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Abstract—In this paper, time delay estimation using the
maximum likelihood principle is addressed for the multipath
exploitation problem, and the corresponding Cramér-Rao bounds
are derived. A single wideband radar, and a target in a known
reflecting geometry are assumed. If the multipath is indeed
detectable and resolvable, it is shown here that multipath ex-
ploitation, firstly, permits estimating the angle of arrival (AoA) of
the target with a single sensor, and secondly, improves estimation
accuracy of the direct path time delay. Both these are possible
because the multipath’s time delay is a deterministic function
of the time delay of the direct path as well as its AoA, as is
demonstrated here. The multipath caused from reflections from
surfaces yields virtual radar sensors observing the target from
different aspects, thereby allowing AoA estimation.

I. INTRODUCTION

The objective in the multipath exploitation radar is improv-
ing the radar system performance by incorporating the addi-
tional information, about either targets or their environments,
embedded in the multipath returns. The multipath exploitation
hypothesis rests on the fact that ”multipath exists because of
the environment,” which in turn requires that multipath returns
are distinguishable.

In this paper, a single wideband radar sensor observes a
target in a priori known reflecting geometry, consisting of a
ground plane. Accordingly, the multipath returns are caused by
specular reflections of the radar signal from a smooth surface,
an assumption seen for example in [1] - [5] and references
therein.

The novelty of this approach is that, using a ray tracing
analysis [7], the multipath time delay is parameterized as a
function of the geometrical direct path time-delay and its AoA;
in particular, this approach is applicable even when the direct
path is obstructed. Since multipath time delay on its own is
not directly useful, by employing this parametrization, the
maximum likelihood estimator (MLE) and the Cramér-Rao
lower bounds (CRLB) are derived for estimating the direct
path time delay as well as its AoA. The CRLBs are derived
in the frequency domain, and are shown to be a function of
the SNR as well as the operating bandwidth.

The multipath exploitation problem has been studied in
the recent past in, e.g. [1] - [6], and references therein. In
[5], [6], detection using the generalized likelihood ratio test
(GLRT) was employed for the multipath exploitation problem,
assuming knowledge of the multipath and direct path time

delays, obtained from a priori knowledge of the environment
where the radar operates. A multipath model and exploitation
technique is addressed in [3], which properly detects and
utilizes the target ghosts in through-the-wall and urban radar
sensing applications. Using the multipath exploitation, authors
of [4] also demonstrated that localization can be achieved
with a single sensor. Examples of targets in urban canyons
and through-the-wall radar were employed to demonstrate
non-coherent localization. Target tracking and ground moving
target indication (GMTI) applications of multipath exploitation
were explored in [2], and [1], respectively.

The paper is organized as follows, in Section II the model is
presented, and in Section III the problem is presented formally.
The maximum likelihood (ML) technique and the CRLB are
presented in Sections VI and V, respectively. Representative
simulation results and conclusions are presented in Section
VI and VII.

II. MULTIPATH PROPAGATION MODEL

In this Section we describe the radar-target scenario that
involves the multipath propagation. The geometry of the radar-
target environment is illustrated in Fig. 1. We formulate the
mathematical expression for the propagation model of the
radar scene using ray-tracing techniques. The advantage of
the ray-tracing approach is that each individual trajectory
is explicitly associated with all the mechanisms of wave
propagation so that a clear description of all the physical
phenomena is available, [7]. A two-ray model is considered at
first to remain tractable. The radar is assumed to be located
at the center of the polar coordinate system. The transmitted
pulse is assumed to be

s(t) =

� 1√
Td

0 ≤ t ≤ Td

0 Otherwise

so that the received signal is given as

r(t) = α1(t)s(t− τ1) + α2(t)s(t− τ2) + w(t),

where r(t), s(t) and w(t) are the baseband equivalents of
the received signal, transmitted signal and noise, respectively.
Parameters α1(t) and α2(t), which are complex and deter-
ministic, are the strengths of the direct and reflected multipath
returns, of time delays τ1 and τ2, respectively.



Fig. 1. Geometry of the problem: Radar-Target over a Ground Plane

III. PROBLEM FORMULATION

In this section, we assume w(t) is a stationary zero-mean
complex white Gaussian random process with power spectral
density σ2. Since the pulse duration, Td, is considered small
compared to the coherence time of the radar-target channel,
α1(t) and α2(t) are approximated with unknown complex
deterministic parameters α1 and α2 respectively. Then, r(t)
can be written as, [5],

r(t) = α1s(t− τ1) + α2s(t− τ2) + w(t).

In terms of geometric parameters, time delays τ1 and τ2 are
obtained as

τ1 =
2Rd

c
and τ2 =

2Rgr

c
,

where Rd and Rgr are the ranges of target with respect to
the radar and radar image respectively. Furthermore τ2 can be
written as a function of τ1 and θt with a priori knowledge of
hs, which is the height of the radar above the planar reflecting
surface,

τ2 = g(τ1, θt) =
�
(τ1 cos θt)

2 + (4hs/c+ τ1 sin θt)
2.

Thus, for the estimation problem, the received signal can be
written as

r(t) = α1s(t− τ1) + α2s(t− g(τ1, θt)) + w(t)

= s1(t, Θ) + s2(t, Θ) + w(t),

where t ∈ [0, To] is the observation interval and Θ :=
[τ1, θt, α1, α2]T is the vector of parameters to be estimated.

The novelty of this approach is that we estimate two
geometrical parameters, [τ1, θt]T with a single sensor by ex-
ploiting the multipath and a priori knowledge of the reflecting
environment. In other words, hs is assumed to be known.

IV. MAXIMUM LIKELIHOOD ESTIMATION

The MLE formulation adopted here is similar to the one
taken in [8], but unlike our approach, the authors of [8]
estimate the multipath time delay for multipath mitigation in
global positioning systems (GPS). The log-likelihood function

that needs to be maximized with respect to Θ, and is readily
shown to be

lnΛ[r(t),Θ] ∝− 1

σ2

� To

0
|r(t)− s1(t,Θ)− s2(t,Θ)|2 dt

(1)

In general, for an efficient unbiased estimator we must have
[9], [10],

∂ lnΛ[r(t),Θ]

∂Θi
= [Θ̂i(r(t))−Θi]Jii(Θi), (2)

where Jij is the (i, j)th element of the Fisher information
matrix (FIM) J as in (4), Θ̂i is the ith element of the estimator
vector Θ̂ which is a function of the received data, whereas
Θi is the ith element of unknown parameter vector Θ. In this
particular problem the equality (2) does not hold for time-delay
τ1 and angle of arrival θt estimation but only for α1 and α2,
[9], [10]. Nevertheless, the maximum likelihood estimation is
considered here due to its asymptotically efficient properties.

As a comparison point, we recall the celebrated Cramér-Rao
inequality

V ar
�
Θ̂ij(r(t))−Θij

�
≥ J ij (3)

where J ij is defined as the (i, j)-th element of the square
matrix J−1 which is the inverse of the FIM J. Elements of J
are defined as, [9],

J = −E

�
∂2 lnΛ[r(t),Θ]

∂Θ∂ΘT

�
(4)

where E[·] denotes the statistical expectation operator.

A. MLE of Amplitudes

From equation (1) the MLE score for α1 and α2 are
obtained as

∂ lnΛ[r(t),Θ]

∂α1
=

1

σ2
[Rrs(τ1)− α∗

1 − α∗
2Φ(τ2, τ1)] , (5)

and similarly

∂ lnΛ[r(t),Θ]

∂α2
=

1

σ2
[Rrs(τ2)− α∗

2 − α∗
1Φ(τ2, τ1)] , (6)

where

Rrs(τ) =

� To

0
r(t)s(t− τ)dt, (7)

Φ(τ2, τ1) =

� To

0
s(t− τ1)s(t− τ2)dt. (8)

Thus, the ML estimates for α1 and α2 are obtained as, [8],

α̂1 =
Rrs(τ1)− Φ(τ2, τ1)Rrs(τ2)

1− Φ(τ2, τ1)2
, (9)

α̂2 =
Rrs(τ2)− Φ(τ2, τ1)Rrs(τ1)

1− Φ(τ2, τ1)2
. (10)

Here α̂1 and α̂2 are unbiased efficient estimators that satisfy
the equality (2).



B. Estimation of Time Delay τ1 and Angle of Arrival θt
In this section we derive the MLE equations for τ1 and

θt. In this case the estimation problem is not linear anymore
as in the amplitude estimation. Although there is no efficient
unbiased estimator for τ1 and θt, MLE can be implemented
numerically where it is asymptotically unbiased and efficient.

The ML score for τ1 is found as

∂ lnΛ[r(t),Θ]

∂τ1
=

2

σ2
�
�� To

0
{r(t)− [s1(t,Θ) + s2(t,Θ)]}

× ∂[s1(t,Θ) + s2(t,Θ)]∗

∂τ1
dt

�
.

(11)

In a similar manner, the ML score for θt is found as

∂ lnΛ[r(t),Θ]

∂θt
=

2

σ2
�
�� To

0
{r(t)− [s1(t,Θ) + s2(t,Θ)]}

× ∂[s1(t,Θ) + s2(t,Θ)]∗

∂θt
dt

�
.

(12)

One can obtain the necessary condition for τ̂1ml and θ̂tml

respectively by making the right hand side of the equations
(11) and (12) equal to zero.

In order to concentrate the likelihood function (1) on τ1 and
θt we insert α̂1 and α̂2, which are given in (9) and (10), into
the likelihood function and maximize the resulting likelihood
function with respect to τ1 and θt as

max
τ1,θt

�
lnΛ[r(t),Θ]

�

= max
τ1,θt



−1

σ2

� To

0

�����r(t)−
2�

i=1

α̂is(t− τi)

�����

2

dt



 ,
(13)

where τ2 = g(τ1, θt). Closed form expressions for (11)-(13)
are intractable and the MLE must be evaluated numerically.

V. CRAMÉR RAO LOWER BOUND

In this section the CRLB for the estimates of τ1 and θt are
derived. Here, we assume the perfect knowledge of the noise
variance σ2, α1 and α2. In order to assess the CRLB (3) for
the estimates, we compute elements of the FIM, J, via (4) and
evaluate J−1 numerically.

For τ1 we differentiate (11) and take the expectation as

E

�
∂2 lnΛ[r(t),Θ]

∂τ21

�
=

2

σ2
�
�
E

�� To

0
{r(t)− [s1(t,Θ) + s2(t,Θ)]}

× ∂2[s1(t,Θ) + s2(t,Θ)]∗

∂τ21
dt

�

− E

�� To

0

����
∂[s1(t,Θ) + s2(t,Θ)]

∂τ1

����
2

dt

��
.

In the first term one can observe that

E [r(t)− {s1(t,Θ) + s2(t,Θ)}] = E [w(t)] = 0.

The second term is a non-random term, thus

E

�
∂2 lnΛ[r(t),Θ]

∂τ21

�
=

−2

σ2

� To

0

����
∂[s1(t,Θ) + s2(t,Θ)]

∂τ1

����
2

dt.

In a similar manner,

E

�
∂2 lnΛ[r(t),Θ]

∂θ2t

�
=

−2

σ2

� To

0

����
∂[s1(t,Θ) + s2(t,Θ)]

∂θt

����
2

dt.

Then J11 and J22 can be written respectively as

J11 = −E

�
∂2 lnΛ[r(t),Θ]

∂τ21

�

=
2

σ2

� To

0

����
∂[s1(t,Θ) + s2(t,Θ)]

∂τ1

����
2

dt,

(14)

and

J22 = −E

�
∂2 lnΛ[r(t),Θ]

∂θ2t

�

=
2

σ2

� To

0

����
∂[s1(t,Θ) + s2(t,Θ)]

∂θt

����
2

dt.

(15)

It is also noted that J11 in (14) which is exploiting the
multipath is always greater than the FIM element J11 in [8],
which considers the multipath to be independent of the direct
path, and shown below.

J11 = −E

�
∂2 lnΛ[r(t),Θ]

∂τ21

�
=

2

σ2

� To

0

����
∂s1(t,Θ)

∂τ1

����
2

dt.

This implies that, for this geometry and assumption, mul-
tipath exploitation improves the accuracy of τ1 estimates, at
least in the CRLB sense.

Through mathematical manipulations one can write J11 and
J22 in a more explicit form respectively as

J11 =
2

σ2

�
�
|α1|2 + |α2|2F 2

1

� � ∞

−∞
(2πf)2|S(f)|2df

+ 2�
�
α1α

∗
2F1

� ∞

−∞
(2πf)2e−j2πf(τ1−τ2)|S(f)|2df

��

(16)

and

J22 =
2

σ2
|α2|2F 2

2

� ∞

−∞
(2πf)2|S(f)|2 df (17)

where

F1 =
∂τ2
∂τ1

=
τ1 + 4 sin θths/c�

(τ1 cos θt)
2 + (4hs/c+ τ1 sin θt)

2

F2 =
∂τ2
∂θt

=
4hsτ1 cos θt/c�

(τ1 cos θt)
2 + (4hs/c+ τ1 sin θt)

2
.



The off-diagonal elements of the FIM are

J12 = −E

�
∂2 lnΛ[r(t),Θ]

∂τ1∂θt

�

= − 2

σ2
�
�� To

0
E

�
− ∂[s1(t,Θ) + s2(t,Θ)]

∂θt
×

∂[s1(t,Θ) + s2(t,Θ)]∗

∂τ1

�

+ E

�
{r(t)− [s1(t,Θ) + s2(t,Θ)]}×

∂2[s1(t,Θ) + s2(t,Θ)]∗

∂θt∂τ1

�
dt

�
.

(18)

Since

E

�
{r(t)− [s1(t,Θ) + s2(t,Θ)]} ∂2[s1(t,Θ) + s2(t,Θ)]∗

∂θt∂τ1

�

= 0,

J12 =
2

σ2
�
�� To

0

∂[s1(t,Θ) + s2(t,Θ)]

∂θt

× ∂[s1(t,Θ) + s2(t,Θ)]∗

∂τ1
dt

�
.

(19)

More explicitly, J12 is found as

J12 =
2

σ2
�
�
α2α

∗
1F2

� ∞

−∞
(2πf)2e−j2πf(τ2−τ1)|S(f)|2df

+ |α2|2F1F2

� ∞

−∞
(2πf)2|S(f)|2df

�
.

(20)

Since the FIM J is Hermitian symmetric: J21 = J12.Thus,
this completes the elements of FIM of Θ := [τ1, θt]T .

VI. SIMULATIONS

In this section, we provide the simulations results for CRLB
for τ1 and θt. The actual parameters are assumed to be
τ1 = 2Rd/c and τ2 = 2Rgr where Rd = 26.92 m and
Rgr = 194.74 m, θt = −0.2630 rad and α1 = α2 = 1.
The radar is located at hs = 100 m above the ground. From
our convention negative θt implies that the target is below
the radar. These values were chosen such that the multipath is
resolvable with the direct path. Using (1) the following proves
useful in simulating the CRLBS,

S(f) ∝ sinc(fTd), sinc(x) := sin(πx)/πx

Our convention is to let the bandwidth refer to 1/Td instead
of the classical 2/Td. In all the simulations thrice the Nyquist
rate was used in simulating the rectangular radar pulses.

In Fig. 2 the CRLB on τ1 is shown when multipath
is exploited as well as when it is not, for varying radar
bandwidths. In other words, we compare the CRLB(τ1)
derived here and denoted as CRLB(τ1)−exploited to the one
derived in [8] but treating τ2 independent of τ1 and denoted
as CRLB(τ1)− independent. It is readily seen that through
multipath exploitation the CRLB performs much better. For
this simulation we choose the noise variance σ2 = 0.01
which is 20 dB on both the direct and multipath returns. The
bandwidths are chosen starting from 1 MHz to 1000 MHz in
multiplicative increments of 10 MHz.
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Fig. 2. CLRB comparison

In Fig. 3 the CRLB is shown for varying bandwidths starting
from 1 MHz to 1000 MHz in multiplicative increments of
10 MHz. It is readily seen that the CRLB decreases with
increasing bandwidths. For this simulation, noise variance,
σ2 = 1.
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Fig. 3. CRLB vs Bandwidth

In Fig. 4 the CRLB for τ1 and θt are shown for varying noise
variance, σ2. As expected the CRLB increases with increasing
σ2. For this simulation, bandwidth is 10 MHz.

It is well known that the CRLB for time-delay estimation
is highly optimistic. Previous studies have shown that the
MLE performance for time-delay estimation is much farther
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Fig. 4. CLRB vs σ2

away from the CRLB at low SNRs, see for example [11] and
references therein. The MLE converges to the CLRB only at
reasonable SNRs. This behavior of the MLE for time-delay
estimation has prompted the use of other tighter variance
bounds such as the Barankin and Ziv-Zakai bounds which
have shown to be much tighter than the CRLB. It remains to
be seen however, if the multipath exploited MLE performance
is much closer to the multipath exploited CRLB derived here,
than their traditional counterpart.

VII. CONCLUSION

Maximum likelihood and the Cramér-Rao lower bounds
were derived for the multipath exploitation problem. A single
wideband radar, and a target in a known reflecting geometry
were assumed. It was shown here that multipath exploitation
offers two advantages, it firstly allows estimation of the AoA,
and secondly improves the estimation of the direct path time
delay in the CRLB sense, and was shown analytically. The
former was possible as multipath gave rise to virtual radar
sensors, whereas the latter directly followed from parameter-
izing the multipath time delay as a function of its direct path.
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