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New Inner and Outer Bounds for the Memoryless
Cognitive Interference Channel and

Some New Capacity Results
Stefano Rini, Daniela Tuninetti, and Natasha Devroye

Abstract—The cognitive interference channel is a two-user inter-
ference channel in which one transmitter is non-causally provided
with the message of the other transmitter. This channel model has
been extensively studied in the past years and capacity results have
been proved for certain classes of channels. This paper presents
new inner and outer bounds for the capacity region of the cognitive
interference channel, as well as new capacity results. Previously
proposed outer bounds are expressed in terms of auxiliary random
variables for which no cardinality constraint of their alphabet
is known. Consequently, it is not possible to evaluate such outer
bounds explicitly for a given channel. The outer bound derived
in this work is based on an idea originally devised by Sato for
channels without receiver cooperation and results in an outer
bound that does not contain auxiliary random variables, thus
allowing it to be more easily evaluated. The inner bound presented
in this work—which includes rate splitting, superposition coding,
a broadcast channel-like binning scheme and Gel’fand Pinsker
coding—is the largest known to date and is explicitly shown to
include all previously proposed achievable rate regions. The novel
inner and outer bounds are shown to coincide in certain cases.
In particular, capacity is proved for a class of channels in the
so-called “better cognitive decoding” regime, which includes the
regimes in which capacity was known. Finally, the capacity region
of the semi-deterministic cognitive interference channel, in which
the signal at the cognitive receiver is an arbitrary deterministic
function of the channel inputs, is established.

Index Terms—Achievable region, better cognitive decoding
regime, capacity, cognitive channel, cognitive interference channel,
inner bound, interference channel with degraded message sets,
outer bound, semi-deterministic channel.

I. INTRODUCTION

P RESENTLY, the frequency spectrum is allocated to dif-
ferent entities by dividing it into licensed lots. Licensed

users have exclusive access to their licensed frequency lot or
band and cannot interfere with the users in neighboring lots.
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The constant increase of wireless services has led to a situa-
tion where new services have a difficult time obtaining spec-
trum licenses and thus cannot be accommodated without dis-
continuing, or revoking, the licenses of others. This situation
has been termed “spectrum gridlock” [4] and is viewed as one
of the factors in preventing the emergence of new services and
technologies by entities not already owning significant spectrum
licenses.

In recent years, several strategies for overcoming this spec-
trum gridlock have been proposed [4]. In particular, collabo-
ration among devices and adaptive transmission strategies are
envisioned to overcome this spectrum gridlock. That is, smart
devices may cooperate to share frequency, time and resources
to communicate more efficiently and effectively. The role of in-
formation theory in this scenario is to determine the ultimate
performance limits of such a collaborative network. Given the
complexity of this task in its fullest generality, researchers have
focussed on simple models with few idealized assumptions.

One of the most well studied and simplest collaborative
models is the cognitive interference channel. This channel
is similar to the classical two-user interference channel: two
senders wish to send information to two receivers. Each trans-
mitter has one intended receiver forming two transmitter-re-
ceiver pairs termed the primary and the secondary/cognitive
pairs/users. Concurrent transmission creates undesired inter-
ference at the receivers. This channel model differs from the
classical interference channel in the assumptions made about
the ability of the transmitters to collaborate: collaboration
among transmitters is modeled by the idealized assumption that
the secondary/cognitive transmitter has full a-priori/non-causal
knowledge of the primary message.1

A. Past Work

The cognitive interference channel was firstly posed from
an information theoretic perspective in [7], where the channel
was formally defined and the first achievable rate region was
obtained, demonstrating that a cognitive interference channel,
employing a form of asymmetric transmitter cooperation,
could achieve larger rate regions than the classical interference
channel. In [7], an outer bound for the Gaussian channel based
on the broadcast channel was also presented. Another outer
bound was derived in [6], together with the first capacity result
for a class of channels with “very weak interference” in which
(in Gaussian noise) treating interference at the primary receiver

1This channel model has also been referred to as “unidirectional cooperation”
[5] and transmission with “degraded message sets” [6].
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as noise is optimal. The same achievable rate region of [6]
was simultaneously derived in [8], where the authors further
characterized the maximum rate the cognitive user can achieve
under the constraint that the primary user’s rate and mode of
operation is the same as when the cognitive user is not present.
Another capacity result was proved in [5] for channels with
“very strong interference,” where, without loss of optimality,
both receivers can decode both messages and the cognitive
channel reduces to a compound multiple access channel. The
capacity is also known for the case where the cognitive user is
required to decode both messages [9], both with and without
secrecy/confidentiality constraints.

For the general memoryless cognitive interference channel
the capacity region remains unknown. Tools such as rate-split-
ting, binning, and superposition coding have been used to derive
different achievable rate regions. The authors of [10] proposed
an achievable rate region that encompasses all the previously
proposed inner bounds and derived a new outer bound using an
argument originally devised for the broadcast channel in [11].
A further improvement of the inner bound of [10] is provided
in [12] where the authors include a new feature in the trans-
mission scheme allowing the cognitive transmitter to broadcast
part of the message of the primary pair. This broadcast strategy
is also encountered in the scheme derived in [13] for the broad-
cast channel with cognitive relays, which contains the cognitive
interference channel as special case.

B. Main Contributions and Paper Organization

In this paper, we establish a series of new results for the
general memoryless cognitive interference channel. Section II
introduces the basic definitions and notation and summarizes
known results including general inner bounds, outer bounds
and capacity in the “very weak interference” [6], [8] and “very
strong interference” [14] regimes.2 Our contributions start in
Section III and may be summarized as follows.

1) A new outer bound for the capacity region is presented
in Section III: this outer bound is looser than some previ-
ously derived outer bounds but it does not include auxiliary
random variables and thus it can be easily evaluated.

2) In Section IV, we present a new inner bound.
3) We show that the newly derived inner bound region encom-

passes all previously presented achievable rate regions in
Section V.

4) We derive the capacity region of the cognitive interfer-
ence channel in the “better cognitive decoding” regime in
Section VI. This regime includes the “very weak inter-
ference” [6], [8] and the “very strong interference” [14]
regimes and is thus the largest set of general memoryless
channels for which capacity is known.

2We note here that we are not entirely consistent with past uses of the terms
"strong/weak" interference. Our convention is to use "strong/weak" interfer-
ence to denote regimes inspired by similar results for the classical interference
channel. In particular, we denote by "strong/weak" interference a regime where
an outer bound derived for a general memoryless channel can be simplified
and/or tightened, and denote by "very strong/very weak" interference a regime
in which additional conditions are imposed on top of the "strong/weak" inter-
ference conditions to show capacity. Therefore, the "very strong/very weak"
interference regimes form subsets of the "strong/weak" interference regimes.

5) Section VII focuses on the semi-deterministic cognitive in-
terference channel in which the output at the cognitive re-
ceiver is an arbitrary deterministic function of the channel
inputs. We determine capacity for this channel by showing
the achievability of the outer bound first derived in [6].

6) In Section VIII, we consider the deterministic cognitive in-
terference channel: in this case both channel outputs are ar-
bitrary deterministic functions of the inputs. This channel
is a subclass of the semi-deterministic channel. For this
channel we show the achievability of the outer bound pro-
posed in Section III, thus showing that our outer bound can
be tight.

7) The paper concludes with a couple of examples in
Section IX which provide insight on the role of cognition.
We consider two deterministic cognitive interference
channels and show the achievability of the outer bound
of Section III with zero-error transmission strategies over
one channel use (i.e., in which case the capacity region
coincides with the zero-error capacity region). The ca-
pacity achieving scheme in these channel models has the
interesting feature that the non-causal message knowledge
at the cognitive transmitter allows the primary user to
achieve a rate that is higher than in the absence of the
cognitive user, thus showing that cognition can benefit
both the cognitive pair and the primary pair.

Section X concludes the paper. Some of the proofs are collected
in the Appendix.

II. CHANNEL MODEL AND KNOWN RESULTS

A. Channel Model

A two-user InterFerence Channel (IFC) is a multi-terminal
network with two senders and two receivers. Each transmitter
wishes to communicate a message to receiver , .
In the classical IFC the two transmitters operate independently
and have no knowledge of each others’ message. Here we
consider a variation of this set up assuming that transmitter
1 (the cognitive transmitter), in addition to its own message

, also knows the message of transmitter 2 (the pri-
mary transmitter). We refer to transmitter/receiver 1 as the
cognitive pair and to transmitter/receiver 2 as the primary
pair. This model, shown in Fig. 1, is termed the Cognitive
InterFerence Channel (CIFC) and is an idealized model for
unilateral transmitter cooperation. The Discrete Memoryless
CIFC (DM-CIFC) is a CIFC with finite cardinality input and
output alphabets and a memoryless channel described by the
transition probability . Achievable rate regions
will be derived for DM-CIFC; these regions may be extended
to continuous alphabets by standard arguments [15].

Transmitter , wishes to communicate a message
, uniformly distributed on , to receiver in

channel uses at rate . The two messages are indepen-
dent. A rate pair is said to be achievable if there exists
a sequence of encoding functions

and a sequence of decoding functions
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Fig. 1. General two-user Cognitive InterFerence Channel (CIFC) considered
in this work.

such that

The capacity region is the convex closure of the region of all
achievable -pairs [15]. Since the receivers do not co-
operate, the capacity of the CIFC only depends on the marginal
conditional distributions and

.
We next summarize existing inner bounds, outer bounds and

capacity results available for the general CIFC.

B. Known Inner Bounds

The rate regions in [12, Th. 2], [16, Th. 1], and [13, Th. 4.1]
are achievable but it is not known whether any of them contains
all the others. We will propose a new achievable rate region that
provably includes them all. Note that the region in [12, Th. 2] is
known to contain those in [10, Th. 1] and [17].

C. Known Outer Bounds

The tightest known outer bound for the capacity region of
the general CIFC is given in [10, Th. 4]. This outer bound is de-
rived using an argument originally devised in [11] for the “more
capable” Broadcast Channel (BC) and contains three auxiliary
Random Variables (RVs). Since we will not be using the outer
bound in [10, Th. 4] in this work, we do not report it for sake of
space.

The first outer bound for the general CIFC was obtained in
[6, Th. 3.2]; the proof was also inspired by the converse of the
BC [18] and contains one auxiliary RV.

Theorem 1. Outer Bound of [6, Th. 3.2]: If lies in
the capacity region of the CIFC then

(1a)

(1b)

(1c)

for some input distribution .
The outer bound in Theorem 1 can be simplified in two in-

stances called “weak interference” and “strong interference”.

Corollary 2. “Weak Interference” Outer Bound of [6, Prop.
3.4]: When the following condition is satisfied:

(2)

the outer bound in Theorem 1 can be expressed as

(3a)

(3b)

for some input distribution .
In this work, the condition in (2) is referred to as the “weak

interference” condition.

Corollary 3. “Strong Interference” Outer Bound of [14, Th.
5]: When the following condition is satisfied:

(4)

the outer bound in Theorem 1 can be expressed as

(5a)

(5b)

for some input distribution .
In this work, we refer to the condition in (4) as the “strong

interference” condition.

D. Known Capacity Results

The outer bound of Theorem 1 may be shown to be achievable
in a subset of the “weak interference” (2) and of the “strong
interference” (4) regimes.

Theorem 4.“Very Weak Interference” Capacity of [6, Th. 3.4]
and [8, Th. 4.1] : The outer bound of Theorem 1, expressed as
in Corollary 2, is the capacity region if for all

(6a)

(6b)

In this work, we refer to the pair of conditions in (6) as
“very weak interference”. In this regime capacity is achieved
by having the primary encoder (user 2) transmit as in a
point-to-point channel and the secondary encoder (user 1)
perform Gel’fand–Pinsker binning against the interference
created by primary encoder (user 2).

Theorem 5.“Very Strong Interference” Capacity of [14, Th.
5]: The outer bound of Theorem 1, expressed as in Corollary 3,
is the capacity region if for all

(7a)

(7b)

In this work, we refer to the pair of conditions in (7) as “very
strong interference.” In this regime, capacity is achieved by
having both receivers decode both messages as in a compound
Multiple Access Channel (MAC).

III. A NEW OUTER BOUND

The outer bound in Theorem 1 cannot be evaluated in general
since it includes an auxiliary RV whose cardinality has not yet
been bounded. In the following we thus propose a new outer
bound, looser in general than Theorem 1, but without auxiliary
RVs. This new bound can be easily evaluated and it is tight for
some channels, as we shall show in the following sections.
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Theorem 6. New Outer Bound: If lies in the ca-
pacity region of the general CIFC then

(8a)

(8b)

(8c)

for some distribution and where the joint conditional
distribution can be chosen so as to tighten the
sum-rate bound as long as has the same conditional marginal
distribution as , i.e., .

Proof: The proof may be found in Appendix A. The idea
behind this outer bound is to exploit the fact that the capacity
region only depends on the conditional marginal distributions
because the receivers do not cooperate [19].

Remark 1: The outer bound in Theorem 6 contains the outer
bound in Theorem 1. Indeed, for a fixed distribution , the
bounds on are the same ((1a) = (8a)). For the bound on
we have
(which implies (1b) (8b)) because of the Markov chain

. For the sum-rate

where (a) holds with equality if and only if
and (b) holds with equality if

and only if . We currently cannot relate
these equality conditions to any specific class of CIFC.

Remark 2: The outer bound in Theorem 6 reduces to the
“strong interference” outer bound in Corollary 3 when the con-
dition in (4) holds; in fact the condition in (4) implies the con-
dition in (5) as follows:

Now with the above inequality implies
thus yielding (8c) = (8b). Hence, with

(8b) being redundant, the region in (8) coincides with the
region in (5).

IV. A NEW INNER BOUND

As the CIFC encompasses classical interference and broad-
cast channels, we expect to see a combination of their achiev-
ability proving techniques surface in any unified scheme for the
CIFC. Our achievability scheme employs the following classical
techniques.

• Rate-splitting: As in the Han and Kobayashi’s scheme for
the classical IFC [20], also employed in [7], [10], [17].
While rate-splitting may be useful in general, is not neces-
sary in the “very weak” [6] and “very strong interference”
[5] regimes of (6) and (7), respectively.

• Superposition-coding: Capacity achieving for “more
capable” BC [18], in the CIFC the superposition of
primary messages on top of cognitive ones, as in [10],
[17], is known to be capacity achieving in “very strong
interference.”

• Binning: Gel’fand-Pinsker coding [21], often simply re-
ferred to as binning, allows a transmitter to “pre-cancel”
(portions of) the interference known to be experienced at a
receiver. Binning is also used by Marton [22] in deriving
the largest known achievable rate region for the general
memoryless BC.

• Simultaneous decoding: Useful in MACs, BCs, classical
IFCs and used in all known achievable rate regions for the
CIFC, a receiver jointly decodes its intended private and
common messages and the common message from the in-
terfering user.

We now present a new achievable rate region for the CIFC
which generalizes all the known achievable rate regions pre-
sented in [6], [10], [12], [16], [17] and [13]. In Section V we
will show that this achievable rate region, despite being built
upon similar encoding schemes, generalizes and includes all
other known achievable rate regions. The intuitive reason be-
hind this inclusion lies in the structure of our encoder consisting
of joint binning (rather than sequential as in some of the other
regions), the full generality of our input distributions (lacking in
some of the other known regions) and the presence of a broad-
cast channel like scheme at the cognitive transmitter (also noted
in the region of [12]) and a slightly different rate-split than pre-
vious work. We note however that we do not claim strict con-
tainment of any of the previously proposed rate regions.

Theorem 7. New Inner Bound (Region ): A non-nega-
tive rate pair such that

(9a)

(9b)

is achievable for the CIFC if

satisfies the inequalities in (11) some input distribution

(10)

Moreover the following rate-bound can be dropped (see
(11a)–(11k) at the bottom of the next page).

• Equation (11d) when .
• Equation (11e) when .
• Equation (11g) when .
• Equation (11i) when ,

since they correspond to the event that a non-intended common
message is incorrectly decoded when no other intended message
is incorrectly decoded.

Proof: The meaning of the RVs in Theorem 7 is as follows.
Both transmitters perform superposition of two codewords: a
common one (to be decoded at both decoders) and a private one
(to be decoded at the intended decoder only). In particular:

• Rate is split into and and conveyed through
the RVs and , respectively.
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• Rate is split into , and and conveyed
through the RVs and , respectively.

• is the common message of transmitter 2 with rate .
The subscript “c” stands for “common.”

• is the private message of transmitter 2 to be sent by
transmitter 2 superimposed to and with rate . The
subscript “p” stands for “private” and the subscript “a”
stands for “alone.”

• is the common message of transmitter 1. It is superim-
posed to and—conditioned on —is binned against

.
• and are the private messages of transmitter 1

and transmitter 2, respectively and are sent by transmitter
1 only. They are binned against one another conditioned on

, as in Marton’s achievable rate region for the broadcast
channel [22]. The subscript “b” stands for “broadcast.”

• is finally superimposed to all the previous RVs and
transmitted over the channel.

A graphical representation of the encoding scheme of Theorem
7 can be found in Fig. 2. Each box in the figure represents ei-
ther an auxiliary RV or an input RV, which convey their appro-
priate messages. Primary and cognitive RVs are in blue squares
and green rhomboids, respectively. A solid/dashed line from
a RV to a RV indicates that the RV is superposed
onto/binned against the RV . Given the non-causal message
knowledge at the cognitive transmitter, the cognitive RVs can
be binned against primary RVs but not vice-versa. Furthermore,
a RV may not be binned against a RV over which it is super-
posed. In the achievable scheme of Theorem 7, is obtained
as a function of all other RVs and it is not indicated in Fig. 2.

Rate Splitting: Let and be two independent RVs
uniformly distributed on and , respectively.
Consider splitting the messages, as follows:

where the (sub)messages are independent and uniformly dis-
tributed on , so that the
rates satisfy (9).

Fig. 2. Codebook generation for the encoding scheme in Th. 7. The RVs car-
rying a primary message are placed is blue squares while the RVs carrying a
cognitive message are in green rhomboids. Lines connecting the different RVs
specify encoding operations: solid lines indicate superposition coding while
dashed lines indicate Gel’fand–Pinsker binning. The RVs carrying a private
message, � �� �� , are superimposed onto the RVs carrying a common
message,� �� . Similarly, the RVs carrying a cognitive message,� �� ,
are superimposed onto the RV carrying primary common message � and
binned against the primary private messages � �� . Finally the cognitive
private RV � and the primary private RV � are binned against each other
as in the Marton’s scheme for the broadcast channel.

Codebook Generation: Consider a distribution in (10). The
codebooks are generated as follows:

• Select uniformly at random length- sequences
, , from the typical set
.

• For every , select uniformly at random
length- sequences ,
, from the typical set .

• For every , select uniformly at random
length- sequences ,

and , from the typical
set

• For every , ,
and , select

uniformly at random length- se-
quences ,

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

(11g)

(11h)

(11i)

(11j)

(11k)
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and , from the typ-
ical set ,

.
• For every , and

, select uniformly at random
length- sequences ,

and , from the typical set
.

• For every , ,
, ,

, , ,
, select a length- channel input

from the typ-
ical set

.
Encoding: Given , encoder 2

sends the codeword (notice that encoder 2
does not send ).

Given and , en-
coder 1 looks for a triplet such that

If more than one such triplet exists, it picks one uniformly at
random from the found ones. If no such triplet exists, it sets

; in this case we say that an encoding
error occurred. For the selected , encoder 1 sends

.
Decoding: Decoder 2 looks for a unique tuple

and some such that

If none or more than one such triplet exist,
decoder 2 sets ; in this case we say
that a decoding error occurred.

Decoder 1 looks for a unique pair and some
such that

If none or more than one such pair exist, decoder 1
sets ; in this case we say that a decoding
error occurred.

Error Analysis: The detailed error analysis is found in
Appendix B. In particular: the probability of encoding error
goes to zero if conditions (11a)–(11c) hold; the probability
of error at decoder 2 goes to zero if conditions (11d)–(11h)
hold; and the probability of error at decoder 1 goes to zero if
conditions (11i)–(11k) hold.

Remark 3 (Two Step Binning): It is also possible to perform
binning at encoder 1 in a sequential manner, similarly to [23],
as follows. First, First, is binned against conditioned on

; then, and are binned against each other condi-
tioned on . With respect to the encoding opera-
tion of Theorem 7, this affects the achievable rate region as fol-
lows.

Given the message and the message
, encoder 1 looks for a such that

If more than one such exists, it picks one uniformly at
random. If no such exists, it sets ; in this case an error
occurred. For the selected , encoder 1 looks for a pair
such that

If more than one such exists, it picks one uni-
formly at random from the found ones. If no such
exists, it sets ; in this case an error
occurred. For the selected , encoder 1 sends

.

Lemma 8: This two step encoding procedure is successful
with high probability if

(12a)

(12b)

(12c)

Proof: The proof is found in Appendix C.

From the Fourier–Motzkin elimination [24] of the region in
(11), it is possible to conclude that the binning rate in (11a)
may be taken to satisfy the constraint in (11a) with equality
without loss of generality. This implies that the two step binning
in lemma 8 has the same performance as joint binning in The-
orem 7, i.e., by setting (12a) to hold with equality, which may
be done without loss of generality, the joint and the two-step
binning rate bounds are equivalent.

V. COMPARISON OF WITH EXISTING

ACHIEVABLE RATE REGIONS

Theorem 9. The Region is the Largest Known Achiev-
able Region: The region in Theorem 7 contains all known
achievable rate regions for the CIFC. In particular, showing
inclusion of the rate regions [12, Th. 2], [16, Th. 1] and [13,
Th. 4.1] is sufficient to demonstrate the largest known CIFC
region, since the region of [12, Th. 2] is shown to contain those
of [10, Th. 1] and [17].

The proof of Theorem 9 is presented in the following
subsections.
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A. Devroye et al.’s Region [16, Th. 1]

In Appendix C we show that the region of [16, Th. 1], indi-
cated as , is contained in our new region . In the
proof:

• We make a correspondence between the random variables
and corresponding rates of and .

• We define new regions and
which are easier to compare: they

have identical input distribution decompositions and sim-
ilar rate equations.

• For any fixed input distribution, we make an equation-by-
equation comparison, which leads to and
thus .

B. Cao and Chen’s Region [12, Th. 2]

The region in [12, Th. 2] uses a similar encoding structure as
that of with two exceptions.

1) The binning in [12, Th. 2] is done sequentially rather than
jointly as in , leading to binning constraints [12, Th.
2, eq. (42)–(44)] as opposed to (11a)–(11c) in Theorem
7. Notable is that both schemes have adopted a Marton-
like binning scheme at the cognitive transmitter, as first
introduced in the context of the CIFC in [12].

2) The primary message is split into two parts in [12, Th.
2] (i.e., , note the reversal of indices),
while we explicitly split the primary message into three
parts (i.e., ).

In Appendix E we show that the region of [12, Th. 2], denoted
as , satisfies in two steps.

• We first show that we may without loss of generality set
in [12, Th. 2].

• We next make a correspondence between a subset of our
RVs and those of showing that the region in [12, Th.
2] is a special case of our region in Theorem 7.

We also note that the region of [25], used to prove capacity
for the cognitive Z-IFC when the interference-free component
is noiseless, is a special case of the region in [12] and is thus
also contained in our achievable region.

C. Jiang et al.’s Region [13, Th. 4.1]

The scheme in [13, Th. 4.1], originally designed for the gen-
eral broadcast channel with cognitive relays (or interference
channel with a cognitive relay [26]) that subsumes the CIFC,
may give a achievable region for the CIFC by setting certain
channel inputs to be empty sets. The scheme in [13, Th. 4.1] also
incorporates a broadcasting strategy as in our achievable region
through . However, the common codewords are cre-
ated independently instead of having the common codeword of
transmitter 1 superposed to the common codeword of trans-
mitter 2. The former choice introduces more rate constraints
than the latter and allows us to show inclusion in after
equating random variables. The proof of the containment of the
achievable rate region of [13, Th. 4.1] in is found in
Appendix F.

VI. NEW CAPACITY RESULTS FOR THE CIFC

We now look at the expression of the outer bound in [6, Th.
3.2] (here in Theorem 1) to gain insight into potentially capacity

achieving schemes. In particular, we look at the expression of
the corner points of the outer bound region for a fixed distri-
bution and try to interpret the auxiliary RV as private
or common messages to be matched to one of the RVs in the
achievable scheme in Theorem 7. By doing so, we will show
capacity for a class of channels in what we term the “better cog-
nitive decoding” regime, which contains the “very strong” (see
Theorem 5) and the “very weak” (see Theorem 4) interference
regimes for which capacity was previously known. Thus, the
“better cognitive decoding” regime corresponds to the largest
class of general CIFC for which capacity is currently known.

The outer bound region of Theorem 1 [6, Th. 3.2] has at most
two corner points where both the -coordinate and the -co-
ordinate are nonzero:

(13)

and

(14)

for since the largest pos-
sible is

which results in an :

Proving the achievability of both these corner points for any
shows capacity by a simple time sharing argument. We

can now look at the corner point expression and try to draw some
intuition on the achievable schemes that can possibly achieve
these rates.

• For the corner point in (13) we can inter-
pret as a common message from encoder 2 striped
out at decoder 1 before decoding the private message from
encoder 1 in .

• The corner point in (14) has two pos-
sible expressions:
1) If , i.e., :

which suggests that is the common primary mes-
sage and and are, respectively, the cognitive
common and private message.

2) If , i.e., :
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In this case, since

the rate pint is dominated by
, which is always achievable. Hence,

to show capacity we do not need to consider the case
.

Guided by these observations, we consider a scheme that has
only the components and in Theorem 7. That
is, the primary message is common and the cognitive mes-
sage is split into a private and a common message. Note
that this proposed scheme coincides with that of [27], which
achieves capacity if the cognitive receiver is required to decode
both messages (with and without the secrecy constraint); for this
reason we term the regime where the scheme with only
and in Theorem 7 achieves capacity the “better cogni-
tive decoding” regime. This also corresponds to the achievable
schemes in [27] and in [9].

Theorem 10. New Capacity Result for the “Better Cognitive
Decoding” Regime: The outer bound of Theorem 1 is the ca-
pacity region if for all

(15)

Moreover, the “better cognitive decoding” condition in (15) in-
cludes the “very weak interference” condition in (6) and the
“very strong interference” condition in (7).

Proof: Consider the achievable rate region in Theorem 7
with

and . In the re-
sulting scheme, the message from transmitter 2 to receiver 2 is
all common while the message from transmitter 1 to receiver 1
is split into common and private parts. The achievable rate re-
gion in Theorem 7 reduces to

(16a)

(16b)

(16c)

(16d)

After Fourier-Motzkin elimination [24] the region in (16)
becomes

(17a)

(17b)

(17c)

(17d)

We see that (1a)=(17a), (1b)=(17b), (1c)=(17c), and (17d) is
redundant because of the “better cognitive decoding” condition
in (15).

Moreover, the “better cognitive decoding” condition in (15)
is looser than both the “very weak interference” and the “very
strong interference” conditions in (6) and (7), respectively, be-
cause by summing the two equations in (6) we obtain

and by summing the two equations in (7) we obtain

Since both (6) and (7) imply (15), we conclude that (15) is more
general than the previous two.

Remark 4: The scheme that achieves capacity in “very weak
interference” is obtained by setting in (17) so that the
entire cognitive message is private and the primary message is
common. The scheme that achieves capacity in “very strong in-
terference” is obtained by setting in (17) so that both
transmitters send only common messages. The scheme that we
use to show the achievability in the “better cognitive decoding”
regime mixes these two schemes by splitting the cognitive mes-
sage into common and private messages. This relaxes the “very
strong interference” achievability conditions as now the cogni-
tive encoder needs to decode only part of the cognitive message.
The scheme also relaxes the “very weak interference” achiev-
ability condition since it allows the cognitive encoder to decode
part of the cognitive message and remove its undesirable effects.

VII. CAPACITY FOR THE SEMI-DETERMINISTIC CIFC

We next consider a class of semi-deterministic CIFC for
which the signal at the cognitive receiver is an arbitrary deter-
ministic function of the channel inputs, that is

(18)

for some function . The class of channels in (18) was first
introduced in [12], in the spirit of [28] and the capacity was
derived under the additional conditions that (a)

for all and (b) is invertible given . Here
we extend the result in [12] by determining the capacity region
in general—i.e., with no extra conditions besides the one in (18).

Theorem 11. New Capacity Result for the Semi-Deterministic
Channel: The capacity region of the semi-deterministic CIFC
in (18) consists of all non-negative pairs such that

(19a)

(19b)

(19c)

taken over the union of all distributions .
Proof: The converse follows by considering the outer

bound of Theorem 1 with the additional deterministic assump-
tion in (18) i.e., .



RINI et al.: NEW INNER AND OUTER BOUNDS FOR THE MEMORYLESS COGNITIVE INTERFERENCE CHANNEL 4095

For the achievability, consider the region in Theorem 7 for
, and and

, that is
(20a)

(20b)

(20c)

(20d)

for any . After Fourier–Motzkin elimination, the re-
gion in (20) may be rewritten as

(21a)

(21b)

(21c)

Finally, by choosing (possible because is a de-
terministic function of the inputs and both inputs are known at
transmitter 1) and , the achievable rate region in (21)
reduces to the outer bound in (19).

Remark 5: The achievability scheme in (20) cannot be ob-
tained as a special case of any previously known achievability
schemes except possibly the one proposed in [13] for the clas-
sical IFC with a cognitive relay. The RV , which broadcasts
the private primary message from transmitter 1, appears in [12]
as well but it is not possible to obtain the scheme in (20) with
a specific choice of the RVs. In the scheme of [12] the same
primary private message is embedded in and , while in
Theorem 11 and carry two different primary private
messages.

Remark 6: We used the achievability scheme for the semi-de-
terministic CIFC in (21) in [3], [29] to prove capacity to within
1 bit for the Gaussian CIFC. This supports the notion that re-
sults for (semi)-deterministic channels may carry over to noisy
networks.

VIII. CAPACITY FOR THE DETERMINISTIC CIFC

In the deterministic CIFC both outputs are arbitrary determin-
istic functions of the channel inputs, that is

(22a)

(22b)

for some functions and . The class of channels in (22) is a
subclass of the semi-deterministic CIFC in (18) for which The-
orem 11 is the capacity. However, we rederive here the capacity
region for the deterministic channel in (22) to show the achiev-
ability of the outer bound of Theorem 6 when letting ,
instead of the outer bound of Theorem 1.

Theorem 12. New Capacity Result for the Deterministic
Channel: The capacity region of the deterministic IFC in (22)
consists of all non-negative pairs such that

(23a)

(23b)

(23c)

taken over the union of all distributions .

Proof: The achievability follows immediately by choosing
in the capacity region in (19). Note that it is possible

to set because the codebook is generated at
the cognitive transmitter that knows both inputs and thus knows

(because is a deterministic function of the inputs by as-
sumption). The choice also maximizes the -bound
in (19b) since

However, it is not evident a priori that also maxi-
mizes the sum-rate in (19c). To show that the sum-rate is in-
deed bounded by (23c), we use the sum-rate outer bound in (8c).
Since we are dealing with deterministic channels, we can only
choose , from which the claim follows.

IX. EXAMPLES

The scheme that achieves capacity for the deterministic
and semi-deterministic CIFC uses the RV to perform
Gel’fand–Pinsker binning to achieve the most general distribu-
tion among with, quite interestingly,
and . This feature of the capacity achieving scheme
does not provide a clear intuition on the role of the RV .
For this reason we next present two examples of deterministic
channels where the encoders can choose their respective code-
books in a way that allows binning of the interference without
rate splitting. To make these examples more interesting, we
choose them so that they do not fall into the category of the
“very strong interference” regime of Theorem 5, which, in the
deterministic case, reduces to

(24)

for all . Unfortunately, checking for the “very weak inter-
ference” condition of Theorem 4 is not possible as no cardinality
bound on the alphabet of is available.

A. Example I: The “Asymmetric Clipper” Channel

Consider the channel in Fig. 3. The input and output alphabets
are and and the
input/output relationships are

(25a)

(25b)

where if and zero otherwise and
denotes the addition modulo . Also let be the uniform
distribution over the set . First we show that the channel in
(25) does not fall in the “very strong interference” class. For the
input distribution:

we have

so that
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Fig. 3. The “asymmetric clipper” channel considered in Section IX-A.

which contradicts the “very strong interference” condition in
(24). For this channel the outer bound in Theorem 12 is included
in

(26a)

(26b)

(26c)

where follows from
the multiplicity of the solutions of an addition in a Galois field.
We now show that the region in (26) indeed corresponds to
the capacity region in Theorem 12. Indeed, the corner point

in (26) is obtained in Theorem 12 with the
input distribution:

while the corner point in (26) is obtained in
Theorem 12 with the input distribution:

Time sharing between the two corner points shows that the re-
gion in (26) and the region in Theorem 12 coincide.

For the achievability of the corner point
consider the following strategy:

• transmitter 2 sends ;
• transmitter 1 sends ;
• receiver 1 decodes ;
• receiver 2 decodes .

It can be verified by inspection of Table I, which shows for
each possible message pair the corresponding channel
inputs , channel outputs and decoded mes-
sages , that the rate pair is indeed
achievable.

For the achievability of the corner point
consider the following strategy:

• transmitter 2 sends ;
• transmitter 1 sends ;
• receiver 1 decodes ;
• receiver 2 decodes .

It can be verified by the inspection of Table II, which uses the
same convention as Table I, that the rate pair
is indeed achievable.

In this example,we see how the two senders jointly design
their codebooks to achieve the outer bound and in particular how
the cognitive transmitter adapts its strategy to the transmission
of the primary transmitter so as to avoid interfering with it. Also
notice that the capacity achieving strategy achieves zero-error in

TABLE I
ACHIEVABILITY OF THE RATE POINT �� �� � � ��� �� IN EXAMPLE I
IN SECTION IX-A: FOR EACH POSSIBLE MESSAGE PAIR �� �� �, WE

INDICATE THE CORRESPONDING CHANNEL INPUTS �� � � �, CHANNEL

OUTPUTS �� � � � AND DECODED MESSAGES � �� � �� �

TABLE II
ACHIEVABILITY OF THE RATE POINT �� �� � � ��� �� IN EXAMPLE

I IN SECTION IX-A: FOR EACH POSSIBLE MESSAGE PAIR �� �� �,
WE INDICATE THE CORRESPONDING CHANNEL INPUTS �� � � �,
CHANNEL OUTPUTS �� � � � AND DECODED MESSAGES � �� � �� �

a single channel use, hence the capacity region coincides with
the zero-error capacity.

In achieving the point , transmitter 2’s
strategy is that of a point-to-point channel. The cognitive trans-
mitter chooses its codewords so as not to interfere with the pri-
mary transmission. Only two codewords do not interfere: it al-
ternatively picks one of these two codewords to produce the
desired channel output. For example, when the primary sends

(line 0 and 8 in Table I) transmitter 1 can send either
1 or 0 without creating interference at receiver 2. On the other
hand, these two values produce a different output at receiver 1,
allowing the transmission at rate bit.

In achieving the point , the primary trans-
mitter picks its codewords so as to tolerate one unit of inter-
ference. Transmitter 1 again chooses its codewords in order to
create at most one unit of interference at the primary decoder. By
adapting its transmission to the primary user, the cognitive trans-
mitter is able to always find four such codewords. It is interesting
to notice the tension at transmitter 1 between the interference it
creates at the primary decoder and its own rate. There is an op-
timal trade-off between these two quantities that is achieved by
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Fig. 4. “Symmetric Clipper” channel considered in Section IX-B.

TABLE III
INPUT DISTRIBUTION THAT ACHIEVES THE OUTER BOUND IN THEOREM 12

FOR THE CHANNEL IN EXAMPLE II IN SECTION IX-B

carefully picking the codewords at the cognitive transmitter. For
example, when the primary transmitter sends (lines 0,
4, 8, and 12 in Table II), transmitter 1 can send
and create at most one unit of interference at receiver 2. Each of
these four values produces a different output at receiver 1, thus
allowing the transmission at rate bits.

B. Example II: The “Symmetric Clipper” Channel

Consider the now channel in Fig. 4 whose input and output
alphabets are , and .
The input/output relationships are

(27a)

(27b)

The channel in (27) does not fall in the “very strong interfer-
ence” class since for the input distribution:

we have and , which contradicts the
“very strong interference” condition in (24).

The outer bound of Theorem 12 is achieved by the input
distribution in Table III. This distribution produces

and , which
are the largest possible output entropies given the cardinality of
the output alphabets. We therefore conclude that the region in
Theorem 12 is equivalent to

(28a)

(28b)

The region in (28) is achieved by using the transmission
scheme described in Table IV, which shows for each possible
message pair , the corresponding channel inputs

and channel outputs . This trans-
mission scheme achieves the proposed outer bound, thus
showing capacity. The transmission scheme can be described
as follows:

• encoder 2 sends ,

TABLE IV
ACHIEVABILITY OF THE RATE POINT �� �� � � ��� �� IN EXAMPLE

II IN SECTION IX-B: FOR EACH POSSIBLE MESSAGE PAIR �� �� �,
WE INDICATE THE CORRESPONDING CHANNEL INPUTS �� � � �

AND CHANNEL OUTPUTS �� � � � � � �� � �� �

• encoder 1 sends the value that simultaneously makes
and ,

• receivers 1 and 2 decode and ,
respectively.

This example is particularly interesting since both decoders
obtain their intended message without suffering any interfer-
ence. Here cognition allows the simultaneous cancelation of the
interference at both decoders. Encoder 2 has only three code-
words and relies on transmitter 1 to achieve its full rate of

. In fact encoder 1 is able to design its codebook to transmit
two codewords for its decoder and still contribute to the rate of
primary user by making the codewords corresponding to

distinguishable at the cognitive decoder. This feature of
the capacity achieving scheme is intriguing: the primary trans-
mitter needs the support of the cognitive transmitter to achieve

since its input alphabet has cardinality three. That is,
the primary pair achieves a larger rate thanks to the cognitive
pair than it would in its absence. This shows that cognition may
benefit both source-destination pairs.

For example consider the transmission of or 3 (lines
2, 3, 6 and 7 in Table IV). In this case transmitter 1 sends
or to simultaneously influence both channel outputs so
that both decoders receive the desired symbols. This simulta-
neous cancellation is possible due to the channel’s determin-
istic nature and the extra message knowledge at the cognitive
transmitter.

X. CONCLUSION

In this paper,we focused on the general memoryless cognitive
interference channel. We proposed new inner and outer bounds,
and derived the capacity for certain classes of channels. Our
new outer bound builds on the fact that the capacity of chan-
nels without receiver cooperation only depends on the channel
conditional marginal distributions and results in a bound that
does not involve auxiliary RVs, which is thus easily computable.
Our new inner bound generalizes all other known achievable
rate regions and is the largest rate region known to date. We
determined the capacity for a class of channels in the “better
cognitive decoding” regime, which includes the “very weak”
and the “very strong” interference regimes for which capacity
was known and is the largest region where capacity is known to
date. We also determined the capacity for the semi-deterministic
channel where the cognitive receiver’s output is a deterministic
function of the inputs. Furthermore, for channels where both
outputs are deterministic functions of the inputs, we showed the
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achievability of our new outer bound. Extensions of the results
presented here to Gaussian channels are presented in [29].

APPENDIX A
PROOF OF THEOREM 6

The -bound in (8a) is as in (1a). The -bound in (8b) and
the sum-rate bound in (8c) are looser than (1a) and (1c), respec-
tively, as pointed out in Remark 1. This proves that the region in
(8) is an outer bound for the general CIFC. Nonetheless, we offer
a novel proof for the sum-rate bound in (8c) that uses the fact
that the capacity region only depends on the conditional mar-
ginal distributions because the receivers do not cooperate [19].

By Fano’s inequality, , for some such
that as for . Let be a RV such
that but with any joint distribution

. The sum-rate can then be bounded as

Here the (in)equalities follow from (a) non-negativity of mutual
information and independence of , (b) addition of
side-information , (d) definition, (e) as and have
the same marginals and the channel model where de-

pends on and , while depends only on , (f) as
forms a Markov chain, (g)

conditioning reduces entropy, (h) chain rule, (i) conditioning
reduces entropy and memorylessness, (j) and (k) memory-
lessness of the channel, definition of the time-sharing RV
uniformly distributed over the set and independent of
everything else.

APPENDIX B
ERROR ANALYSIS FOR THEOREM 7

Without loss of generality assume that the message
was sent and

let be the triplet chosen at encoder 1. Let
be the estimate at the decoder 2

and be the estimate at the decoder 1.
The probability of error at decoder is bounded by

An encoding error occurs if encoder 1 is not able to find a
tuple that guarantees typicality. A decoding error is
committed at decoder 1 when . A decoding
error is committed at decoder 2 when

.
A) Encoding Error: Since the codebooks are generated iid

according to

(29)

but the encoding forces the actual transmitted codewords to look
as if they were generated iid according to

(30)

we thus expect the probability of encoding error to depend on

The probability that the encoding fails can be bounded as

where
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and

where if the condition expressed by is true and zero
otherwise.

The mean value of (neglecting all terms that depend on
and that eventually go to zero as ) is

with

Here denotes the -th memoryless extension of the density
for a RV .

The variance of (neglecting all terms that depend on and
that eventually go to zero as ) is

because when , that is, and
are independent (here the dots are in place of indices that are
the same in both codewords), the RVs and
are independent and they do not contribute to the summation.
We thus can focus only on the case .

We can write

and

and

and

Hence, we can bound as
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TABLE V
ERROR EVENTS AT DECODER 2

and if

that is, if the inequality in (11a)–(11c) hold. Note that the second
to last constraint in the above expression is redundant.

B) Decoding Errors at Decoder 2: If decoder 2 decodes a
, then an error is committed. The

probability of error at decoder 2 is bounded as

(31)

where , are the error events defined
in Table V. In Table V, an “X” means that the corresponding
message is in error (when the header of the column contains two
indices, an “X” indicates that at least one of the two indexes is
wrong), a “1” means that the corresponding message is correct,
while the dots “ ” indicate that “it does not matter whether
the corresponding message is correct or not, because of super-
position coding; in this case the most restrictive case is when
the message is actually in error.” The last column of Table V
specifies the to be used in (32) defined below.

Depending on which messages are wrongly decoded at de-
coder 2, the generated sequences and the received are gen-
erated iid according to

(32)

where “ ” indicates the messages decoded correctly. However,
the actual transmitted sequences and the received considered
at decoder 2 look as if they were generated iid according to

(33)

Hence we expect the probability of error at decoder 2 to depend
on terms of the type

(34)

We now proceed to bound the probability of all the events in
(31). We have that when

if
• When the event occurs we have . In this

case the received is independent of the transmitted se-
quences. This follows from the fact that the codewords
are generated in an iid fashion and all the other codewords
are generated independently conditioned on . Hence,
when decoder 2 finds a wrong , all the decoded code-
words are independent of the transmitted ones. We can
bound the error probability of as

for given in (33) and given in (34). Hence
as if (11d) is satisfied.

• When the event occurs, i.e., either or , we
have but . Whether is correct or not,
it does not matter since decoder 2 is not interested in .
However we need to consider whether the pair is
equal to the transmitted one or not because this affects the
way the joint probability among all involved RVs factor-
izes. We have
— Case : either or . In this case,

conditioned on the (correct) decoded sequence ,
the output is independent of the (wrong) decoded
sequences (because is superim-
posed to the wrong pair ). It is easy to see
that the most stringent error event is when both
and . Thus we have

for given in (33) and given in (34). Hence
as if (11g) is satisfied.
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— Case : both and . In this case, con-
ditioned on the (correct) decoded , the output

is independent of the (wrong) decoded sequences
. Thus we have

for given in (33) and given in (34). Hence
as if (11f) is satisfied.

• When the event occurs, i.e., either or ,
we have , but . Again,
whether is correct or not, it does not matter since de-
coder 2 is not interested in . However we need to con-
sider whether the pair is equal to the transmitted
one or not because this affects the way the joint probability
among all involved RVs factorizes. The analysis proceeds
as for the event .
We have
— Case : either or . In this case, con-

ditioned on the (correct) decoded sequences ,
the output is independent of the (wrong) decoded
sequences . It is easy to see that the most
stringent error event is when both and .
Thus we have

for given in (33) and given in (34). Hence
as if (11g) is satisfied.

— Case : both and . In this
case, conditioned on the (correct) decoded sequences

, the output is independent of

TABLE VI
ERROR EVENTS AT DECODER 1

the (wrong) decoded sequence . However, since
is the triplet that passed the encoding

binning step, they are jointly typical. Hence, in this case
we cannot use the factorization in given in (33), but
we need to replace in (33) with .
Thus we have

Hence as if (11h) is satisfied.
C) Decoding Errors at Decoder 1: The probability of error

at decoder 1 is bounded as

(35)

where , for , is the error event defined in
Table VI. The meaning of the symbols in Table VI is as for
Table V.

Depending on which messages are wrongly decoded at de-
coder 1, the generated sequences and the received are gen-
erated iid according to

(36)

where “ ” indicates the messages decoded correctly. However,
the actual transmitted sequences and the received consid-
ered at decoder 1 look as if they were generated iid according to

(37)

Hence we expect the probability of error at decoder 1 to depend
on terms of the type

(38)
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We now proceed to bound the probability of all the events in
(35). We have that when

if
• When the event occurs we have . In this

case the received is independent of the transmitted
sequences. We can bound the error probability of as

for given in (33) and given in (38). Hence
as if (11i) is satisfied.

• When the event occurs, either ,
or both. In this case, conditioned on the (correct) decoded
sequence , the output is independent of the (wrong)
decoded sequences . It is easy to see that the
most stringent error event is when both and

. Thus we have

for given in (37) and given in (38). Hence
as if (11j) is satisfied.

• When the event occurs, either or
or both. In this case, conditioned on the (correct) decoded
sequence , the output is independent of the
(wrong) decoded sequences . It is easy to see that the
most stringent error event is when both and

. Thus we have

for given in (37) and given in (38). Hence
as if (11k) is satisfied.

APPENDIX C
PROOF OF LEMMA 8

An encoding error is committed with sequential/two-step bin-
ning if we cannot find a in the first step or if, upon finding the
correct in the first encoding step, we cannot find the correct

in the second step. Let the probability of the error at
the first step and the probability of the error at the second
step, the

where

Using standard typicality arguments we have

Now we can write

so that when if (12a) is satisfied.
The error event can be divided in three error events
• : it is not possible to find such that

• : it is not possible to find such that

• : given that we can find and satisfy the first
two conditions, we cannot find a couple such that

We now establish the conditions that guarantee that the proba-
bility of error of each of these events goes to zero as .

For we have

where
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As for , this implies that when if
(12b) is satisfied.

For , we have that the probability of this event goes to
zero for large given that appear to be gener-
ated according to the distribution and is gen-
erated according to .

For we have

where

This implies that when if (12c) is
satisfied.

APPENDIX D
CONTAINMENT OF [16, TH. 1] IN

We refer to the region in [16, Th. 1] as for brevity.
We show this inclusion of in with the following
steps.

• We enlarge the region by removing some rate con-
straints.

• We further enlarge the region by enlarging the set of pos-
sible input distributions. This allows us to remove the
and from the inner bound. We refer to this region as

since is enlarges the original achievable rate region.
• We make a correspondence between the RVs and corre-

sponding rates of and .
• We choose a particular subset of , , for which

we can more easily show
, since and have identical input distri-

bution decompositions and similar rate bound equations.

Enlarge the region
We first enlarge the rate region of [16, Th. 1] by re-

moving a number of constraints (specifically, we remove (2.6,
2.8, 2.10, 2.13, 2.14, 2.16, 2.17) of [16, Th. 1]). Also, following
the line of thoughts in [29, App. D], it is possible to show that
without loss of generality we can set to be a deterministic
function of and , allowing us insert next to .
With these consideration we can enlarge the original region and
define as in (39), taken over the union of distributions.

(40)
For (39c) we have

For (39e) we have

The original region is thus equivalent to the region in (41),
taken over the union of all distributions that factor as in (40).

Enlarge the class of input distribution and eliminate
and . Now increase the set of possible input distributions of
equation (40) by letting have any joint distribution with .

(39a)

(39b)

(39c)

(39d)

(39e)

(39f)

(39g)

(39h)

(39i)
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TABLE VII
ASSIGNMENT OF RVS OF APPENDIX C

This is done by substituting with in the expression
of the input distribution. With this substitution we have

with . Since is decoded at both decoders,
the time sharing random may be incorporated with
without loss of generality and thus can be dropped. The region

described in (41) is convex and thus time sharing is not needed.
With these simplifications, the region is now defined as
the region in (42), taken over the union of all distributions

Correspondence between the random variables and rates.
When referring to [16] please note that the index of the pri-
mary and cognitive user are reversed with respect to our notation
(i.e., and vice-versa). Consider the correspondences be-
tween the variables of [16, Th. 1] and those of Theorem 7 in
Table VII to obtain the region defined as the set of rate
pairs satisfying the inequalities in (43), taken over the union of
all distributions

(44)

(41a)

(41b)

(41c)

(41d)

(41e)

(41f)

(41g)

(41h)

(41i)

(42a)

(42b)

(42c)

(42d)

(42e)

(42f)

(42g)

(42h)

(42i)
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Next, we using the correspondences of the table and restrict
the fully general input distribution of Theorem 7 to match
the more constrained factorization of (44), obtaining a region

defined as the set of rate tuples satisfying the
inequalities in (45), taken over the union of all distributions
that factor as

Equation-by-equation comparison. We now show that
by fixing an input distribution (which are the

same for these two regions) and comparing the rate regions
equation by equation. We refer to the equation numbers directly
and look at the difference between the corresponding equations
in the two new regions.

• Equations (45c)–(45a) versus (43c)–(43a): Noting the can-
celation/interplay between the binning rates, we see that

• Equations (45d)–(45a) versus (43d)–(43a):

• Equations (45e)–(45a) versus (43e)–(43a): again noting the
cancellations,

• Equations (45f) versus (43f):

• Equations (45g)–(45b) versus (43g)–(43b)–(43a),

(43a)

(43b)

(43c)

(43d)

(43e)

(43f)

(43g)

(43h)

(43i)

(45a)

(45b)

(45c)

(45d)

(45e)

(45f)

(45g)

(45h)

(45i)
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where we have used the fact that and are condi-
tionally independent given .

• Equations (45i)–(45b)–(45a) versus (43i)–(43b):

where we have used the fact that and are condi-
tionally independent given .

• Equations (45i)–(45b) versus (43i)–(43b)––(45a)(45a):

APPENDIX E
CONTAINMENT OF [12, TH. 2] IN

The independently derived region in [12, Th. 2] uses a sim-
ilar encoding structure as that of with two exceptions:
a) the binning is done sequentially rather than jointly as in

leading to binning constraints (43)–(45) in [12, Th. 2]
as opposed to (11a)–(11c) in Theorem 7 . Notable is that both
schemes have adopted a Marton-like binning scheme at the
cognitive transmitter, as first introduced in the context of the
CIFC in [12]. b) While the cognitive messages are rate-split in
identical fashions, the primary message is split into two parts
in [12, Th. 2] ( , note the reversal of indices)
while we explicitly split the primary message into three parts

. We show that the region of [12, Th.
2], denoted as in two steps.

• We first show that we may without loss of generality set
in [12, Th. 2], creating a new region .

• We next make a correspondence between our RVs and
those of [12, Th. 2] and obtain identical regions.

We note that the primary and cognitive indices are permuted
in [12].

We first show that in [12, Th. 2] may be dropped
without loss of generality. Consider the region of
[12, Th. 2], defined as the union over all distributions

of all rate tuples
satisfying

(46a)

(46b)

(46c)

(46d)

(46e)

Now let be the region obtained by setting
and while keeping all remaining RVs
identical. Then is the union over all distributions

, with in
, of all rate tuples satisfying

(47a)

(47b)

(47c)

(47d)

(47e)

Comparing the two regions equation by equation, we see that
• Equation (46a) = (47a).
• Equation (46b) (47b) as this choice of RVs sets the gen-

erally positive mutual information to 0.
• Equation (46c) = (47c).
• Equation (46d) = (47d).
• Equation (46e) (47e) as this choice of RVs sets the gen-

erally positive mutual information to 0.
From the previous, we may set in the region of

[12, Th. 1] without loss of generality, obtaining the region
defined in (47a) –(47e). We show that may be obtained
from the region with the assigment of RVs, rates and
binning rates in Table VIII.

Evaluating defined by (47a) –(47e) with the above as-
signment, translating all RVs into the notation used here, we
obtain the region

(48a)

(48b)
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TABLE VIII
ASSIGNMENT OF RVS OF SECTION V-B

(48c)

(48d)

(48e)

(48f)

(48g)

(48h)

Note that we may take binning rate equations and
to be equality without

loss of generality—the largest region will take
as small as possible. The region with

(49a)

(49b)

(49c)

(49d)

(49e)

(49f)

(49g)

(49h)

(49i)

For these two regions are identical, showing that
is surely no smaller than . For , , the binning
rates of the region are looser than the ones in . This
is probably due to the fact that the first one uses joint binning
and latter one sequential binning. Therefore may produce

rates larger than . However, in general, no strict inclusion
of in has been shown.

APPENDIX F
CONTAINMENT OF [13, TH. 4.1] IN

In this scheme, the common messages are created indepen-
dently instead of having the common message from transmitter
1 being superposed to the common message from transmitter
2. The former choice introduces more rate constraints than the
latter and allows us to show inclusion in .

Again, following the argument of [29, App. D], we can show
that without loss of generality we can take and to be
deterministic functions. With this consideration we can express
the region of [13, Th. 4.1] as

(50a)

(50b)

(50c)

(50d)

(50e)

(50f)

(50g)

(50h)

(50i)

(50j)

taken over the union of all distributions

for
We can now eliminate one RV by noticing that

and setting , to obtain the region

(51a)

(51b)

(51c)

(51d)

(51e)

(51f)

(51g)

(51h)
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TABLE IX
ASSIGNMENT OF RVS OF APPENDIX F

(51i)

(51j)

taken over the union of all distributions of the form

We equate the RVs in the region of [13] with the RVs in Theorem
7 as in Table IX.

With the substitutions of Table IX in the achievable rate re-
gion of (51), we obtain the region

(52a)

(52b)

(52c)

(52d)

(52e)

(52f)

(52g)

(52h)

(52i)

(52j)

taken over the union of all distributions of the form

Set and in the achievable
scheme of Theorem 7 and consider the factorization of the re-
maining RVs as in the scheme of (52), that is, according to

With this factorization of the distributions, we obtain the
achievable rate region

(53a)

(53b)

(53c)

(53d)

(53e)

(53f)

(53g)

(53h)

(53i)

Note that with this particular factorization we have that
, since is conditionally independent of

given .
We now compare the region of (52) and (53) for a fixed input

distribution, equation by equation:

We see that (52d) and (52i) are extra bounds that further restrict
the region in [13] to be contained in the region of Theorem 7.
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