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Abstract—Spectrum coexistence between radar and communi-
cations systems has received considerable attention recently as
it has presented itself as one solution to the increasing demand
for higher data rates in communications systems. This paper
aims to model the interfering radar signal at the receiver of a
communications system that uses orthogonal frequency-division
multiplexing (OFDM). As an example, a rectangular-shaped
pulsed radar signal is considered, for which the probability
mass functions (PMFs) are derived for the amplitude and phase
of the radar interference. The derived PMFs are shown to
accurately model the radar interference generated via Monte
Carlo simulations.

I. INTRODUCTION

The increasing demand for wireless services and shortage
of new spectral resources has motivated proposals calling for
spectral coexistence between systems that are conventionally
operated over independent bands. Consequently, a number
of research institutes started pushing research inline with
this vision. For instance, the National Science Foundation
(NSF) initiated the “enhancing access to the radio spectrum”
program, known as EARS [1], and the Defense Advanced Re-
search Projects Agency (DARPA) started the “shared spectrum
access for radar and communications” program [2]. DARPA
has also initiated a series of competitive matches called
the Spectrum Collaboration Challenge (SC2) in which teams
compete in developing intelligent radio networks capable of
optimizing the usage of the radio frequency (RF) spectrum
according to the varying RF environment. The goal is to
determine when, where and how to distribute (or share) the
spectrum resources among different radio networks. One of
the candidate bands for spectrum sharing is the S-band (2-4
GHz), which is currently used by several radar systems (e.g.,
air traffic control, Navy surveillance, and weather), and where
wireless communication systems (e.g., WiFi and WLAN)
operate. This problem can be looked at from different angles,
for instance, one can study how can either communications or
radar systems be changed such that they can efficiently coexist
with each other. Another interesting direction is the joint
design of these systems to share the spectrum. Herein, we are
specifically interested in investigating the impact of unaltered
radar systems on communications systems as a starting point
for practical code design to mitigate this impact.

There have been experimental studies on spectrum coexis-
tence between conventional (unchanged) radar and communi-
cation systems. NTIA studies in [3] concluded that radars are
sensitive to the effects of interference from communications
systems. Interestingly, [3] also show that radars are robust
against interference from other radars.

In a related line of research, there have been numerical as
well as practical studies to quantify the effect of radar interfer-
ence over communications systems. For instance, [4] simulates
the effect of swept radars interference on the performance of
a WiMAX system, and shows that reliable spectrum coexis-
tence can be achieved via cooperative sensing algorithms. In
[5], an LTE packet scheduling algorithm mitigates the radar
interference by discarding users that are severely affected by
the radar interference.

Refs. [6–8], experimentally study the performance degrada-
tion that can occur on both sides of coexisting air traffic control
radar and LTE systems in the S-band. Regarding the effect on
LTE systems, [6–8] report that a significant degradation in
performance takes place in the TDD bands when the radar
pulses hit the packets intended for synchronization. Among
the possible mitigation techniques, improved filtering and
spectrum sensing for both systems were discussed.

In our previous research [9–11], we have analytically stud-
ied the effect of radar interference on the performance of a
single-carrier communications system over an additive white
Gaussian noise (AWGN) channel. Therein, we modelled the
radar signal as additive interference of deterministic amplitude
(that can be estimated at the receiver of the communications
system) and an unknown random phase uniformly distributed
in [0,2π]. In this paper, we consider an OFDM-based multi-
carrier communications system, and model the additive radar
interference after being processed by a conventional OFDM
receiver. Specifically, we derive the PMFs of the amplitude
and phase of that interference.

Even though the adopted model in [9–11] is a good approx-
imation in general, the literature lacks an accurate theoretical
model of pulsed radar interference from the perspective of
an OFDM receiver. This paper models the interference of
rectangular-shaped pulsed radar under a number of assump-
tions. In our study, we assume that all the parameters of the
periodic radar signal are known (or can be estimated) except
its propagation delay, which results in the assumption that the
time shift between the signals of the two systems is random.
The major findings regarding the radar interference include:

• The amplitude and the phase of the radar signal are
correlated random variables, and their marginal PMFs as
well as their joint one can be accurately estimated in a
numerical manner given the knowledge of some of the
parameters of the radar signal.

• For a rectangular pulsed radar signal, the following points
were concluded:
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– The joint PMF as well as the marginal ones of the
amplitude and the phase can be further expressed in
closed forms. In this case, we found that the ampli-
tude changes across subcarriers but remains constant
between different symbols over the same subcarrier
index. On the other hand, the phase changes across
both symbols and subcarriers.

– The marginal PMF of the amplitude consists of a
mixture of a small number of delta functions (whose
number depends on the width of the radar pulse),
and one mass point dominates the probability . The
dominant mass point depends on the subcarrier index
k, and hence the amplitude can be approximated by a
deterministic function of k.

– The marginal PMF of the phase is a weighted combi-
nation of NA discrete uniform PMFs where NA is the
number of distinct amplitudes of the post-processed
radar signal.

– The joint PMF is composed of a weighted sum of
multiple discrete uniform PMFs; each one corresponds
to a specific amplitude value.

– The derived PMFs are shown to accurately model the
radar interference generated via Monte Carlo simula-
tions under a number of simplifying assumptions.

Notation: Table I summarizes some of the most frequently
used symbols and operators in this paper.

TABLE I: Notation and symbols.

C (as a subscript) Communications system parameter.
R (as a subscript) Radar system parameter.
[a,b,n] Finite arithmetic sequence with n terms with a and b

as the initial and final terms, respectively, i.e., [a,b,n] =
{x|x = a+ ri,r = (b−a)/(n−1), i ∈ [0 : n−1]}.

U{S} Discrete uniform distribution over elements of the set S .
U{a,b,n} Discrete uniform distribution over [a,b,n].
(a)N a modulo N.

{S}c {S}c =

{
S, c is true
∅, else

| · | Magnitude of a complex number or cardinality of a set.

II. COEXISTENCE MODEL

The signal of the OFDM-based communications system con-
sists of M OFDM symbols wherein each OFDM symbol spans
TC seconds. Furthermore, it operates at a carrier frequency of
fC Hz with N subcarriers over a total bandwidth of BC Hz.
The number of samples used for the cyclic prefix is given by
NCP. The considered radar system is a pulsed radar system that
operates at a carrier frequency fR Hz with a pulse width of τR
seconds. The pulse repetition interval (PRI) of the passband
radar signal wR (t) is given by TR. We assume that, when
received at the communications system, the received radar
signal lags that of the communications system by td seconds.

III. RADAR INTERFERENCE AT THE OUTPUT OF AN OFDM
RECEIVER

Assuming the knowledge of the time instants at which the
OFDM symbols start, the communications system receiver
can sample in synchrony with the transmitted symbols at the
instants t = nTS, n ∈ Z∗, where TS = 1/BC is the sampling

period in seconds. After sampling, removing the cyclic prefix
of length NCP, and performing an N-point discrete Fourier
transform (DFT), the part of the received signal corresponding
to the radar interference on the kth subcarrier during the mth
block can be written as

Ik,m =
1√
N

mNC+N+NCP−1

∑
n=mNC+NCP

wR(nTS−ndTS)×

e j2π fR(nTS−ndTS)e− j2π fC(nTS)e− j2πk (
n−mNC−NCP)

N (1)

where nd = b td
TS
c, NC = dTC

TS
e and NR = dTR

TS
e. The reader should

note that the modeling of the up-conversion of the radar signal
to its carrier band and the down-conversion at the OFDM
receiver does not reflect the exact implementation in a practical
system; however, it simplifies the derivations while capturing
the effect of having different carrier frequencies for the radar
and communications systems. By letting u = n−mNC−NCP,
Ik,m can be rewritten as

Ik,m =
1√
N

N−1

∑
u=0

wR (TS (u+mNC +NCP−nd))×

e j2π fRTS(u+mNC+NCP−nd)e− j2π fCTS(u+mNC+NCP)e− j2πk u
N

=
1√
N

N−1

∑
u=0

[
vR,m [u]e j2π∆TSue− j2πk u

N

]
e jψm

= DFT
(

vR,m [u]e j2πu∆TS
)

e jψm (2)

where vR,m [u] = wR((u+mNC +NCP−nd)TS), u ∈ [0 : N−1],
is the sampled version of wR(·) during the mth OFDM block,
∆ = fR− fC, and ψm = 2π∆TS (mNC +NCP)−2π fRTSnd .

Note that using the discrete-time representation in (1)–(2)
coupled with the assumption that τR ≤ TC ≤ TR, there will
possibly exist OFDM blocks that do not experience any radar
interference.

IV. EXAMPLE: RECTANGULAR RADAR PULSE

In this case, the discrete-time radar signal corresponding to
the mth block of length N (after removing the cyclic prefix at
the OFDM receiver) is given by a rectangular signal, i.e., its
sampled version and its corresponding DFT are respectively
given by

vR,m [n] =
{

AR, cm ≤ n≤ dm−1
0, else , n ∈ [0 : N−1], (3)

and

VR,m [k] = DFT(vR,m [n])

=

{ AR√
N
(dm− cm) , k = 0

AR√
N

e− jπ(dm+cm−1) k
N

sin(πk(dm−cm)/N)
sin(πk/N) , k ∈ [1 : N−1]

(4)

where cm and dm are the beginning and end of the non-zero
content of vR,m [n], and AR ≥ 0 is its amplitude. We make a
number of assumptions in the remainder of the text that we
refer to when applicable, including:
A.1 ∆NTS is an integer number.
A.2 TR = TC.
A.3 TR, τR and td are multiples of TS.
A.4 td is uniformly distributed on [0,TR− τR).
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Substituting (4) in (2), we obtain

Ik,m
A.1
= VR,m [(k−∆NTS)N ]e

jψm

=

{ AR√
N
(dm− cm)e jψm , k = ∆NTS

AR√
N
· |sin(πkN(dm−cm)/N)|

sin(πkN/N) e jψ′k,m , else

= Ak,me jφk,m (5)

where Ak,m and Φk,m are the amplitude and phase of
Ik,m, respectively, kN = (k−∆NTS)N , ψ′k,m = ψm + πβk,m −
π(dm + cm−1) kN

N and

βk,m =

{
0, 0≤

(
kN(dm−cm)

N

)
2
≤ 1

1, else
.

To make the analysis tractable, we make the assumption in
A.2. Let nR = b τR+td

TS
c. If nR ≤ NCP, then vR,m [n] = 0 ∀n ∈ [0 :

N−1] and m ∈ [0 : M−1]. Otherwise, vR,m [n] is given by (3)
with dm = nR−NCP and

cm =

{
nd−NCP, nd > NCP
0, else .

In the sequel of this section, we find the joint and marginal
PMFs of the amplitude and the phase of the radar interference
signal for the two cases of Ik,m as in (5). Below, we further
assume A.3, and hence nd = td

TS
, and nR = τR+td

TS
. We also

denote the radar pulse width in samples by nw = τR
TS

.

A. Case I: k ∈ [0 : N−1]\{∆NTS}
In this case, Ak,m and Φk,m, k ∈ [0 : N − 1]\{∆NTS} and

m ∈ [0 : M−1], can be written as

(Ak,m,Φk,m)=


(
0,θ1

)
, nd ∈D1,k

(α2,k[nd ],a2,knd +b2,k,m +πβk,m) , nd ∈D2,k,
(α3,k,a3,knd +b3,k,m +πβk,m) , nd ∈D3,k

(6)

where

α2,k[n] =
AR√

N
· |sin(πkN (n+nw−NCP)/N)|

sin(πkN/N)
,

α3,k =
AR√

N
· |sin(πkN (nw)/N)|

sin(πkN/N)
,

S0,k = {x|x ∈ [NCP−nw +1 : NCP−1] ,

x =
nN
kN

+NCP−nW ,
nN
kN
∈ Z+,n ∈ Z+},

S1,k = {x|x ∈ [NCP−nw +1 : NCP−1] ,
|sin(πkN (x+nw−NCP)/N)|= |sin(πkN (nw)/N)|},

N1,k =
∣∣S0,k

∣∣+ ∣∣S1,k
∣∣− ekN3,k +NR−2nw +2,

N3,k = NR−nw−NCP +
∣∣S1,k

∣∣+1,
D1,k = [0 : NCP−nw]∪S0,k ∪{[NCP : NR−nw]}nw∈Sw,k

,

D2,k = [NCP−nw +1 : NCP−1]\
{

S0,k ∪S1,k
}
,

D3,k =
{
[NCP : NR−nw]∪S1,k

}
nw /∈Sw,k

,

Sw,k =
{

nN/kN

∣∣∣n ∈ Z+
}
,

a2,k =−2π fRTS−π
kN

N
,

1Even though φk,m is undefined whenever Ak,m is zero, for analytical
tractability, we assume that it is given by θ where θ∼U{0,2π,N1,k}.

b2,k,m = 2π∆TS (mNC +NCP)−π(nw−NCP−1)
kN

N
,

a3,k =−2π fRTS−2π
kN

N
,

b3,k,m = 2π∆TS (mNC +NCP)−π(nw−2NCP−1)
kN

N
,

and ek is an indicator function defined as

ek =

{
0, if ∃ n s.t. nw = nN

kN
,n ∈ Z+

1, else
.

The set S0,k consists of all values of nd in
[NCP−nw +1 : NCP−1] such that Ak is zero in that range.
From (6), we can draw the following conclusions:
• The amplitude changes across subcarriers but remains

constant between different symbols over the same sub-
carrier index. Hence, we drop the block index m from
Ak,m through the rest of paper.

• The phase changes across both symbols and subcarriers as
a result of the difference in carrier frequencies of the two
systems. In addition to the trivial ∆= 0 case, an exception
arises when ∆NCTS is an even number, wherein the phase
changes across k but remains constant for different values
of m over the same subcarrier.

Assuming A.4 holds, or equivalently nd ∼U
{[

0 : TR−τR
TS

]}
,

then we can express the PMFs of the amplitude and the phase
of the radar interference signal based on the fact that both Ak
and Φk,m are transformations of the random variable (RV) nd .
Nonetheless, it should be noted that these transformation are
non-monotonic in general, and hence the case where different
values of the RV may correspond to the same transformed
value. In such a case, the mass at that value of the RV is equal
to the sum of probabilities of the different values leading to
the same transformed value.

The marginal PMFs of the amplitude and phase of the
radar signal over the kth subcarrier and during the mth OFDM
symbol can be written respectively as

PA,k[a] =
N1,k

NRw
δ[a]+

1
NRw

∑
n∈D2,k

δ [a−α2,k[n]]+
ekN3,k

NRw
δ [a−α3,k]

PΦ,k,m[φ] =
N1,k

NRw
Q1,k[φ]+

N2,k

NRw
Q2,k,m[φ]+

ekN3,k

NRw
Q3,k,m[φ]

where NRw = NR−nw +1, δ[.] is the Dirac delta function, and
N2,k = nw−

∣∣S0,k
∣∣− ∣∣S1,k

∣∣− 1. Q1,k[φ], Q2,k,m[φ] and Q3,k,m[φ]
are the PMFs of the discrete uniform random variables charac-
terized by U{0,2π,N1,k}, U

{{
y|y = a2,kn+b2,k,m,n ∈D2,k

}}
and U

{{
y|y = a3,kn+b3,k,m,n ∈D3,k

}}
, respectively.

Having written the amplitude and the phase in (6) over
matching disjoint sets, the joint PMF can be easily written
in terms of the conditional PMFs. Simply put, the phase
of the interference given a specific amplitude is uniformly
distributed. The joint PMF is given by

PA,Φ,k,m[a,φ] = P [Ak = a,Φk,m = φ]]

= P [Φk,m = φ |Ak = a ]×PA,k[a] (7)

=
1

NRw

(
P1,k[a,φ]+∑

α∈X2,k

P2,α,k,m[a,φ]+ ekP3,k,m[a−α3,k,φ]

)
,
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where

P1,k[a,φ] = ∑
ψ∈[0,2π,N1,k]

δ [a,φ−ψ] ,

P2,α,k,m[a,φ] = ∑
ψ∈Y2,α,k

∣∣Y2,α,ψ,k
∣∣δ [a−α,φ−ψ] ,

P3,k,m[a,φ] = ∑
ψ∈Y3,k

∣∣Y3,ψ,k
∣∣δ [a,φ−ψ] ,

Y2,α,k =
{

y|y = a2,kn+b2,k,m,α = α2,k[n],n ∈D2,k
}
,

X2,k =
{

x|x = α2,k[n],n ∈D2,k
}
,

Y2,α,ψ,k =
{

y|y = ψ,y ∈ Y2,α,k
}
,

Y3,k =
{

y|y = a3,kn+b3,k,m,n ∈D3,k
}
,

and Y3,ψ,k =
{

y|y = ψ,y ∈ Y3,k
}

.
We remark that the marginal PMF of the amplitude, PA,k[a],

consists of a small number of delta functions (nw+2 at most).
Further, supported by numerical evaluations, we note that,
in general, only one mass point dominates this PMF. The
dominant mass point depends on the subcarrier index k. Hence,
the amplitude can be approximated by a deterministic function
of k as

Ak ≈ arg max
a∈SA,k

PA,k[a]

=

 0, N1,k > max{N2,x,k,N3,k}
x2,k, N2,x,k > max{N1,k,N3,k}
α3,k, N3,k > max{N1,k,N2,x,k}

(8)

where

N2,x,k = max ∑
n∈D2,k

δ [a−α2,k[n]] ,

x2,k = arg max ∑
n∈D2,k

δ [a−α2,k[nd ]] ,

and SA,k is the sample space of Ak. On the other hand, we note
that the marginal PMF of the phase, PΦ,k,m[φ], is composed of
unequally–weighted discrete uniform PMFs, namely, Q1,k[φ],
Q2,k,m[φ] and Q3,k,m[φ].

The model in [9–11] can be viewed as an approximation of
the one derived herein, specifically, compared to our model,
the PMF of the phase in [9–11] represents the conditional PMF
of the phase given the dominant amplitude among all possible
non-zero values. Moreover, the deterministic amplitude in [9–
11] can be considered as the approximation in (8).

B. Case II: k = ∆NTS

For this specific value of k, the amplitude and phase of Ik,m
can be written as

(Ak,Φk,m) =

(0,θ) , nd ∈D1
(α2[nd ],c ·nd +bm) , nd ∈D2,
(α3,c ·nd +bm) , nd ∈D3

where

D1 = [0 : NCP−nw] ,

D2 = [NCP−nw +1 : NCP−1] ,
D3 = [NCP : NR−nw] ,

θ∼U{0,2π, |D1|},

α3 =
AR√

N
nw,

α2[n] =
AR√

N
(n+nw−NCP) ,

bm = 2π∆TS (mNC +NCP) ,

and c =−2π fRTS.
The marginal PMFs of the amplitude and phase can be

written respectively as

PA,k[a] =
N1,k

NRw
δ[a]+

1
NRw

NCP−1

∑
n=NCP−nw+1

δ [a−α2[n]]+
N3,k

NRw
δ [a−α3] ,

and

PΦ,k,m[φ] =
N1,k

NRw
Q1,k[φ]+

N2,k

NRw
Q2,k,m[φ]+

N3,k

NRw
Q3,k,m[φ],

where N1,k =NCP−nw+1, N2,k = nw−1, and N3,k =NR−nw−
NCP + 1. The PMFs Q1,k[φ], Q2,k,m[φ] and Q3,k,m[φ] are char-
acterized by U{0,2π,N1,k}, U

{{
y|y = c ·n+bm,n ∈D2,k

}}
and U

{{
y|y = c ·n+bm,n ∈D3,k

}}
, respectively. The joint

PMF is given by (7) with setting ek = 1. Similar conclusions
drawn for Case I about the PMFs apply for Case II. We skip
discussing them for brevity.

V. NUMERICAL EVALUATIONS

As an example, we consider an OFDM-based commu-
nications system operating at a carrier frequency of fC =
2.84952 GHz with N = 64 subcarriers and total bandwidth
of 960 kHz. The number of samples used for the cyclic
prefix is NCP = 16 and M = 10 blocks. The selection of
the available bandwidth is consistent with, for example, an
LTE communications system. The considered radar system
is a pulsed radar system that operates at a carrier frequency
fR = 2.85 GHz. To evaluate the derived PMFs, we consider a
rectangular pulse with amplitude AR = 2.5 and width nw = 4
samples. With these parameters, the assumptions made in
Section IV are all valid, and hence we can use the theoretical
results obtained therein.

Fig. 1 shows some examples of the joint PMF of Ak and
Φk,m for various k values during the first OFDM block. We
remark that the theoretical results closely match those from
simulation in terms of both the values that Ak and Φk,m take
and the corresponding probabilities, which shows the validity
of the theoretical findings. As shown in Fig. 1, the joint PMF
is composed of a weighted sum of multiple uniform PMFs
of φ, where each one corresponds to a specific value of the
amplitude that depends on the subcarrier index k. Furthermore,
the number of mass points of the uniform functions is variable.

Due to the large number of mass points in the PMFs,
we opted to only show theoretical results graphically. How-
ever, to quantify the accuracy of the theoretical findings
we use the the Jensen–Shannon divergence (JSD) to mea-
sure the distance between the simulated and the analytical
joint PMFs. The JSD is a distance metric that is calculated
using the Kullback–Leibler divergence (KLD) between two
bivariate distributions (P and Q) of the RVs A and Φ as
JSD(P‖Q) = 1

2 KLD(P‖M)+ 1
2 KLD(Q‖M) where M = 1

2 (P+
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Q) and KLD(P‖Q) = ∑
∀ (a,φ)

P(a,φ) log
P(a,φ)
Q(a,φ)

. For the dis-

tributions plotted in Fig. 1, the JSD values are 7.79× 10−6,
7.95× 10−6, 1.28× 10−5, and 6.78× 10−6, respectively, and
the mean value of the JSD over all subcarriers and blocks is
about 7.01×10−6. This indicates that the derived expression
for the joint PMF closely matches its simulated counterpart
for various k and m values.

In Fig. 2, we show examples of the joint PMF for various
k and m values when the carrier frequency of the commu-
nications system is increased to fC = 2.84968 GHz causing
∆NTS to take a non-integer value, which violates the assump-
tion A.1. The JSD values for the distributions plotted in Fig.
2 are 1.02×10−5, 7.62×10−6, 7.84×10−6, and 1.25×10−5,
respectively, and for this example, the mean value of the JSD
over all subcarriers and blocks is about 1.50× 10−4. After
examining multiple non-integer values for ∆NTS, we concluded
that the theoretical PMF remains very close to the simulated
one even if ∆NTS is non-integer, which means that the derived
PMF is robust against the loss of the assumption A.1.

Fig. 3 considers the case of TR > TC (which violates the
assumption A.2) and shows simulation results of the probabil-
ity of having no radar interference over a specific subcarrier
(k = 5 in this example) as a function of the radar signal’s
PRI in samples, NR. The simulation parameters used here
are the same of those used in Fig. 1 with the exception
of varying NR and averaging over all blocks in the window
that the communications system considers which is of length
MNC = 800 samples. As expected, as NR increases, it becomes
less likely for the OFDM blocks to experience interference
from a radar pulse. Moreover, the flatness in some ranges of
NR is a result of having the same number of radar pulses within
the considered window for those NR values.

An interesting case is when TR is an integer multiple of
TC, i.e., TR = nTC, n ∈ Z+, wherein the interference can be
seen as a cyclostationary process. Our results can be easily
extended to include this case by using an indicator function
of the block index, m, that is non-zero only for blocks that
suffer from the interference, and for those blocks the derived
PMF applies even the assumption A.2 is violated.

In our future work, we relax the assumption A.3 to gen-
eralize the analysis for TR, τR and td values consistent with
practical systems, wherein these values are not necessarily
multiples of TS, and τR can be smaller than TS. Furthermore,
we consider the case in which td is not upper-limited by TR−τr
(as in A.4) but instead, it can span multiple OFDM blocks.

VI. CONCLUSIONS

In this paper, we derived the joint PMF of the amplitude and
phase of the radar interference as seen at the receiver of an
OFDM-based communications system. Through simulations,
we have illustrated the validity of the derived PMF for a
simplified rectangular-shaped pulsed radar system. Character-
izing this PMF paves the way to finding the best mechanisms
of mitigating the radar interference either at the transmitter,
the receiver or both. It will also help in investigating the
performance and characterizing the capacity of a communi-
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Fig. 1: Examples of the joint PMF, PA,Φ,k,m[a,φ], for different
subcarriers during the first OFDM block.
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Fig. 2: Examples of PA,Φ,k,m[a,φ] when ∆NTS is non-integer.
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Fig. 3: Probability of having no radar interference over the 6th
subcarrier versus the radar signal’s PRI in samples.

cations system suffering from a radar-like interferer. As a
continuation of this work, we will consider practical radar
systems and model the signals used therein with abandoning
the simplifying assumptions that contradict them.
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