q = {m1,m

′′
1})− y

λ2n
1 ||

and,

||xλ2n
2 (q = {m1,m

′
1})− y

λ2n
1 ||

≤ ||xλ2n
2 (q = {m′1,m′′1})− y

λ2n
1 ||

}
.

Probability of error analysis.
As indicated in Section IV, our main result for the 1 → 2
direction is derived from Equations (24), (26) and (30), as
the minimal decay among three arguments as described by
Equation (31).

To prove our result, consider the communication scheme for
the transmission of message M1 = 1 we introduced in Section
IV. Lets denote the probability of error for this transmission
as P 12(M1 6= M̂1 | M1 = 1) = P 12

M1=1(M1 6= M̂1) for
notational convenience, assuming that M1 = 1 is transmitted,



and that P 12
M1=1(M1 6= M̂1) = P 12

M1=2(M1 6= M̂1) =

P 12
M1=3(M1 6= M̂1). Then, we can express the probability of

error for this transmission (recalling that all symbols in M1

are equally likely) as:

P 12
1 (M1 6= M̂1)

= P(Err.Tx)

+ P

Err.FB |

Not in Prot.Reg.︷ ︸︸ ︷
Y λ1n
2 /∈ {B1 ∪B2 ∪B3}


· P(Y λ1n

2 /∈ {B1 ∪B2 ∪B3})

+ P

Err.Rtx |

Not in Prot.Reg.︷ ︸︸ ︷
Y λ1n
2 /∈ {B1 ∪B2 ∪B3}∩

No mis-coord. error︷ ︸︸ ︷
{M1 ∈ q} ∩ {M1 ∈ q̂}


· P
({
Y λ1n
2 /∈ {B1 ∪B2 ∪B3}

}
∩ {M1 ∈ q} ∩ {M1 ∈ q̂}

)
,

Where, Err.Tx, Err.FB and Err. Rtx correspond to error events
for each corresponding stage described as:
• Error event in transmission stage:

Err.Tx := Y λ1n
2 ∈ {B2 ∪B3 ∪A′23}.

• Error events in FB stage, subject that Y λ1n
2 was not

received within a protection region:

Err.FB :=
{(
Y λ2n
1 ∈ R12 ∪R23

)
∩
(
Y λ1n
2 ∈ A′13

)}
∪
{(
Y λ2n
1 ∈ R13 ∪R23

)
∩
(
Y λ1n
2 ∈ A′12

)}
.

• Error event in retransmission stage:

Err.Rtx := {m1 6= m̂1}.

Then,

P 12
1 (M1 6= M̂1)

= P(Y λ1n
2 ∈ {B2 ∪B3 ∪A′23})

+ P
({(

Y λ2n
1 ∈ R12 ∪R23

)
∩
(
Y λ1n
2 ∈ A′13

)}
∪
{(
Y λ2n
1 ∈ R13 ∪R23

)
∩
(
Y λ1n
2 ∈ A′12

)})
· P
(
Y λ1n
2 /∈ {B1 ∪B2 ∪B3}

)
+ P

(
{m1 6= m̂1} ∩

{
Y λ1n
2 ∈ {A′12 ∪A′13 ∪A′23}

}
∩{M1 ∈ q} ∩ {M1 ∈ q̂})

P 12
1 (M1 6= M̂1)

≤ P(Y λ1n
2 ∈ {B2 ∪B3 ∪A′23})

+ P
({(

Y λ2n
1 ∈ R12 ∩R23

)
∩
(
Y λ2n
2 ∈ A′13

)})
· P
(
Y λ1n
2 /∈ {B1 ∪B2 ∪B3}

)
+ P

({(
Y λ2n
1 ∈ R13 ∩R23

)
∩
(
Y λ2n
2 ∈ A′12

)})
· P
(
Y λ1n
2 /∈ {B1 ∪B2 ∪B3}

)

+ P
(
{m1 6= m̂1} ∩

{
Y λ1n
2 ∈ {A′12 ∪A′13}

}
∩{M1 ∈ q} ∩ {M1 ∈ q̂})

We can write this as:

P 12
1 (M1 6= M̂1)

≤ P(Y λ1n
2 ∈ {B2 ∪B3 ∪A′23})

+ P
({
Y λ2n
1 ∈ R12 ∩R23

}
∩
{
Y λ2n
2 ∈ A′13

})
+ P

({
Y λ2n
1 ∈ R13 ∩R23

}
∩
{
Y λ2n
2 ∈ A′12

})
+ P ({m1 6= m̂1} ∩ {M1 ∈ q} ∩ {M1 ∈ q̂}) .

Finally, we express the above terms as the probability of joint
events:

Pe ≤ P(Y λ1n
2 ∈ {B2 ∪B3 ∪A′23})

+ P
({
Y λ2n
1 ∈ R12 ∩R23

}
∩
{
Y λ2n
2 ∈ A′13

})
+ P

({
Y λ2n
1 ∈ R13 ∩R23

}
∩
{
Y λ2n
2 ∈ A′12

})
+ P({m1 6= m̂1} ∩ {M1 ∈ q} ∩ {M1 ∈ q̂})

We can now conclude that the terms of the above equation
corresponds to the error events we defined for each stage:
• First term is ET
• Second and third terms correspond to EAFB
• Third term is related to ERT

We can now, analyze the probability of occurrence of each
of these events as:

Probability of Error in the Transmission stage:
Given the error event:

ET = {yλ1n
1 ∈ {B2 ∪B3 ∪A′23}} (34)

We can follow the procedure and geometry described in [6]
(see Figure 6 above), we can upper bound the probability of
this event as:

P(ET ) ≤ 2Q

(
d5
σ2

)
(35)

≤ exp

(
−nλ1P1

8σ2
2

(s2 − 2s+ 4)

)
,

from which we can derive a lower bound on the error
exponent yielding Equation (24).

Probability of Error in the Active feedback stage:
Given that the original transmission of M1 = 1 was not
received in a protection region, the feedback transmission may
cause a mis-coordination error (q 6= q̂), whenever the events
defined in Equations (36) and (37) occur.

EAFB1
=
{(
yλ2n
1 ∈ R13 ∪R23

)
∩
(
yλ1n
2 ∈ A′12

)}
(36)

EAFB2
=
{(
yλ2n
1 ∈ R12 ∪R23

)
∩
(
yλ1n
2 ∈ A′13

)}
. (37)



Le us now define P(EAFB) = P(EAFB1
or EAFB2

), which can
be upper bounded as:

P(EAFB) ≤ P(EAFB1) + P(EAFB2) = 2P(EAFB1). (38)

Therefore, we can upper bound the P(EAFB1
) probability to

obtain our result of interest for the feedback stage as:

P(EAFB1
) = P

(
Y λ2n
1 ∈ R13 ∪R23|Y λ1n

2 ∈ A′12
)

(39)

· P(Y λ1n
2 ∈ A′12)

≤ P
(
Y λ2n
1 ∈ R13 ∪R23|Y λ1n

2 ∈ A′12
)

≤ 2Q

(
d′′

2σ1

)
= 2Q

(√
3(1− λ)nP2

2σ1

)

≤ exp

(
−3(1− λ)nP2

8σ2
1

)
,

which leads to the error exponent expression of Equation (26).

Probability of error for the Retransmission stage:
The probability of error of this stage is linked to the occurrence
of the event described by Equation (40)

ERT = {m1 ∈ q = {m̂11 , m̂12}∩ (40)
m1 ∈ q̂ = {m̃11 , m̃12} ∩ m̂1 6= m1} .

The errors produced in the previous stages are captured by
the corresponding error events defined above. Therefore, this
transmission assumes that the two previous stages are correct,
which is equivalent to the noiseless passive feedback case
analyzed in [6], in which the received signal Y is transmitted
back to the transmitter such that both, transmitter and receiver
know exactly what is the most likely pair of codewords the
receiver has determined (for the active feedback setting of this
scheme, this is equivalent to q = q̂). Thus, the probability of
error expression from which to obtain the error exponent of
this stage is derived in a similar manner and given by:

P(ERT) = Q

(√(
1− λ1

4

)
P1

σ2
n

)
, (41)

from which it is possible to obtain the corresponding error
exponent shown in Equation (30).

B. Proof of Proposition 3: On the achievability scheme for
M = 2 under EXP power constraint.

This section focus on the transmission of a binary alphabet
( M = 2) over a two-way AWGN channel. Each terminal
transmits message mi ∈Mi = {1, 2}, for i = 1, 2. Results of
Equations (14) and (15) are obtained based on an extension of
the work presented in [5]. We assume WLOG that messages
Mi = 1 are being sent in each direction.

1) A Two-way Communications Building Block: First we
propose a two-way communications building block based on
the one-way building block proposed in [5].This operational
component is aimed to transmit a single bit using n channel
uses, subject to the EXP power constraint in the forward and
backward links. This two-way building block differs from the
one-way version in the sense that the transmission in the two

directions occurs simultaneously, that is following the channel
model described by Equations (1) and (2). Then, each receiver
may simply ignore its own transmission and operate as in
two decoupled and independent directions. The probability of
error given that bit Mi = mi is sent in each direction follows
directly from that obtained for the one-way channel building
block, that is, as in Eq. (138) of [5]. Terminal’s 2 estimate
of M1 is denoted by M ′1, while M ′2 indicates the estimate of
M2 at terminal 1. Let us denote the probability of error on
decoding transmitted messages Mi, conditioning on Mi = mi

being sent by:

P 12
m1

(M1 6= M ′1) = P(M1 6= M ′1 |M1 = m1) (42)

P 21
m2

(M2 6= M ′2) = P(M2 6= M ′2 |M2 = m2), (43)

where the upper scripts indicate the corresponding commu-
nication direction and should be clear from the context on-
wards. Then, given equally likely messages to be transmitted,
P(Mi = 1) = P(Mi = 2), we can derive: P 12

1 (M1 6= M ′1) ≤
exp

(
−n2P1

σ2
2

)
and P 21

1 (M2 6= M ′2) ≤ exp
(
−n2P2

σ2
1

)
, which

lead to error exponent expressions:

EEXP
12BB

(
2,
P1

σ2
2

)
≥ 2

P1

σ2
2

(44)

EEXP
21BB

(
2,
P2

σ2
1

)
≥ 2

P2

σ2
1

, (45)

where the subscript BB stands for building block.

2) A three phases communication scheme for the two-way
AWGN Channel based on the use of the building block:
Similarly to the one-way approach of [5], we employ a
scheme that makes use the building block previously defined
comprising three stages: Transmission phase, Echo phase
and Retransmission phase. We use a time split parameter
λ ∈ [0, 1] to establish each stage’s duration correspondingly
to: λ(n− 1), (1− λ)(n− 1) and 1 channel uses.

Transmission phase: For this stage, the two-way building
block is used for the simultaneous transmission of messages
M1 and M2 using λ(n− 1) channel uses. We allocate power
K1P1 for the 1→ 2 direction transmission, and power K2P2

for the 2→ 1 direction. We use parameters K1,K2 ∈ [0, 1/λ]
to indicate the fraction of the available power that is allocated
for the transmission phase in each direction. Then, assuming
the transmission of M1 = 1 and M2 = 1 we obtain from the
building block probability of error analysis:

P 12
1 (M1 6= M ′1) ≤ exp

(
−λn2K1P1

σ2
2

)
(46)

P 21
1 (M2 6= M ′2) ≤ exp

(
−λn2K2P2

σ2
1

)
(47)

Echo phase: In this stage, the estimation of the messages
transmitted during transmission phase are sent back to the
terminals that originated them. We parametrize the fraction
of power allocated for this transmission by means of J1, J2 ∈
[0, 1/(1 − λ)] respectively for each terminal. In this phase,
the two-way communications building block is used during
(1− λ)(n− 1) channel uses to send both, estimate M ′1 back



to terminal 1 using power J2P2 and estimate M ′2 back to
terminal 2 using power J1P1. At the end of this stage, each
terminal has an estimate of the feedback messages, denoted
correspondingly by M ′′1 for M ′1 and M ′′2 for M ′2. Since these
transmissions are performed using the basic two-way building
block, the probability of error M ′1 and M ′2 transmission is
determined by:

P 12
1 (M ′1 6= M ′′1 ) ≤ exp

(
−(1− λ)n

2J2P2

σ2
1

)
(48)

P 21
1 (M ′2 6= M ′′2 ) ≤ exp

(
−(1− λ)n

2J1P1

σ2
2

)
. (49)

After the echo phase, the probability of a decoding error in
both stages, transmission and echo phase, is given by their
product due to independence:

P 12
1 (M ′′1 = 1,M ′1 = 2) (50)

≤ exp
(
−λn2K1P1

σ2
2

)
· exp

(
−(1− λ)n

2J2P2

σ2
1

)
= exp

(
−λn2K1P1

σ2
2

− (1− λ)n
2J2P2

σ2
1

)
= exp

(
−n ·

(
λK1

2P1

σ2
2

+ (1− λ)J2
2P2

σ2
1

))
.

Equivalently for the other direction,

P 21
1 (M ′′2 = 1,M ′2 = 2) (51)

≤ exp
(
−λn2K2P2

σ2
1

)
· exp

(
−(1− λ)n

2J1P1

σ2
2

)
= exp

(
−n ·

(
λK2

2P2

σ2
1

+ (1− λ)J1
2P1

σ2
2

))
.

Retransmission phase: In this stage each terminal
compares the true message with the feedback received after
the echo phase. If the compared messages are different, i.e.
M ′′1 6= M1 or M ′′2 6= M2, a very high amplitude antipodal
signal is used to correct this error event, which occurs with
exponentially small probability, as shown in [5], otherwise,
zero is retransmitted. Such retransmission signals occur
for one channel use only. Since those events occur with
exponentially small probability, the EXP power constraint is
satisfied.

At the end of the three phases scheme, both terminals
estimate messages M1 and M2 based on the last observed
received signals at channel use n, respectively: Y2n and Y1n .
These signals are later compared with a determined very large
threshold Υi (chosen as indicated in [5]), which determines
the following decoding rule at both terminals, shown next for
terminal 2 only:

M̂1 =


1, if Y2n > Υ2

M ′1, if |Y2n | ≤ Υ2

2, if Y2n < −Υ2

(52)

Then, it can be shown that the probability of error of sending
messages Mi = 1, follows a similar way as in the one-way
case:

P 12
1 (M1 6= M̂1) = P 12

1 (M ′1 = 2,M ′′1 = 1) (53)

≤ exp
(
−n ·

(
λK1

2P1

σ2
2

+ (1− λ)J2
2P2

σ2
1

))
,

and analogously,

P 21
1 (M2 6= M̂2) = P 21

1 (M ′2 = 2,M ′′2 = 1) (54)

≤ exp
(
−n ·

(
λK2

2P2

σ2
1

+ (1− λ)J1
2P1

σ2
2

))
.

Therefore, the error exponent can be derived, for the 1→ 2
direction as

EEXP
12

(
2,
P1

σ2
2

,
P2

σ2
1

)
≥ λK1

2P1

σ2
2

+ (1− λ)J2
2P2

σ2
1

, (55)

and for the 2→ 1 direction, as

EEXP
21

(
2,
P1

σ2
2

,
P2

σ2
1

)
≥ λK2

2P2

σ2
1

+ (1− λ)J1
2P1

σ2
2

. (56)

We observe how the parametrization determined by
λ,K1,K2, J1, and J2 allows us to distribute the total
power available at each terminal. Consider the case of
terminal 1, which is equivalent to that of terminal 2. The
power allocation of terminal 1 for n channel uses is:

transmission phase︷ ︸︸ ︷
λ(n− 1)K1P1 +

echo phase︷ ︸︸ ︷
(1− λ)(n− 1)J1P1 ≤ nP1, (57)

which can be written as:

[λ(n− 1)K1 + (1− λ)(n− 1)J1]P1 ≤ nP1. (58)

Then, we note that for large n, Equation (58) and its
equivalent for terminal 2 lead to:

λK1 + (1− λ)J1 ≤ 1 (59)

λK2 + (1− λ)J2 ≤ 1, (60)

for λ ∈ [0, 1] and K1,K2 ∈ [0, 1/λ) and
J1, J2 ∈ [0, 1/(1− λ)), leading to the conditions presented in
Proposition 3.

A numerical evaluation on these results demonstrated that
the error exponent region achieved by this scheme matches the
one resulting by simply applying the one-way achievability
scheme presented in [5] under the EXP power constraint
for each communication direction in a time-sharing basis
using a time-splitting parameter λ. This approach causes the
probability of error in transmitting bits M1 and M2 as:

P1(M̂1 6= M1)TS ≤ exp
(
−λn

(
2P1

σ2
2

+
2P2

σ2
1

))
, (61)

P1(M̂2 6= M2)TS ≤ exp
(
−(1− λ)n

(
2P1

σ2
2

+
2P2

σ2
1

))
.

(62)



Then, achievable error exponents can be derived as:

EEXP
12TS

(
2,
P1

σ2
2

,
P2

σ2
1

)
≥ λ

(
2P1

σ2
2

+
2P2

σ2
1

)
, (63)

EEXP
21TS

(
2,
P1

σ2
2

,
P2

σ2
1

)
≥ (1− λ)

(
2P1

σ2
2

+
2P2

σ2
1

)
. (64)


