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Abstract—Waveform design over two consecutive transmission
time instants or epochs is the focus of this paper. The waveforms
are designed to maximize the mutual information (MI) over
the two time epochs. For a single epoch, maximizing the MI is
equivalent to waterfilling. In this paper it is shown that for two
epochs, the designed waveforms must satisfy two criteria. The
first is waterfilling, and the other is that the waveforms must
place energies in those spectral bands which offer maximum un-
correlated target scattering responses. The interplay of these two
criteria causes the waveforms to be distinct from those designed
by the single-epoch waterfilling-based systems. Comparisons of
the waveforms designed over one epoch, and over two epochs are
shown through simulations.

I. INTRODUCTION

Radars operate by utilizing multiple transmission times or
epochs [1]. Traditionally, radar waveforms have been selected
from a limited set of options. However, the recent cognitive
/ fully adaptive radar paradigm [2], [3] allows one to both
carefully design and select the waveforms designed in either a
pulse-by-pulse or coherent processing interval basis. It may
thus be desirable to design waveforms which consider the
target response over these multiple epochs jointly. In this
work, we make progress in the joint design of waveforms over
multiple epochs by first considering two transmission epochs.1

We propose to jointly design and transmit the two wave-
forms that maximize the mutual information [4] over not one
but two consecutive time epochs. When the target statistics
are available fast enough, the epochs may correspond to two
consecutive pulse repetition intervals for example in a pulse-
doppler framework. When the target statistics are predicted or
obtained infrequently, then the epochs correspond to two con-
secutive coherent processing intervals for the same framework.

We consider a single extended target, and assume that
its impulse responses at the two epochs are random and
correlated. Noise plus interference is modeled stochastically,
and are assumed to be independent from the target responses.
Normality is assumed for tractability. The waveform design
is formulated as an optimization problem by maximizing the
two step mutual information. In the discrete time domain, the
solution to this problem is not straightforward. Therefore, we
reformulate the optimization problem in the spectral domain,

1Extending this work to more than two epochs is fairly straightforward but
notationally much more involved.

which is solved numerically. The results in this paper demon-
strate that the waveforms designed by the maximizing the two
step MI, have to not only “waterfill” over a single epoch,
where the interpretation is that the waveform places energy
in spectral nulls of the ratio of target response to noise and
interference power spectral densities, but also have to balance
this with transmitting energy at frequencies where the target
scattering responses are maximally independent /uncorrelated
over the two epochs.

Literature: Bell’s seminal work on waveform design by
maximizing the one step (single epoch) MI resulted in a
simple waterfilling interpretation of the designed waveform
[5], [6]. Waveform design from a purely detection perspective,
considering the signal dependent interference (clutter) was the
subject of [7]. Surprisingly, after algebraic simplifications, the
author shows that this is similar to waterfilling. In [8], the
waveform design was addressed by maximizing the one step
MI, but by considering signal dependent interference, and
led to a solution similar in spirit to that of waterfilling. In
[9], [10], waveform scheduling but not waveform design was
addressed using information theoretic principles. Specifically
it was argued that directed information (DI) [11], [12] is a suit-
able metric when feedback is considered in the overall radar
transmission-reception scheme [9], [10]. Waveform design
using DI as a metric is desired for a closed loop architecture
such as a fully adaptive radar, however it is not the immediate
focus in this paper for the following reasons. As a first step,
the immediate emphasis is to gain a formative understanding
on how the two step (or multi step) MI would design the
waveforms over the two epochs. Moreover, for the model
assumed in this paper maximizing the MI or maximizing the
DI are identical. Equivalence of the two step DI and two step
MI was also noted for TR channels [13], [14]. Notwithstanding
this equivalence, the channel model in [13], [14] is completely
different from the one assumed here.

Organization: The paper is organized as follows, in Section
II, the model and assumptions are presented, and the two step
mutual information in the discrete temporal domain, and its
equivalent in the spectral domain is introduced. Waveform
design by maximizing this two step MI is treated in Section
III. Simulations are presented in Section IV, and conclusions
are drawn in Section V.
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II. MODEL

Consider a single complex target consisting of many point
scatterers and whose spatial extent possibly spans multiple
range cells. Denote s

1

:= [s1(0), s1(1), . . . , s1(N � 1)]

T 2
N as the waveform transmitted in the first instant, and

similarly s
2

:= [s2(0), s2(1), . . . , s2(N � 1)]

T 2 N is the
waveform transmitted in the second instant. The radar returns
from the two waveform transmissions are modeled as,

y
1

= S
1

↵
1

+ v
1

y
2

= S
1

↵
2

+ v
2

.
(1)

In (1), ↵
1

,↵
2

are the K-dimensional target impulse response
vectors in the first and second instants, respectively. The
matrices, S

i

2 N⇥K , i = 1, 2 are the respective convolution
matrices in the first and second instants, and are comprised of
the samples in s

i

, i = 1, 2. The noise plus interference in the
returns are given by v

1

and v
2

in the two instants, respectively.
Signal dependent clutter is ignored for ease of exposition in
our analysis, but can be incorporated into the analysis.

Statistical Assumptions We will assume without loss of
generality (w.l.o.g.) that the noise plus interference are uncor-
related in the two instants, i.e.

{v
1

v
2

H} = 0

where {·} is the statistical expectation operator, and 0 is an
N ⇥N zero matrix. This allows us to focus on the effect of
designing the two waveforms based on the predicted target
statistics. In general however, if noise and interference are
also correlated, this would further impact the design. However,
even our initial simplification turns out to be challenging
analytically. Further, for analytical tractability in the sub-
sequent information theoretic analysis we will assume that
the target impulse responses are complex circular Gaussian
distributed and w.l.o.g. zero mean. Similarly, the noise vectors
are also complex circular Gaussian distributed, w.l.o.g. zero
mean, and independent of the target responses. The covariance
matrices, then, completely specify their joint as well individual
distributions, expressed as

C↵ = cov{↵,↵H} =


C↵1 C↵12

CH
↵12

C↵2

�

C
v

= cov{v,vH} =


C

v1 0
0 C

v2

�
(2)

↵ = [↵
1

T ,↵
2

T
]

T ,v = [v
1

T ,v
2

T
]

T

where cov{·} is the covariance operator.

A. Mutual Information in the temporal domain

For the model in (1), the mutual information I(↵;y) =

p(↵,y)

�
ln(

p(↵,y)
p(↵)p(y) )

 
is sought, which is given by

I(↵;y) := h(y)� h(y|↵)

= h(↵)� h(↵|y) (3)
y : = [y

1

T ,y
2

T
]

T

where h(·|·) is defined as the conditional differential entropy.
The following standard definitions are also recalled [4]

h(↵) : = � p(↵){ln(p(↵)} (4)
h(↵|y) := � p(↵,y){ln(p(↵|y)}

where p(·) and p(·|·) denote the pdf and conditional pdf,
respectively. To evaluate the MI, the following fact is useful.

Fact 1. If x is a multivariate Gaussian random vector with

an arbitrary mean vector and a covariance matrix, C
x

, then

the differential entropy (nats), h(x) = ln det(C
x

) + ⌘, where

⌘ is some constant.

From standard chain rules of MI and differential entropy,
the MI in (3) could be rewritten using other MI terms as well
as other conditional MI terms, I(·|·) (see [4]) as

I(↵;y) = I(↵
1

;y
1

) + I(↵
2

;y
2

) (5a)
+ I(y

1

,↵
1

;↵
2

|y
2

) + I(y
2

;↵
1

|y
1

) (5b)
� I(↵

1

;↵
2

). (5c)

We will revisit (5), specifically (5a) since it has significance
in the later discussions.

B. Mutual Information in the spectral domain

The MI in (3) is also evaluated in the spectral domain.
This representation is most useful in interpreting the designed
waveform in the spectral domain. Assume that the radar
operates with a bandwidth denoted by W . Let us divide the
bandwidth into P consecutive bands each of infinitesimal
width denoted by �f . Denote the center frequency of the p-
th band as fp, p = 1, . . . , P . The idea now is to decompose
the components of the radar returns in these spectral bands.
Define S1p(f) = S1(fp)rp(f), and S2p(f) = S2(fp)rp(f).
Here, Si(f), i = 1, 2 is the equivalent spectral representation
of the waveform vectors s

i

, i = 1, 2. The indicator function is
denoted as [·], and rp(f) := [fp��f/2ffp+�f/2]. Similarly
define V i

p (f) := Vi(fp)rp(f), i = 1, 2 and the energy spectral
variance (ESV) �

i
p(f) = �i(fp)rp(f), i = 1, 2, where, Vi(f),

and �i(f) denote the PSD and ESV corresponding to the
random processes comprised of the samples in v

i

, i = 1, 2 and
in ↵i, respectively. Similarly, we can define the cross ESV to
be �

p
12(f) = �12(fp)rp(f) of the target impulse responses at

the two instants and in the p-th subband, respectively.
The MI in the p-th band can now be written as

T �f ln

✓
1 +

�1(fp, |S1p(fp)|2, |S2p(fp)|2)
T 2

�2(fp)

◆

where

�1(fp, |S1p(fp)|2, |S2p(fp)|2) =|S1p(fp)|2|S2p(fp)|2�1
p(f)�

2
p(f)

+ T |S1p(fp)|2�1
p(f)V

2
p (f)

+ T |S2p(fp)|2�2
p(f)V

1
p (f)

� |S1p(fp)|2|S2p(fp)|2�p
12(f)

�2(fp) = V 1
p (f)V

2
p (f)

Considering any two non-overlapping bands, the total MI
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in these bands is the sum of the individual MI. Hence in
the limiting case, the total MI over the radar bandwidth is
expressed as

Is(↵;y)

=

X

p

lim

�f!0
T �f ln

✓
1 +

�1(fp, |S1(fp)|2, |S2(fp)|2)
T 2

�2(fp)

◆

= T

Z

W

ln

✓
1 +

�1(f, |S1(fp)|2, |S2(fp)|2)
T 2

�2(f)

◆
df (6)

where T is measured in seconds and is the actual duration of
transmission plus the duration of the target impulses responses
as well as the impulse responses of the receiver passband
filters2, see also [5]. Further Is(· ; ·) is the spectral domain
equivalent of the MI defined in (3) and obtained as in (6).

III. WAVEFORM DESIGN

We are interested in designing waveforms over two con-
secutive epochs by maximizing the two-step MI. This differs
from prior work in [9], [10], where waveform scheduling from
a library of waveforms according to a certain metric, rather
than design, was investigated.

A. Maximizing the MI in the temporal domain

Consider the constrained optimization problem,

max

s1,s2
I(↵;y)

s. t. ||s
1

||2  Po (7)
||s

2

||2  Po

where Po is a physical constant, which corresponds to the
maximum energy tolerance by the hardware, and is assumed
to be identical in both the transmission instants. Using (3) in
(7), we have

min

s1,s2
h(↵|y)

s. t. ||s
1

||2  Po (8)
||s

2

||2  Po

Unfortunately, solving (8) is not straightforward. Never-
theless we can relate the waveforms designed by maxi-
mizing the MI to more commonly used estimation metrics
such as the Bayesian mean square error (BMSE) [9], [10].
From (1) and normality assumptions, it can be shown that
h(↵|y) = ln det{(C�1

↵ + HHC�1
v

H)

�1} + const., where

H :=

2

4S1

0
0 S

2

3

5 . It is now readily recognized that the

Bayesian mean square error (BMSE) of ↵ given y, is
BMSE(↵|y) = (C�1

↵ +HHC�1
v

H)

�1, see also [9], [10], [15].
In other words, under normality assumptions and since ln(·)
is strictly monotonic, the waveforms which maximize the MI,
I(↵;y) also minimize the determinant of the BMSE [9], [10].

2Passband w.r.t the operating radar bandwidth

B. Maximizing the MI in the spectral domain

Using (6) in (7), the optimization is now rewritten as

max

|S1(f)|2,|S2(f)|2
T

Z

W

ln

✓
1 +

�1(f, |S1(f)|2, |S2(f)|2)
T 2

�2(f)

◆
df

s. t.
Z

W

|S1(f)|2 df  Po (9)

Z

W

|S2(f)|2 df  Po.

It is noted that unlike (7)-(8), the optimization in (9) is w.r.t
the magnitude squared spectrum of the waveforms. In other
words, the phase of the waveforms in the spectral domain
cannot be determined uniquely. Such insights are not readily
gleaned from (7)-(8), since they are not amenable to further
simplification.

The (aggregate, i.e. for the entire bandwidth) Lagrangian
for the optimization in (9) is given by,

L(|S1(f)|2, |S2(f)|2,�1,�2)

=

Z

W

Lf (|S1(f)|2, |S2(f)|2,�1,�2)df � (�1 + �2)Po (10)

where,

Lf (|S1(f)|2, |S2(f)|2,�1,�2)

=T ln

✓
1 +

�1(f, |S1(f)|2, |S2(f)|2)
T 2

�2(f)

◆

+�1|S1(f)|2 + �2|S2(f)|2.

The first order gradient conditions are

dLf (|S1(f)|2, |S2(f)|2,�1,�2)

d|Si(f)|2
= 0, i = 1, 2. (11)

We may then numerically solve for |Si(f)|2, i = 1, 2 using
(11) along with the rest of the KKTs, i.e., complementary
slackness, constraint qualifications, and �i � 0. This proce-
dure is straightforward but nevertheless numerically involved,
see also [5] on how this is done for the single step MI
waveform design.

C. Scalar special case:

The scalar equivalent of (1) allows for a mathematically
simpler interpretation of the waveform design. Define the
scalar model as

yi =si↵i + ni, i = 1, 2

cov{y,yH} =


|s1|2�2

1 + �2 s1�12s⇤2
s⇤1�

⇤
12s2 |s2|2�2

2 + �2

�
(12)

cov{↵,↵H} =


�2
1 �12

�⇤
12 �2

2

�

where y = [y1, y2]T ,↵ = [↵1,↵2]
T , and without of loss of

generality we assumed that the noise has identical variance
equal to �2 for both epochs. In (12) the variances of ↵i are �2

i

and the corresponding correlation coefficient is proportional to
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|�12|2. The MI for the scalar model in (12) is readily derived,
and given below.

I(↵;y) =

ln

0

BBBB@
1 +

waterfilling
z }| {
|s1|2�2

1 + |s2|2�2
2

�2
+

|s1|2|s2|2(�2
1�

2
2 � |�12|2)

�4
| {z }

second criteria

1

CCCCA

= ln

0

B@
1 +

|s1|2�2
1 + |s2|2�2

2

�2

+

|s1|2|s2|2�2
1�

2
2 exp(�I(↵1;↵2))

�4

1

CA . (13)

From (13), it is clear that the scalar MI consists of two parts.
The first is responsible for waterfilling. In fact the waterfilling
part was already evident from (5a). The other comprises the
part which is maximized when the MI, I(↵1;↵2) is minimized.
Further, it is clear that incremental increases in the energy
of the waveforms when I(↵1;↵2) is relatively small, leads
to substantial increases in this second term. Compare this
to the case when I(↵1;↵2) is relatively large, then, similar
incremental increases in the waveform’s energy do not lead
to a large increases in this second term. Extrapolating this
directly to the vector channels as in (1), we can state that
for maximizing this analogous second term, most benefit is
realized by placing energy in those spectral bands where the
target scattering responses have the least MI, or, are maximally
uncorrelated.

Special case: When �12 = 0, then from (13)

I(y;↵) = I(y1,↵1) + I(y2,↵2).

Hence maximizing I(y;↵) is equivalent to maximizing the
individual I(yi,↵i), i = 1, 2. In other words, waterfilling on
each epoch is sufficient. This also directly applies to the vector
channel as well, when, C↵12 = 0.

IV. SIMULATIONS

The radar bandwidth, W = 100 MHz in the simulations.
To develop an understanding of how the MI designs the
waveforms, we will consider some contrived examples of the
target ESVs and noise PSDs.

Example-1 The target ESV in the first and second instants
are as well as the noise PSDs in the two instants are seen in
Fig. 1 within W . Spectral content outside the radar bandwdith
is notched. The target ESVs in the first and second instants
are highly frequency selective, and are modeled as sinusoidally
varying in the frequency variable. The noise PSDs in both the
instants have deep notches at DC and are clearly colored. The
cross spectral PSD of the noise is assumed to be zero at all
frequencies.

In Fig.2(a), �1(f)�2(f)� �

2
12(f) is shown over the entire

radar bandwidth. Peaks in this function represent frequencies
where the target responses at the two epochs are highly uncor-
related, whereas, frequencies where this function assumes low
values imply a strong dependence or correlation between the
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Γ2(f)
V11(f)
V22(f)

Fig. 1. Noise PSDs and target impulse response ESVs for Example -1

target responses at the two epochs. The designed waveforms
(blue) using the two step MI and for the two epochs are shown
in Fig.2(b),(c), respectively. For comparison, the waterfilling
solution (red) for the two epochs, as well as the criteria
used for waterfilling (red) is also shown. We see that the
black curves are mostly inverted versions of the red curves
in Fig. 2(b)(c). The waveforms designed using waterfilling
alone are quite different from those designed using the two
step MI. In Fig. 2(b), the two step solution puts sufficient
energy at around 30 MHz to just satisfy the waterfilling criteria
and then greedily places energy between 0-10 MHz since
these frequencies from Fig. 2(a) are uncorrelated for the two
epochs. Other insights are drawn in a straightforward manner.
Consider Fig. 2(c), the two step solution is more or less
identical to the waterfilled solution except for a sharper roll
off in the latter than the former, attributed to the shaping by
�1(f)�2(f)��

2
12(f). It is no surprise that for this figure the

waterfiiling and the two-step solution are nearly identical since
the waterfilling also places energy where the target responses
are maximally uncorrelated.

Example-2 The target ESV in the first epoch is now
made Gaussian shaped in frequency, whereas the target ESV
in the second epoch is assumed to be frequency selective
and sinusoidal w.r.t frequency. The noise PSDs are assumed
identical to the ones assumed in example-1. The target ESVs
and noise PSDs are seen in Fig. 3.

The function �1(f)�2(f) � �

2
12(f) for this example, is

shown over the entire radar bandwidth in Fig. 4(a), and the
designed waveforms for the two step and single step MI are
shown in Fig. 4(b),(c). For the first slot, the two step MI as
seen in Fig. 4(b), places no energy for |f | � 25 MHz, but
rather places most of its energy in bands comprising |f |  20

MHz. Moreover, there are two sharply defined peaks in this
band which are consistent with the corresponding peaks in
Fig. 4(a) in the same frequency range. For the single step MI
the waveform, as expected, has a shape which is similar to
the inverse of the function V11(f)/�1(f). What is surprising
is that for frequency range |f | � 30 MHz the single step MI
waveform energy is non -zero, although it is amply evident
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Fig. 2. Results for example-1, criteria for waterfiling (red), waterfilling
solution (black), and two step MI solution (blue) are shown, and (a)
�1(f)�2(f)� �2

12(f), b) |S1(f)|2 c) |S2(f)|2.
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Fig. 3. Noise PSDs and target impulse response ESVs for Example -2

that this energy is being wasted since it is always below the
red curve. This behavior is not demonstrated by the two step
MI.

For the second slot, the two step MI’s waveform as seen
in 4(c) has peaks which are consistent with all the five peaks
in 4(a). Further it is also clear that it has several nulls in
those frequency ranges where the the V22(f)/�2(f) is greater
than the single step MI’s waveform. This is important from
an SNR perspective since Vii(f)/�i(f), i = 1, 2 are the
frequency dependent denominators of the frequency dependent
SNR defined as |Si(f)|2

TVii(f)/�i(f)
. This reinforces the fact that the

waveform designed from the two step MI judiciously places
energy in spectral bands, unlike the waveform designed from
the single step MI criteria from a frequency dependent SNR
perspective.

V. CONCLUSIONS

In this paper waveform design in radar over two consecutive
transmission epochs was treated. The two step MI was used as
a design metric. The two step MI channel models were treated
both in the temporal domain as well as the spectral domain.
The spectral domain representation of the MI was then used in
the subsequent analysis. The scalar channel was also analyzed
to obtain an intuitive analytical understanding of the waveform
design technique.

It was then shown that for the two epochs, the designed
waveforms using the two step MI design metric must satisfy
two criteria. The first is spectral domain waterfilling, and the
other is that the waveforms must place energies in those spec-
tral bands which offer maximum un-correlated target scattering
responses. The waveforms designed from two step MI were
then compared to the waveforms designed from the single
step MI via simulations. From a frequency dependent SNR
argument, the simulations indicated that waveforms designed
from the two step MI judiciously places energy in spectral
bands and simultaneously placed nulls in some other bands.
This was unlike the waveforms designed from the single step
MI criteria which tend to, at least partially, expend energy in
some spectral bands with seemingly little to no benefit.
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Fig. 4. Results for example-2 criteria for waterfiling (red), waterfilling
solution (black), and two step MI solution (blue) are shown, and (a)
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