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ABSTRACT

In this paper, the problem of adaptively selecting radar waveforms from a pre-defined library of waveforms is
addressed from an information theoretic perspective. Typically, radars transmit specific waveforms periodically,
to obtain for example, the range and Doppler of a target. Although modern radars are capable of transmit-
ting different waveforms during each consecutive period of transmission, it is hitherto unclear as to how these
waveforms must be scheduled to best understand the dynamic radar scene. In this paper, a new information
theoretic metric – directed information – is employed for waveform scheduling, and is shown to incorporate
the past radar returns to effectively schedule waveforms. We formulate this waveform scheduling problem in a
Gaussian framework, derive the corresponding maximization problem, and illustrate several special cases.

Keywords: Waveform diversity, Cognitive radar, Waveform scheduling, Directed information, Mutual informa-
tion

1. INTRODUCTION

Active sensing systems such as radar transmit one, or a burst of waveforms to illuminate a scene. While it is
envisioned that waveform diversity would aid in better understanding the radar scene,1 no general consensus yet
exists on how to “best” schedule various waveforms. Radar scenes are dynamic, and the radar returns not only
contain information about the target, but also contain information about the scene itself, and interactions of
the target with the scene. In this paper, waveform scheduling, as is possible using cognitive radar, is addressed.
The objective is to adaptively transmit waveforms having incorporated the scene from the prior radar echoes;
utilizing feedback, and hence closing the loop in cognitive radar sensing. To do so, an information theoretic
metric is proposed.

It is argued here that the directed information (DI)2–4 between the target impulse response and the radar
returns should be maximized when scheduling over multiple epochs. This allows us to naturally incorporate
feedback, and in the presence of it, may be a more appropriate measure of the radar-target channel than
the more common mutual information (MI) metric. Typical radar scenes comprise clutter, and it is readily
acknowledged that EM target-clutter interactions exist.5–7 When such interactions are ignored and are not used
in feedback, then maximizing the directed information is equivalent to maximizing the mutual information and
is demonstrated here.

In the past literature, Bell’s seminal work formalized the relation between information theory and radar wave-
form design.8 Mutual information was employed in designing waveforms for one measurement epoch. Waveform
design in the presence of signal dependent interference for one measurement epoch was also treated using MI in.9

Previous approaches to waveform scheduling have been proposed using MI, see for example.10 Other metrics for
waveform scheduling in target tracking can be seen in,11 and references therein. Maximizing signal to noise ratio
as a metric for waveform design was analytically treated in,8,9 and references therein. However, as stated by Bell
who in turn summarizes Woodward: “there is no straightforward mathematical framework which implies that
maximizing signal to noise ratio ensures maximal information gain”. It is emphasized that we are interested in
selecting waveforms from a pre-determined library of waveforms to maximize information gain, and not to design
waveforms for this purpose. Nevertheless, our formulation allows for waveform design, when the maximization
is performed on the waveforms themselves rather than over the waveform choice.
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2. MODEL

A single complex target is assumed consisting of many point scatterers whose spatial extent spans multiple
range cells. Further for simplicity, we assume that we are given a waveform library consisting of two waveforms,
{s1(t), s2(t)}, where t indexes continuous time. If waveform si(t) is transmitted at the first scheduling instant,
the radar return in baseband is

y
(i)
1 (t) = α1(t) ∗ si(t) + β1(t) ∗ si(t) + v1(t), (1)

for t ∈ [τmin, τmax], are the set of time delays (or equivalently range) under consideration, ∗ denotes the convo-
lution operator and the noise v1(t) is a zero mean complex stationary Gaussian random processes independent
of α1(t) and β1(t).

The impulse responses, α1(t) and β1(t) are complex, finite duration and finite energy Gaussian random
processes, modelling the reflectivities of the target, and the clutter plus the target interactions with the clutter
(or its environment), respectively. Hence α1(t) and β1(t) may in general be correlated. Multipath scenarios are
one example where multiple radar returns manifest due to interactions of the target with the clutter and are
therefore generally correlated with the target response. For ease of analysis, we will assume that the processes,
α1(t), β1(t) are locally covariance stationary within their respective temporal supports. A simple example of
non-overlapping target and “clutter plus target” responses in the range domain is shown in Fig.1 for a single
measurement epoch.
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Figure 1: Transmitted and received returns from the target, and clutter and target interactions

If waveform sj(t) is transmitted in the second epoch, then the radar return can be written similar to (1) as,

y
(j)
2 (t) = α2(t) ∗ sj(t) + β2(t) ∗ sj(t) + v2(t) (2)

for t ∈ [T + τmin, T + τmax], where T is the period between the two scheduling epochs, (typically in the order of
µs). Here α2(t) and β2(t) are complex finite energy Gaussian random processes similar to α1(t) and β1(t) but
defined in the second time scheduling instant. The noise in (2) is v2(t), again assumed to be Gaussian, and it
may be correlated with v1(t). Statistical assumptions on α2(t) and β2(t) are again possibly correlated Gaussian
random processes with assumptions similar to those imposed on α1(t) and β1(t), and the four impulse responses
may in general be correlated. We do distinguish the impulses responses at the first and second scheduling epochs
as we allow for moving targets, therefore giving rise to a different radar cross section (RCS) fading process of
the target and its interaction with the clutter. As we analyze only two scheduling instants, the Doppler cannot
be estimated satisfactorily. Nevertheless, the phase progression arising from the Doppler can be easily absorbed
into say αm(t),m = 1, 2. For ease of exposition, we assume that the same set of time delays [τmin, τmax], are
valid for each scheduling instance. In practice they may be different and this may be accounted for in our model.
The discrete model is derived next.
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Figure 2: Closed loop radar waveform scheduling to maximize the directed information (DI).

2.1 Discrete model

By sampling the continuous-time model we obtain a discrete model. Without loss of generality, assume that
N denotes the data length of both the returns, and there are K discrete scatterers representing the random
processes αm(t) and βm(t),m = 1, 2 in each scheduling instant∗, then we can write both (1), (2) in an equivalent
discrete form as

y
(i)
1 = S̄i[α

H
1 ,β

H
1 ]H + v1, i = 1, or 2

y
(j)
2 = S̄j [α

H
2 ,β

H
2 ]H + v2, j = 1, or 2

(3)

where, αm = [αm1, αm2, . . . , αmK ]H ∈ CK×1 and βm = [βm1, βm2, . . . , βmK ]H ∈ CK×1,m = 1, 2 now represent
the reflectivities of the scatterers, and the reflectivities of the clutter and target interactions, respectively. We
note that the discrete model allows us to consider range cells which are target and target+clutter only. In other
words, range cells which consist of noise only contributions are ignored. The matrices, S̄i and S̄j are defined as,

S̄i := Diag{Si,Si}, S̄j := Diag{Sj ,Sj},

where, Diag{·, ·} converts the matrix arguments into a block diagonal matrix. The matrices, Si and Sj consists
of the waveform samples, si(·) and sj(·), respectively. Convolution matrices are special cases of Si and Sj , but
in general their structure depends on the sparsity of both αm and βm.

The question we seek to answer is: do we transmit waveform s1(t) or s2(t) in the first scheduling instant, and
likewise transmit s1(t) or s2(t) in the second scheduling instant? To answer this, we must state what we seek to
maximize when selecting these waveforms over the two slots.

3. WAVEFORM SCHEDULING VIA DIRECTED INFORMATION

Directed information (DI) was derived to analyze the performance of communication systems with feedback.2,3

Our goal is to schedule waveforms so as to maximize the amount of information gained over the two scheduling
instances. The DI captures the information causally obtained at the receiver about the scene (here captured by
α) and is the natural choice for maximizing the information gain over multiple time epochs while incorporating
the past radar returns. Mutual information on the other hand does not preserve the causality of the information
flow.3 However, as we will see, in some relevant scenarios the DI is equal to the (two epoch) MI. See also12 for
other relevant scenarios where DI coincides with the MI.

For now, we will discuss only the relevant properties of DI as it pertains to our radar problem. In particular,
we wish to select the waveforms si and sj at times 1,2 respectively that will maximize the causally conditioned

∗Both N and K may assume different values in the two scheduling instants, but for notational simplicity here we assume
they are constant over time.



directed information between the target responses α and the received signal y, DI(i, j), defined for i, j ∈ {1, 2}
as

DI(i, j) : = I(α→ y||si, sj) (4)

= I(α1;y
(i)
1 |si) + I(α;y

(j)
2 |si, sj ,y

(i)
1 ),

where, α = [αH1 ,α
H
2 ]H , y = [y

(i)H
1 ,y

(j)H
2 ]H , sm ∈ <(N+1−K)×1,m = 1, 2 represents the vectors comprising the

waveform’s samples, and I(X;Y |Z) is the mutual information between (X,Y ) conditioned on Z defined in the
usual manner, see for example.13 The mutual information, in contrast, taken over the two time steps is given by

MI(i, j) = I(α;y|si, sj) (5)

= I(α1,α2;y
(i)
1 |si, sj) + I(α;y

(j)
2 |si, sj ,y

(i)
1 ),

= DI(i, j) + I(α2;y
(i)
1 |si, sj ,α1). (6)

Like the MI, DI is non-negative, but unlike MI, DI is not symmetric in its arguments (α and y in the above).
From the above it is clear that DI(i, j) ≤MI(i, j), and that the mutual information is equal to the DI plus the

term I(α2;y
(i)
1 |si, sj ,α1). This term may heuristically be interpreted as being “non-causal” in the sense that

it contains the mutual information between the current received signal (y1) and the target response in the next
time slot (α2).

The waveform selection or scheduling criteria is then:

(s∗i , s
∗
j ) = arg max

i,j
DI(i, j) (7)

After the first scheduling instant, one has some information about α1 and access to the returns y
(i)
1 . This

is used to select a waveform in the next time slot which will best illuminate α2 in order to maximize the net
information transfer from the target to the radar over the two time-steps. However, for some cases, maximizing

the DI is equivalent to maximizing the MI. From (5) and (6), MI(i, j) 6= DI(i, j) when I(α2;y
(i)
1 |si, sj ,α1) 6= 0

or when
H(α2|α1,y

(i)
1 , si, sj) 6= H(α2|α1, si, sj) (8)

This holds when knowing y
(i)
1 (in addition to α1) provides partial additional information about α2. Let us

denote Cov{x,y} as the covariance (matrix) between, x and y. Consider the term, H(α2|α1,y
(i)
1 , si, sj). The

following can be shown,

H(α2|α1,y
(i)
1 , si, sj) = ln det{Cov{α2,α2} −ABAH}+K (9)

A = [ (Cov{α1,α2}H + Cov{α2,β1})SHi , Cov{α1,α2}H ]

B =

[
B11 B12

BH
12 B22

]
where, K is some arbitrary constant related to the dimensions of the covariance matrix, and the elements of B
are given by,

B11 =

[
Si(Cov{α1,α1}+ Cov{β1,β1}+ Cov{α1,β1}+ Cov{α1,β1}H)SHi + Cov{v1,v1}
− Si(Cov{α1,α1}+ Cov{α1,β1})Cov−1{α1,α1}(Cov{α1,α1}+ Cov{α1,β1}H)SHi

]−1

B22 =
Cov−1{α1,α1}+
Cov−1{α1,α1}(Cov{α1,α1}+ Cov{α1,β1})SH1 B11S1(Cov{α1,α1}+ Cov{α1,β1}H)Cov−1{α1,α1}

B12 = −B11S1(Cov{α1,α1}+ Cov{α1,β1})Cov−1{α1,α1} (10)

Using (10) in (9), and after some simplifications it may then be shown that (8) holds when

Cov{α1,β1} 6= 0 and Cov{α2,β1} 6= 0, (11)

or when the target responses and clutter responses are correlated over both the slots.



4. SPECIAL CASES

In this section we will consider the clutter responses to be independent of the target responses. In the discrete
case, its is shown that DI maximization is related to minimizing the Bayesian mean squared error. In the analog
model, DI maximization is interpreted in the spectral domain.

4.1 Independent target and clutter responses: discrete

We now consider the special case of when the target is statistically independent of clutter and its interactions
with the clutter are not considered, i.e. when Cov{α1,β1} = Cov{α2,β1} = 0 and hence MI(i, j) = DI(i, j).
For brevity, we can now absorb the βm’s into the noise as they are uncorrelated with the αm’s. Then, the
waveform scheduling criteria becomes,

(s∗i , s
∗
j ) = arg max

i,j
DI(i, j) (12)

= arg min
i,j

ln det{BMSE(α|y)} (13)

= arg min
i,j

ln det{(C−1α + H(ij)HC−1v H(ij))−1}

where, BMSE is the minimum Bayesian mean square error,14 and

H(ij) :=

[
Si 0
0 Sj

]
Cα := Cov{α,α}, Cv = Cov{v,v}, v := [vH1 ,v

H
2 ]H .

We may alternatively view (analog) waveform scheduling (or design) in the spectral domain, which is derived
next, while still enforcing independence of target and clutter.

4.2 Independent target and clutter responses: analog

Assume that the radar operates with a bandwidth denoted by W . Let us divide the bandwidth into P consecutive
bands each of infinitesimal width denoted by δf . Denote the center frequency of the p-th band as fp, p = 1, . . . , P .
Then, consider the following transformation on (1) and (2),

y
(i)
1 (t) =

P∑
p=1

y
(i)
1p (t), y

(i)
1p (t) := α1p(t) ∗ sip(t) + v1p(t)

y
(j)
2 (t) =

P∑
p=1

y
(j)
2p (t), y

(j)
2p (t) := α2p(t) ∗ sjp(t) + v2p(t)

where vmp(t) and αmp(t) (m = 1, 2) have spectral content in the p-th band only and zero elsewhere. Using
identical notation, sip(t) and sjp(t) are constrained to be in the p-th band and have spectral content defined by
Sip(f) = Si(fp)rp(f), and Sjp(f) = Sj(fp)rp(f), respectively. Here, Sm(f) is the Fourier transform of sm(t), the
indicator function is denoted as 1[·], and rp(f) := 1[fp − δf/2 ≤ f ≤ fp + δf/2]. Let us define the power spectral
density (PSD) of vmp(t),m = 1, 2 as V mp (f) = Vm(fp)rp(f) and the energy spectral variance (ESV) of αmp(t)
as Γmp (f) = Γm(fp)rp(f), where, Vm(f), and Γm(f) denote the PSD and ESV of vm(t) and αm(t), respectively.
Similarly, we can define the cross PSD and cross ESV to be V p12(f) = V12(fp)rp(f) and Γp12(f) = Γ12(fp)rp(f) of
the noise and target impulse responses at the two scheduling instants, respectively, where V12(f) and Γ12(f) are
the cross PSD and cross ESV of the original random processes. If we denote the DI in the p-th band as DIp(i, j),
then we can now readily show that,

DIp(i, j) = I(α1p(t), α2p(t); y
(i)
1p (t), y

(j)
2p (t)|sip(t), sjp(t)) = T̃ δf ln

[
1 +

χ1(fp, i, j)

χ2(fp)T̃ 2

]
, (14)



where

χ1(fp, i, j) = |Si(fp)|2|Sj(fp)|2Γ1(fp)Γ2(fp) + T̃ |Si(fp)|2Γ1(fp)V22(fp) + T̃ |Sj(fp)|2Γ2(fp)V11(fp)

− 2T̃Re{Si(fp)S∗j (fp)Γ12(fp)V12(fp)} − |Si(fp)|2|Sj(fp)|2|Γ12(fp)|2

χ2(fp) = V11(fp)V22(fp)− |V12(fp)|2

where T̃ is the total time duration of y
(i)
1 (t) and y

(j)
2 (t). Considering any two non-overlapping bands, and due

to independence, the total MI is the sum of their respective MIs. Hence in the limiting case we have,

DI(i, j) = I(α1(t), α2(t); y
(i)
1 (t), y

(j)
2 (t)|si(t), sj(t)) (15)

=
∑
p

lim
δf→0

DIp(i, j) (16)

=
∑
p

lim
δf→0

I(α1p(t), α2p(t); y
(i)
1p (t), y

(j)
2p (t))

= T̃

∫
W

ln

[
1 +

χ1(f, i, j)

χ2(f)T̃ 2

]
df (17)

The waveform scheduling criteria now becomes,

arg max
i,j

DI(i, j) = arg max
i,j

∫
W

ln

[
1 +

χ1(f, i, j)

χ2(f)T̃ 2

]
df

The results of8 and9 may be obtained as special cases of the framework presented here, when the waveform
design is considered rather than waveform scheduling. In particular, for one scheduling epoch only, the first
term in the DI is the one-step MI, optimized in8 and,9 where we note that (1) and (2) allow for signal-clutter
interactions. It is noted that in waveform design the optimization is over the waveforms rather than over the
waveform index i, j.

4.3 An example when waveform diversity is useless.

We consider a special case where transmitting diverse waveforms on the scheduling epochs is unnecessary. Assume
that V1(f) = V2(f) = σ2, f ∈ W and V12(f) = 0 (white, Gaussian noise, independent and identical over the two
slots). In the same spirit assume Γ1(f) = Γ2(f) = σ2

a, f ∈ W and Γ12(f) = 0. These assumptions imply that the
ESV’s are flat in the bandwidth, and the cross ESV is zero. Now substituting these assumptions in (15), and
using (7), we have

arg max
i,j

DI(i, j) = arg max
i,j

∫
W

ln

[(
1 +
|Si(f)|2σ2

a

T̃ σ2

)(
1 +
|Sj(f)|2σ2

a

T̃ σ2

)]
df

= arg max
i

∫
W

ln

(
1 +
|Si(f)|2σ2

a

T̃ σ2

)
df. (18)

From (18), we see that the maximization over the two epochs decouples to a single maximization for one epoch.
In other words, pick one waveform which maximizes (18) and schedule it for both transmission epochs. In
practice, radar scenes with the aforementioned assumptions are more an exception than the rule.

5. SIMULATIONS

We now illustrate how the spectral domain maximization of the DI i.e, (15) is carried out through several
examples. For ease of exposition, the bandwidth is normalized by the sampling frequency and denoted asW and
assumes the normalized value of 0.6 (±0.3), unless noted otherwise. The normalized frequency axis is between
(-0.5,0.5]. To be fair in comparisons, it is emphasized that the waveforms employed in this section have identical



energy and identical bandwidth. Furthermore, we wish to stress here that the waveforms as chosen by the DI in
the scheduling instants depend on interactions of the spectral content of the waveforms with the auto and cross
target ESV’s along with the auto and cross noise PSDs. Their interactions are dictated by (14) in the individual
frequency sub-band and (15) over the entire radar bandwidth, respectively.

In the first example, we consider the waveform library comprised of two waveforms, whose Fourier transforms
are denoted as Si(f), and magnitude squared responses are given by

|S1(f)|2 = |3− 2.5sech(f)|
|S2(f)|2 = exp(−10f2)(8− 6 cos (2π × 2f − 2π/7))

The noise auto PSDs at the two scheduling instants, and noise cross PSD are denoted as V1(f) = 1, V2(f) = 1,
V12(f) = 0, f ∈ W, respectively. The target ESV at the first scheduling instant is defined as, Γ1(f), and given
by

Γ1(f) =

 −
f
0.3 + 1 if 0 < f ≤ 0.3
f
0.3 + 1 if −0.3 ≤ f < 0
0 Otherwise

In the same spirit, the target ESV at the second scheduling instant is given by

Γ2(f) =

 −
f
0.2 + 1 if 0 < f ≤ 0.3
f
0.2 + 1 if −0.3 ≤ f < 0
0 Otherwise

The target cross ESV denoted as Γ12(f) assumes values such that

|Γ12(f)|2 = 0.1|Γ1(f)| × |Γ2(f)|

Since there are two waveforms in the library, and we consider scheduling in two instants, the waveform permuta-
tions are limited. Let us denote, permutations-1,2,3,4 as waveform choices (s1, s1),(s2, s2), (s1, s2), and (s2, s1),
in the two scheduling instants respectively. It is then seen from Fig.3(d) that the choice (s2, s1) is selected for
transmission. This is surprising given that the DI costs as computed from (14) in each frequency bin and as
shown in Fig.3(c) are more or less similar for all the permutations. However, after close inspection of Fig. 3(c)
we can see that the DI costs for the chosen permutation is flatter across the radar bandwidth, than the other
three permutations. For this simulation scenario, the DI is sensitive to small changes in the costs, and prefers
waveform diversity rather than selecting identical waveforms for transmission at the two scheduling instants. It
is also surprising to note that the DI cost for the permutation (s1, s2) is the least among the other choices.

Unlike the previous simulation where the DI picks diverse waveforms, in this simulation the DI picks identical
waveforms at both the scheduling instants, although it yet is to be decided which one is picked. For this
simulation, the magnitude squared response of the waveforms are varied, and are given by

|S1(f)|2 = |3− 2.5sech(100f)|
|S2(f)|2 = exp(−10f2)(8− 6 cos (2π × 10f − 2π/7))

All other simulation parameters and identical to the previous example. The results are shown in Fig.4, and
are self explanatory. In particular, we see from Fig.4(d) that (s2, s2) is selected for transmission. This is not
surprising given the DI costs as in Fig.4(d), where we can see that permutation-2 has the highest cost at and
near the vicinity of DC. These costs therefore bias the DI to pick a traditional non-diverse scheme of waveform
transmission. Nonetheless, DI picks the second waveform at both scheduling instants rather than the first. This
maybe attributed to the the deep null the first waveform has at DC, as shown in Fig.4(a).

In this example, the ESV’s unlike the previous simulation were made approximately flat over the radar
bandwidth, and the the second waveform’s spectral content to be slowly varying. These changes make the DI
pick identical waveforms at the scheduling instants, but opposite of what was chosen in the previous example.



In this last simulation example, all parameters are identical to the previous cases, except the waveforms and the
auto ESVs which are varied and are given by,

|S1(f)|2 = |3− 2.5sech(f)|
|S2(f)|2 = exp(−30f2)(8− 6 cos (2π × f − 2π/7))

Γ1(f) =

 −
f
3 + 1 if 0 < f ≤ 0.3

f
3 + 1 if −0.3 ≤ f < 0
0 Otherwise

Γ2(f) =

 −
f
1.5 + 1 if 0 < f ≤ 0.3
f
1.5 + 1 if −0.3 ≤ f < 0
0 Otherwise

We can see from Fig.5(a) that the first waveform has a nearly flat spectral response, in contrast to the second
waveform, over the radar bandwidth. Given the target auto and target cross ESV which are again more or
less flat over the bandwidth, and as seen in Fig.5(b), it is no surprise that the DI prefers transmitting the first
waveform over both the scheduling instants as readily seen from Fig.5(c). The following example demonstrates
the fact that DI for waveform scheduling weighs in the target auto ESVs, the target cross ESV, as well as the
individual waveform’s spectral shape, albeit in a complex manner as demonstrated from (14)-(15).

6. CONCLUSIONS

A cognitive radar framework was proposed to adaptively schedule waveforms by extracting information from the
past radar returns. The Gaussian model assumed was general encompassing clutter and interference which are
correlated with the target. Maximizing the directed information, which incorporates feedback, was proposed for
the first time. The optimization problem was considered in several special cases. For simplicity, the analysis
assumed a waveform library comprising two distinct waveforms and two scheduling instants. Nevertheless, the
conclusions and analysis apply to a larger waveform library and multiple epochs. Simulations in the spectral
domain were performed to depict scenarios where waveform adaptation is useful versus those in which it is
useless.
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Figure 3: (a) |Si(f)|2, i = 1, 2, (b) Auto and cross target ESVs, (c) DI costs in each frequency bin, (d) DI costs
v.s waveform choice permutations
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Figure 4: (a) |Si(f)|2, i = 1, 2, (b) Auto and cross target ESVs, (c) DI costs in each frequency bin, (d) DI costs
v.s waveform choice permutations
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Figure 5: (a) |Si(f)|2, i = 1, 2, (b) Auto and cross target ESVs, (c) DI costs in each frequency bin, (d) DI costs
v.s waveform choice permutations


