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On the Capacity of the AWGN Channel With
Additive Radar Interference

Sara Shahi , Daniela Tuninetti, and Natasha Devroye

Abstract— This paper investigates the capacity of a commu-
nications channel that, in addition to additive white Gaussian
noise, also suffers from interference caused by a co-existing
radar transmission. The radar interference (of short duty-cycle
and of much wider bandwidth than the intended communication
signal) is modeled as an additive term whose amplitude is known
and constant, but whose phase is independent and identically
uniformly distributed at each channel use. The capacity achieving
input distribution, under the standard average power constraint,
is shown to have independent modulo and phase. The phase
is uniformly distributed in [0, 2π]. The modulo is discrete with
countably infinite many mass points, but only finitely many in any
bounded interval. From numerical evaluations, a proper-complex
Gaussian input is seen to perform quite well for weak radar
interference. We also show that for very large radar interference,
and for signal to noise ratio equal to S, the capacity is equal to
(1/2) log(1+S) and a proper-complex Gaussian input achieves it.
It is concluded that the presence of the radar interference results
in a loss of half of the degrees of freedom compared with an
AWGN channel without radar interference.

Index Terms— Radar interference, communication and radar
coexistence, capacity-achieving distribution, non-Gaussian chan-
nel, Karush-Kuhn-Tucker (KKT).

I. INTRODUCTION

SHORTAGE of spectrum resources, coupled with the ever
increasing demand for commercial services, necessitates

a more sensible bandwidth allocation policy. In 2012, the
President’s council of Advisors on Science and Technology
published a report that recommended the release of portions
of government radar bands (e.g., 3550-3700 MHz) to be shared
with commercial wireless services. A new Citizens Broadband
Radio Service (CBRS) for shared wireless broadband in the
3550-3700 MHz band has also been established in 2015. Since
then, several national funding agencies have launched research
programs to encourage research in this area.

To understand how these two very different systems should
best share the spectrum, it is useful to have an idea of the
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fundamental information theoretic performance limits of chan-
nels in which two systems co-exist. In this work, the capacity
of a white additive Gaussian noise communications channel,
which in addition to noise, suffers interference from a radar
transmission, is studied. This extends the authors’ prior work
in [1]. In the channel model considered, the interfering radar
transmission is modeled to be additive, but not Gaussian.
Rather, it is modeled as a constant (and known) amplitude
signal, but with unknown and uniformly distributed phase
at each channel use. The effect of the rectangular-shaped
pulsed radar at a OFDM receiver is studied in [2] where it
is shown that the marginal PMF of the radar amplitude is
dominated by a single mass point and that the conditional PMF
of the radar phase at the dominant amplitude mass point is
uniform between [0, 2π]. Hence, the model we are considering
here is a good approximation for the interference caused by
a rectangular-shaped pulsed radar signal passing through an
OFDM receiver.

The capacity of an additive Gaussian noise channel under
an average power constraint is well known: the optimal input
is Gaussian of power equal to the power constraint. However,
since the channel studied here is no longer Gaussian, several
questions emerge: (i) what is the capacity of this channel
and how does it differ from that of a Gaussian noise channel
(without the radar interference), and (ii) what input achieves
the capacity. In this paper we aim to address both these
questions.

A. Past Work
The capacity of channels with additive noise under various

input constraints has been studied.
In [3] Ihara bounds the capacity of additive, but not neces-

sarily Gaussian, noise channels. Applying Ihara’s upper bound
to our channel model yields a bound that grows as the radar
signal amplitude increases. This bound is not tight because the
capacity of our channel is upper bounded by the capacity of the
classical power-constrained Gaussian noise channel without
the radar interference.

In [4, Th. 1], it was shown that for any memoryless
additive noise channel with a second moment/power con-
straint on the input, the rate achievable by using a white
Gaussian input never incurs a loss of more than half a
bit per real dimension with respect to the capacity. This
implies that one can obtain a capacity upper bound for a
complex-valued additive noise channel by adding 1 bit to
the rate attained with a proper-complex Gaussian input for
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the same channel. In our channel model however, we show
that in the large radar interference regime, the capacity is
indeed achieved by a proper-complex Gaussian input and
hence the bound given in [4, Th. 1] is loose for large radar
interference.

In the seminal work by Smith [5], it was shown that the
capacity of a real-valued white Gaussian noise channel with
peak amplitude and average power constraints is achieved by
a discrete input with a finite number of mass points. This is in
sharp contrast to the Gaussian input that achieves the capacity
when the amplitude constraint is dropped. In [6], the authors
also considered complex-valued Gaussian noise with aver-
age power and peak amplitude constraints and derived the
optimal input distribution characteristics. In particular, they
showed that the capacity of the complex-valued Gaussian noise
channel under average power and peak amplitude constraints is
achieved by a complex-valued input with independent ampli-
tude and phase; the optimal phase is uniformly distributed in
the interval [0, 2π], and the optimal amplitude is discrete with
finitely many mass points.

Later, the optimality of a discrete input under peak
amplitude constraint was shown to hold for a wide class of
real-valued additive noise channels [7]. As for the complex-
valued additive channels, [8] showed that for certain additive
complex-valued channels with average power and peak ampli-
tude constraints, the optimal input has discrete modulo.
Moreover, recently it was shown in [9], that, under an
average power constraint and certain ‘smoothness’ conditions
on the noise distribution, the only real-valued additive noise
channel whose capacity achieving input is continuous is the
Gaussian noise channel. More recently, [10] studied the capac-
ity of the additive quadrature Gaussian mixture noise under
an average power constraint and showed that the capacity
achieving input has discrete amplitude with only finitely many
mass points and uniform phase between [0, 2π]. In addition,
[11] proposes a method based on piecewise linear curve fitting
to compute the achievable rates by a Gaussian input and an
input with discrete amplitude and uniform phase in channels
with additive Gaussian mixture noise.

The model considered in this paper is a complex-valued
additive noise channel with an average power constraint. When
we transform the mutual information optimization problem
over a bivariate (modulo and phase) input distribution into
one over a univariate (modulo only) input distribution, the
equivalent channel (i.e., the kernel K (x, y), which is formally
defined in (10)) is no longer additive. For this equivalent
non-additive channel, we can not proceed as per the steps
preceding [9, eq. (4)]. This is so, because [9, eq. (4)], heavily
relies on certain integrals being convolution integrals and thus
passing to the Fourier domain to study/infer certain properties
of the optimal input distribution. In non-additive channels this
is not possible.

In this respect, our approach is similar to that of [6] and we
closely follow the steps within that. In particular, the trick used
in [6] to reduce the two dimensional optimization problem into
a one dimensional optimization problem helps us to avoid the
use of an identity theorem for multiple dimensions. In fact,
it was shown in [12] that the application of an identity theorem

in several variables is not just a straightforward generalization
of one variable.

Extensions of Smith’s work [5] to Gaussian channels with
various fading models, possibly MIMO, are known in the
literature but are not reported here because they are not directly
relevant.

In [13] and [14] a subset of the authors studied the uncoded
average symbol error rate performance of the same channel
model considered here. Two regimes of operation emerged.
In the low Interference to Noise Ratio (INR) regime, it was
shown that the optimal decoder is a minimum Euclidean
distance decoder, as for Gaussian noise only; while in the high
INR regime, radar interference estimation and cancellation is
optimal. Interestingly, in the process of canceling the radar
interference at high INR, part of the useful signal is also
removed, and after cancellation the equivalent output is real-
valued (one of the two real-valued dimensions of the original
complex-valued output is lost). We shall observe the similar
‘half degrees of freedom’ loss for the capacity of this channel.

B. Contributions
The capacity of the channel model proposed here has

not, to the best of our knowledge, been studied before and
provides a new model for bounding the fundamental limits of
a communication system in the presence of radar interference.
Likewise, in the literature on the co-existence of radar and
communications channels, we are not aware of any capacity
results. Our contributions thus lie in the study of the capacity
of this novel channel model, in which we show that the
optimal input distribution has independent modulo and phase.
The phase is uniformly distributed in [0, 2π]. The modulo is
discrete with countably infinite many mass points, but only
finitely many in any bounded interval.

By upper bounding the output entropy by the cross entropy
of the output distribution and an output distribution induced
by Gaussian input, we show that very high radar interference
results in a loss of half the degrees of freedom compared to an
interference-free channel and that a Gaussian input is optimal
in the high interference regime.

We also show achievable rates. The Gaussian input is seen
to perform very well for weak radar interference, where it
closely follows the upper bound in [3]. We numerically find
some suboptimal inputs for the regime 0 < α := I(dB)

S(dB)
< 2,

where I and S are the interference and signal to noise ratios
respectively, which perform better than the Gaussian input.

C. Paper Organization
The paper is organized as follows. Section II introduces the

channel model. Section III derives our main result. Section IV
finds the capacity for large INR regime. Section V provides
numerical results. Section VI concludes the paper. Proofs can
be found in the Appendix.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Next, boldface letters indicate complex-valued random vari-
ables, while lightface letters real-valued ones. Capital letters
represent the random variables and the lower case letters rep-
resent their realization. In addition, ˜X and � X are respectively
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used to indicate the modulus squared, |X|2, and phase of
the complex-valued random variable X. We also define the
following notation

R+ := {x : x ≥ 0},
C+ := {z : z ∈ C,�(z) > 0},

for the set of non-negative real line and right half plane in the
complex domain, respectively.

A. System Model

We model the effect of a high power, short duty cycle radar
pulse at the receiver of a narrowband data communication
system as

Y = X + W, (1)

W = √
Ie j�I + Z, (2)

where Y is the channel output, X is the input signal subject to
the average power constraint E[|X|2] ≤ S, �I is the random
phase of the radar interference uniformly distributed in [0, 2π],
and Z is a zero-mean proper-complex unit-variance Gaussian
noise. The random variables (X,�I, Z) are mutually indepen-
dent. �I and Z are independent and identically distributed
over the channel uses, that is, the channel is memoryless.
Our normalizations imply that S is the average Signal to
Noise Ratio (SNR) while I is the average Interference to Noise
Ratio (INR). We assume I to be fixed and known. For later
use, the distribution of the additive noise in (2) is given by

fW(w)=E�I

⎡

⎢

⎣

e
−
∣

∣

∣w−√
Ie j�I

∣

∣

∣

2

π

⎤

⎥

⎦
= e−|w|2−I

π
I0

(

2
√

I |w|2
)

, (3)

where I0(w) = E[ew cos(�I)] ∈ [1, e|w|] for w ∈ C is the zero-
order modified Bessel function of the first kind. The channel
transition probability is thus

fY|X(y|x) = fW(y − x), (x, y) ∈ C
2. (4)

B. Channel Capacity

Our goal is to characterize the capacity of the memoryless
channel in (1)-(2) given by

C(S, I) = sup
FX:E[|X|2]≤S

I (X; Y), (5)

where FX is the cumulative distribution function of X, and
I (X; Y) denotes the mutual information between random
variables X and Y in (1).

We aim to show that the supremum in (5) is actually attained
by a unique input distribution, for which we want to derive its
structural properties. Before we continue however, we rewrite
the optimization for the original channel (1) (involving the
real and the imaginary part of the input) in a way that allows
optimization with respect to a univariate distribution only.

We now show that an optimal input distribution induces ˜Y
and � Y independent given X, with � Y uniformly distributed
over the interval [0, 2π]; such an output distribution can
be attained by the uniform distribution on � X and by � X
independent of ˜X as follows.

We represent X and Y in their Polar forms as X =√
˜Xe j � X and Y =

√
˜Y e j � Y which are related as (for details

please refer to VI-A)

f
˜Y , � Y|˜X , � X(y, φ|x, α)= e−(I+y+x−2

√
xy cos(α−φ))

2π

×I0

(

2
√

I
√

y+x −2
√

xy cos(α−φ)

)

,

(6)

and where the marginal distribution of (˜Y , � Y) is given by

f
˜Y , � Y(y, φ) =

∫ ∞

0

∫ 2π

0
f
˜Y , � Y|˜X , � X(y, φ|x, α) d f

˜X , � X(x, α).

(7)

Due to the change of variables we have

f
˜Y , � Y(y, φ) = 1

2
fY(

√
y cos φ,

√
y sin φ)

and hence

h(Y) = h(˜Y , � Y) − log(2)

≤ h(˜Y ) + h( � Y) − log(2) (8)

≤ h(˜Y ) + log(2π) − log(2), (9)

where (8) holds with equality for independent ˜Y and � Y and
where (9) holds with equality for uniform � Y. It can be seen
from (6) and (7) that choosing ˜X independent of � X and � X
uniform over [0, 2π] satisfies both (8) and (9) with equality
and hence is the optimal choice for the input distribution.

Therefore, it is convenient for later use to denote the
transition probability f

˜Y |˜X (y|x) as the kernel K (x, y) given
by (see Appendix A)

K (x, y) := f
˜Y |˜X (y|x) (10a)

=
∫

|θ |≤π

e−I−ξ(θ;x,y)

2π
I0

(

2
√

I ξ(θ; x, y)
)

dθ,

(10b)

ξ(θ; x, y) := y+x −2
√

yx cos(θ)≥0, (y, x) ∈ R
2+. (10c)

Since the random variables ˜X and ˜Y are connected through
the kernel K (x, y), an input distributed as F

˜X results in an
output with probability distribution function (pdf)1

f
˜Y (y; F

˜X ) :=
∫

x≥0
K (x, y)d F

˜X (x), y ∈ R+. (11)

We stress the dependence of the output pdf on the input
distribution F

˜X by adding it as an ‘argument’ in f
˜Y (y; F

˜X ).
Finding the channel capacity in (5) can thus be equivalently

expressed as the following optimization over the distribution
of a non-negative random variable ˜X

C(S, I) = sup
FX:E[|X|2]≤S

h(Y) − h(W) (12a)

1The pdf f
˜Y (y; F

˜X ) in (11) exists since the kernel in (10) is a continuous
and bounded (see (16)) function and thus integrable.
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⇔ C(S, I) = sup
F
˜X :E[˜X ]≤S

h(˜Y ; F
˜X ) + log(2π)

− log(2)−h(|W|2)−log(2π)+log(2)

(12b)

⇔C(S, I)+h(|W|2) = sup
F
˜X :E[˜X ]≤S

h(˜Y ; F
˜X ), (12c)

where h(˜Y ; F
˜X ) is the output differential entropy given by2

h(˜Y ; F
˜X ) =

∫

y≥0
f
˜Y (y; F

˜X ) log
1

f
˜Y (y; F

˜X )
dy. (13)

The equivalence of (12a) and (12b) is by noting that the
optimal input phase distribution is known to be uniform
and the optimal input induces an output with independent
modulo and phase, with uniform phase in [0, 2π]. We express
h(˜Y ; F

˜X ) in (13) as

h(˜Y ; F
˜X ) =

∫

y≥0

∫

x≥0
K (x, y) log

1

f
˜Y (y; F

˜X )
d F

˜X (x)dy

=
∫

x≥0
h(x; F

˜X ) d F
˜X (x), (14)

where we defined the marginal entropy h(x; F
˜X ) as3

h(x; F
˜X ) :=

∫

y≥0
K (x, y) log

1

f
˜Y (y; F

˜X )
dy, x ∈ R+, (15)

and where the order of integration in the line above (14) can
be swapped by Fubini’s theorem.

For later use, we note that the introduced functions can be
bounded as follows: for the kernel in (10)

e−(y+x+I) ≤ K (x, y) ≤ 1, (x, y) ∈ R
2+; (16)

for the output pdf in (11)

e−(y+I+βF
˜X

) ≤ f
˜Y (y; F

˜X ) ≤ 1, y ∈ R+, (17)

where βF
˜X

is defined and bounded (by using Jensen’s inequal-
ity together with the power constraint) as

0 ≤ βF
˜X

:= − ln

(∫

x≥0
e−xd F

˜X (x)

)

≤ S; (18)

for the marginal entropy in (15)

0 ≤ h(x; F
˜X ) ≤ E[˜Y |˜X = x] + I + βF

˜X
, x ∈ R+, (19)

where the conditional mean of ˜Y given ˜X is

E[˜Y |˜X = x] = x + I + 1, x ∈ R+. (20)

2The entropy h(˜Y ; F
˜X ) in (13) exists since the output pdf in (11) is a

continuous and bounded (see (17)) function and thus integrable.
3The marginal entropy h(x; F

˜X ) in (15) exists since the involved functions
are integrable by (16) and (17).

C. Trivial Bounds

The Gaussian distribution maximizes the entropy for a given
power and hence the Gaussian interference is the worst inter-
ference among all other interference distributions. Trivially,
one can lower bound the capacity in (5) by treating the
radar interference as a Gaussian noise. The capacity of the
equivalent Gaussian interference channel with noise power
1 + I is a lower bound to the capacity of the channel with
non-Gaussian interference and is given by log

(

1 + S
1+I

)

and
hence

log

(

1 + S
1 + I

)

≤ C(S, I), (21)

and upper bound it as

C(S, I) ≤ max
FX:E[|X|2]≤S

I (X; Y,�I) = log (1 + S) , (22)

or from Ihara’s work [3] as

C(S, I) ≤ log (πe(1 + S + I)) − h(W), (23)

or from Zamir and Erez’s work [4, Th. 1], as

C(S, I) ≤ I (XG ; Y) + log(2), (24)

where I (XG; Y) is the achievable rate with a proper-complex
Gaussian input that meets the power constraint with equality.

We shall use these bounds later to benchmark the achievable
performance in Section V.

III. MAIN RESULT

We are now ready to state our main result: a characterization
of the structural properties of the optimal input distribution
in (5), in relation to the problem in (12c).

Theorem 1: The optimal input distribution in (5) is unique
and has independent modulo and phase. The phase is uni-
formly distributed in [0, 2π]. The modulo is discrete with
countably infinite many mass points, but only finitely many
in any bounded interval.

Proof: As argued in Section II-B, an optimal input
distribution in (5) has � X uniformly distributed in [0, 2π] and
independent of ˜X . The modulo squared ˜X , solves the problem
in (12c), whose supremum is attained by the unique input
distribution Fopt

˜X
, because (see [15, Th. 1]):

1) the space of input distributions F is compact and
convex (see [15, Th. 1]); F is given by

F :=
{

F
˜X : F

˜X (x) = 0, ∀x < 0, (25a)

d F
˜X (x) ≥ 0, ∀x ≥ 0, (25b)

∫

x≥0
1 · d F

˜X (x) = 1, (25c)

L(F
˜X ) :=

∫

x≥0
x · d F

˜X (x) − S ≤ 0
}

, (25d)

where the various constraints are: (25a) for non-
negativity, (25b) and (25c) for a valid input distribution,
and (25d) for the average power constraint; and

2) The differential entropy h(˜Y ; F
˜X ) in (14) is a weak*

continuous (see Appendix B) and strictly concave
(see Appendix C) functional of the input distribution F

˜X .
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From this and by following Smith’s approach [5], the solution
of the optimization problem in (12c) is equivalent to the
solution of

h�
Fopt
˜X

(˜Y ; F
˜X ) − γL �

Fopt
˜X

(F
˜X ) ≤ 0, for all F

˜X ∈ F , (26a)

γ ≥ 0 : L(Fopt
˜X

) = 0, (26b)

where the functional L(.) was defined in (25d), and where
the prime sign along with the subscript Fopt

˜X
denotes the

weak* derivative of the function h(˜Y ; F
˜X ) at Fopt

˜X
[5]

(see Appendix D).
The conditions in (26) can be equivalently expressed as the

necessary and sufficient Karush-Kuhn-Tucker (KKT) condi-
tion (see Appendix E): for some γ ≥ 0

h(x; Fopt
˜X

) ≤ h(˜Y ; Fopt
˜X

) + γ(x − S), ∀x ∈ R+, (27a)

h(x; Fopt
˜X

) = h(˜Y ; Fopt
˜X

) + γ(x − S), ∀x ∈ Eopt, (27b)

where Eopt is the set of the points of increase of the optimal
input distribution Fopt

˜X
. We can further restrict the feasible

values of γ in (27) to 0 ≤ γ < 1 since by the Envelope
Theorem [16] and the upper bound in (22), having γ ≥ 1 is
not possible.

At this point, as it is usual in these types of problems [5],
the proof follows by ruling out different types of distributions.
A distribution takes one of the following forms:

1) Its support contains an infinite number of mass points
in some bounded interval;

2) It is discrete with finitely many mass points; or
3) It is discrete with countably infinitely many mass points

but only a finite number of them in any bounded
interval.

Next, we will rule out cases 1 and 2 by contradiction.
Rule Out Case 1: (Fopt

˜X
has an infinite number of mass

points in some bounded interval). We prove that this case
requires the inequality in (27) to hold with equality for all
x ≥ 0; we then prove this to be impossible.

We start by handling the case 0 < γ < 1 and then tackle
the case where γ = 0.

For the range 0 < γ < 1, we re-write the KKT condition
in (27) by following the recent work [9]. Given the conditional
output power expressed as in (20), we can write

x − S =
∫

y≥0
(y − (1 + I + S)) K (x, y) dy, ∀x ∈ R+. (28)

With (28), the KKT condition in (27) reads: there exists a
constant 0 < γ < 1 such that

g(x, γ) ≤ h(˜Y ; Fopt
˜X

) = constant for all x ∈ R+, (29)

with equality if x ∈ Eopt and where

g(x, γ) :=
∫

y≥0
K (x, y) log

(

γe−γy

f
˜Y (y; Fopt

˜X
)

)

dy (30a)

+ log
1

γ
+ γ(1 + I + S). (30b)

We show next that (29) can not be satisfied if Fopt
˜X

con-
tains an infinite number of mass points in some bounded
interval. This step is accomplished by showing that the func-
tion g(x, γ), x ∈ R+, in (30) can be extended to the complex
domain and that g(z, γ), z ∈ C+, is analytic.

Remark 1: In this type of analysis, we only require the
analyticity of the function g(z, γ) over a region in the complex
domain which contains the non-negative real line. Hence, it is
sufficient to prove the analyticity of g(z, γ) over a strip around
the non-negative real line but we prove it over the entire right
half plane (see Appendix F).

Since the analytical function g(z, γ) is equal to a constant at
the set of points of increase of Fopt

˜X
and since the set of points

of increase of Fopt
˜X

has an accumulation point (by the Bolzano
Weierstrass Theorem [17]), by the Identity Theorem [17],
we conclude that g(z, γ) = constant,∀z ∈ C+. As the
result g(x, γ) = constant,∀x ∈ R+. One solution, and the
only solution due to invertibility of the integral transform
with kernel K (x, y) (see Appendix G), for g(x, γ) to be a
constant and not to depend on x is that the function that
multiplies the kernel in the integral in (30a) is a constant
(in which case

∫

y≥0 K (x, y)dy = 1 for all x ∈ R+). For
this to happen, we need

f
˜Y (y; Fopt

˜X
) = γe−γy, ∀y ∈ R+, (31)

or in other words, we need the output Y to be a zero-
mean proper-complex Gaussian random variable. By Cramer’s
decomposition Theorem, such an output in additive models is
only possible if both the noise and the input are Gaussian. The
noise is Gaussian if and only if I = 0. Therefore, unless I = 0,
it is impossible for Fopt

˜X
to have an infinite number of mass

points in some bounded interval for some 0 < γ < 1.
We now consider the case γ = 0. In this case, we can

re-write the KKT conditions in (27) as

h(x; Fopt
˜X

) ≤ h(˜Y ; Fopt
˜X

), ∀x ∈ R+, (32)

with equality if x ∈ Eopt. With the proof of analyticity of
h(z; Fopt

˜X
) (see Appendix F) and by the same type of argument

used for 0 < γ < 1 (use of Bolzano Weiestrass Theorem and
Identity Theorem), we conclude that (32) should hold with
equality for all x ∈ R+ and hence

h(x; Fopt
˜X

) = h(˜Y ; Fopt
˜X

), ∀x ∈ R+. (33)

The only solution to (33) due to invertibility of the integral
transform with kernel K (x, y) over the space of all func-
tions (see Appendix G) is

f
˜Y (y; Fopt

˜X
) = e−h(˜Y ,Fopt

˜X
)
.

This unique solution is not a valid probability distribution since
it does not integrate to one. Hence we reached a contradiction,
which implies that if Fopt

˜X
has infinite number of mass points

in some bounded interval then having γ = 0 is impossible.
Having revoked the possibility of 0 < γ < 1 and case 1

and γ = 0 and case 1, we rule out the possibility of case 1
altogether.
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Rule Out Case 2 (Fopt
˜X

Has a Finite Number of Points):
We again proceed by contradiction. We assume that the num-
ber of mass points is finite, say given by an integer M < +∞,
with optimal masses located at 0 ≤ x


1 < . . . < x

M < ∞

and each occurring with probability p

1, . . . , p


M , respectively.
Note that the superscript 
 is used to emphasize the optimality
of the parameters. Then the output pdf corresponding to this
specific input distribution is

f
˜Y (y; Fopt

˜X
) =

M
∑

i=1

p

i K (x


i , y)

=
M
∑

i=1

p

i

∫

|θ |≤π

e−(y+x

i +I+2

√
x


i I cos θ)

2π

· I0

(

2

√

y(x

i + I + 2

√

x

i I cos θ)

)

dθ, (34)

where the expression in (34) is based on an equivalent way
to write the kernel in (10) (see eq.(42b) in Appendix A).
With (34), one can bound the marginal entropy in (15) as

−h(x; Fopt
˜X

)

=
∫

y≥0
K (x, y) log f

˜Y (y; Fopt
˜X

)dy (35a)

≤ − (x +I+1+log(2π))+log

(

M
∑

i=1

p

i e−(

√
x


i +√
I)2

)

(35b)

+
∫

y≥0
K (x, y)

(

2
√

y(
√

x

M + √

I)
)

dy, (35c)

where the second term in (35b) is independent of x and hence
we only need to deal with (35c). The term in (35c) can be
bounded as

E

[√

˜Y
∣

∣

∣

˜X = x
]

≤
√

E

[

˜Y
∣

∣

∣

˜X = x
]

=
√

1 + x + I, (36)

where (36) follows from Jensen’s inequality and by (20). With
the bound in (35) back into the KKT condition in (27) we get

−x + c
√

x + κ1 > −γx + κ2,

or equivalently

c
√

x + κ1 > (1 − γ)x + κ2, (37)

for some finite constants c > 0, κ1, κ2 that are not functions
of x . However, as x → ∞, and since 0 ≤ γ < 1, the right-
hand-side of (37) grows faster than the left-hand-side, which
is impossible. We reached a contradiction, which implies that
the optimal number of mass points can not be finite. Thus,
we ruled out case 2.

Having ruled out the possibility that Fopt
˜X

has either infi-
nitely many mass points in some bounded interval or is
discrete with finitely many mass points, the only remaining
option is that Fopt

˜X
has countably infinitely many mass points,

but only a finite number of masses in any bounded interval.
This concludes the proof.

IV. CAPACITY AT HIGH INR

In this section, we prove that in the high INR regime,
the communication system has only 1/2 the degrees of free-
dom compared to the interference-free system, which is a
substantial improvement from the zero rate achieved when
communication in presence of radar signal is prohibited.
We also show that the Gaussian input is asymptotically optimal
as I → ∞.

Theorem 2: The capacity of channel (5) as I → ∞ is given
by

lim
I→∞

C(S, I) = 1

2
log(1 + S).

Proof: We show that in the high INR regime, the mutual
information between the input and the output is upper bounded
by 1

2 log(1 + S) for any input distribution subject to an
average power constraint. We then show that the Gaussian
input can asymptotically achieve this upper bound as I → ∞.
We write:

I (X; Y) = h(Y) − h(W)

= h(˜Y ) − h(˜W ) (38a)

≤
∫

y≥0
f
˜Y (y) log

1

R(y)
dy − h(˜W ), (38b)

where (38a) is because Y and W are circularly symmet-
ric, (38b) is due to non-negativity of relative entropy and
where R(y) is an auxiliary output density function which is
absolutely continuous with respect to f

˜Y (y). Take

R(y) = 1

S + 1
e
−
(

y+I
S+1

)

I0

(

2

√

yI
S + 1

)

, (39)

to be the auxiliary output distribution in (38b). The intuition
behind this choice of R(y) lies behind our conjecture that the
Gaussian input is optimal for large INR and the fact that (39)
is the induced distribution on ˜Y by a proper-complex Gaussian
input. Then by (38b) we have

lim
I→∞

I (X; Y) ≤ lim
I→∞

{

∫

x≥0
y≥0

K (x, y) log

⎛

⎝

(S + 1)e
y+I
S+1

I0(2
√

yI
S+1 )

⎞

⎠

× dy d F
˜X (x) − 1

2
log(4πeI)

}

(40a)

= log(S + 1) + lim
I→∞

{

S + 2I + 1

S + 1
− 1

2
log(4πeI)

}

− lim
I→∞

{

∫

x≥0
y≥0

K (x, y) log

⎛

⎜

⎜

⎝

e
2
√

yI
S+1

√

4π

√
yI

S+1

⎞

⎟

⎟

⎠

dy d F
˜X (x)

}

(40b)

= 1

2
log(S + 1) + lim

I→∞

{S + 2I + 1

S + 1
− 1

2
log(eI)

}

+ lim
I→∞

{

− 2

√
I

S + 1
E

[√

˜Y
]

+ 1

4
log(I) + 1

4
E
[

log(˜Y )
]

}

≤ 1

2
log(S + 1) + S + 1

S + 1
− 2

S + 1

[

S + 1

4

]

− 1

2
(40c)

= 1

2
log(S + 1), (40d)
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where (40a) is by [18, eq. (9)] and where (40b) and (40c)
are proved in Appendix H and Appendix I, respectively. Next,
a Gaussian input can achieve the upper bound given in (40d),
as follows

lim
I→∞

I (XG ; Y)

= lim
I→∞

h(Y) − h(W)

= lim
I→∞

log(1+S)+h

⎛

⎝

√

I
1+S

e j�I + Z

⎞

⎠− h
(√

Ie j�I + Z
)

(41a)

= lim
I→∞

log(1 + S) + 1

2
log

(

I
1 + S

)

− 1

2
log (I)

= 1

2
log(1 + S) + lim

I→∞
1

2
log

(

(1 + S)

(

I
1 + S

)(

1

I

))

= 1

2
log(1 + S), (41b)

where XG is the proper-complex Gaussian input and
where (41b) is again by [18, eq. (9)].

V. NUMERICAL EVALUATIONS

In this section, we numerically find a sub-optimal input for
fixed S = 5 and three different values of I in the regime
0 < α := I(dB)

S(dB)
< 2 and we compare the achieved rates with

that of a proper-complex Gaussian input. We also evaluate
different achievable rates in the regime −1 ≤ α ≤ 2.5 and
compare them with the bound in Section II-C.

Numerically finding the optimal input for the channel
considered in this paper is more challenging compared to
channels with finite dimensional capacity achieving inputs
such as the ones considered in [5] and [6]. In [5], for example,
the optimization was initially performed for a very low SNR
where an input with two mass points was proved to be optimal.
As SNR increased, more mass points were added to the
optimization problem in order to satisfy the KKT conditions
and guarantee the optimality of the input. In the channel
considered here however, a finite number of mass points is sub-
optimal at any SNR. Hence, in the rest of this section, we find
sub-optimal inputs with a finite number of mass points and
solving the corresponding constraint optimization problem.

We used the constrained optimization toolbox in Matlab to
produce our numerical results. Specifically, for each value of
SNR, we start off by setting the number of input mass points
to be equal to n = 1 and use Matlab’s constrained optimization
function to find the location and the weight of the mass
points. This is a constrained optimization problem consisting
of 2n parameters subject to the constraints given in (25). For
each value of n we calculate the rate achieved by the result of
the optimization problem. We increase the number of mass
points n until the achieved rate remains unchanged after the
3rd digit after the decimal point. Figure 1 shows the location
of the mass points for each sub-optimal input as a function of
SNR. We note that we do not claim the rates achieved with
these inputs to be optimal, nor do we claim that these input
distributions are capacity-optimal. It is however interesting to
note that they can outperform Gaussian inputs.

Fig. 1. Location of mass points for sub-optimal input as a function of SNR
for fixed INR=5.

TABLE I

ACHIEVABLE RATES FOR GAUSSIAN AND OPTIMIZED

FINITE DIMENSIONAL INPUT, S = 5

TABLE II

ACHIEVABLE RATES FOR GAUSSIAN AND OPTIMIZED

FINITE DIMENSIONAL INPUT, S = 10

We find the achievable inputs for fixed S = 5 and three
different values of I = [3.6239, 9.5183, 25] which correspond
to α = [0.8, 1.4, 2], by solving a finite dimensional con-
straint optimization problem. The achievable rates obtained
by a Gaussian input and optimized finite dimensional inputs
are given in Table I and II for S = 5 and 10, respec-
tively. As it can be seen, the optimized finite dimensional
inputs achieve marginally better rates than the Gaussian
input.

In Fig.2a we plot achievable rates as function of I for fixed
S = 5:

• (orange solid line) an equally likely 4-QAM
constellation,

• (yellow solid line) a distribution with uniform phase and
only one mass point at

√
S for the modulo,

• (green solid line) a proper-complex Gaussian input,
• (red solid line) treat the radar interference as Gaussian

noise as given in (21), and
• (stared cyan points) optimized finite dimensional input.

We also show the outer bound in (23) (blue dashed line) and
the one in (22) (purple dashed line).

The Gaussian input performs very well for α := I(dB)
S(dB)

< 1,
where it closely follows the upper in (23), in comparison to the
discrete 4-QAM input and a distribution with uniform phase
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Fig. 2. Achievable rates and upper and lower bounds on capacity.

and only one mass point at
√

S for the modulo. Although this
behavior was expected for I  1 (actually a Gaussian input
is optimal for I = 0), it is very pleasing to see that it actually
performs very well for the whole regime I ≤ S.

We note that the equally likely 4-QAM and the distribution
with uniform phase and only one mass at

√
S for the modulo

are only a ‘constant gap’ away from the the upper bound
in (24) for the simulated S = 5 in Figure 2a (and the same
trend is true for the simulated S = 100 in Figure 2b), which
shows that capacity can be well approximated by inputs with
a finite number of masses. The rate achieved by optimized
finite dimensional input at I = S0.8, S1.4 and S2 is only
slightly higher than the rate achieved by a proper-complex
Gaussian input in terms of bits per channel use. However,
the difference in the performance of Gaussian inputs and the
finite dimensional optimized inputs in terms of bits per second
will be proportional to the difference between their achieved
rates times the system bandwidth.

VI. CONCLUSION

In this paper we studied the structural properties of the
optimal (communication) input of a new channel model which
models the impact of a high power, short duty cycle, wideband,
radar interference on a narrowband communication signal.
In particular, we showed that the optimal input distribution has

uniform phase independent of the modulo, which is discrete
with countably infinite many mass points. We also argue that
for large radar interference there is a loss of half the degrees
of freedom compared to the interference-free channel.

APPENDIX

A. Derivation of the Kernel K (x, y) in (10)

By (4) and by passing to Polar coordinates Y =
√
˜Y e j � Y

and X =
√
˜Xe j � X we have

f
˜Y , � Y|˜X , � X(y, φ|x, α)

= E�

⎡

⎣

e
−
∣

∣

∣

√
ye jφ−√

xe jα−√
Ie jθ

∣

∣

∣

2π

⎤

⎦

= 1

2π

∫ 2π

θ=0

e
−
(

I+∣∣√ye jφ−√
xe jα

∣

∣

2
)

2π

· e
−
(

2
√

I
∣

∣

√
ye jφ−√

xe jα
∣

∣ cos(θ−� (√ye jφ−√
xe jα

)

)
)

2π
dθ

= e−(I+y+x−2
√

xy cos(φ−α))

2π

I0

(

2
√

I
√

y + x − 2
√

xy cos(φ − α)

)

.

For the case that ˜X and � X are independent and � X is uniform
between [0, 2π], we have

K (x, y) := f
˜Y
∣

∣
˜X
(y|x)

=
∫ 2π

0
dφ

∫ 2π

0

dα

2π

∫ 2π

0

dθ �

2π

e
−
∣

∣

∣

√
ye jφ−√

xe jα−√
Ie jθ � ∣

∣

∣

2

2π

=
∫

|θ |≤π

e−(y+x+I−2
√

yx cos(θ))

2π

I0

(

2
√

I
√

y + x − 2
√

yx cos(θ)

)

dθ (42a)

=
∫

|θ |≤π

e−(y+x+I+2
√

x I cos(θ))

2π

I0

(

2
√

y
√

x + I + 2
√

x I cos(θ)

)

dθ, (42b)

where (42a) and (42b) correspond to solving for the two
integrals in different orders and using the definition of the
modified Bessel function.

B. The Map F
˜X → h(˜Y ;F

˜X ) Is Weak* Continuous

The function h(˜Y ; F
˜X ) in (14) is weak* continuous if for

any sequence of distribution functions {Fn}∞n=1 ∈ F such that

Fn
w∗→ F

˜X , then h(˜Y ; Fn) → h(˜Y ; F
˜X ). In this regard, we have

lim
n→∞ h(˜Y ; Fn) = lim

n→∞

∫

y≥0
f
˜Y (y; Fn) log

1

f
˜Y (y; Fn)

dy

=
∫

y≥0
lim

n→∞ f
˜Y (y; Fn) log

1

f
˜Y (y; Fn)

dy (43a)

= h(˜Y ; F
˜X ), (43b)
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where the exchange of limit and integral in (43a) is due
to the Dominated Convergence Theorem [19], and equal-
ity in (43b) is due to continuity of the map F

˜X →
f
˜Y (y; F

˜X ) log f
˜Y (y; F

˜X ). This last assertion is true by noting
that x → x log x is a continuous function of x ∈ R+
and f

˜Y (y; F
˜X ) in (11) is a continuous function of F

˜X since
K (x, y) in (10) is a bounded continuous function of x for
all y ∈ R+.

Back to (43a), to satisfy the necessary condition required in
the Dominated Convergence Theorem, we have to show that
there exists an integrable function g(y) such that

| f
˜Y (y; Fn) log f

˜Y (y; Fn) |< g(y),∀y ∈ R+. (44)

We state the following Lemma which is a generalization of
the one given in [20, Lemma A.2].

Lemma 1: For any δ1 > 0 and 0 < x ≤ 1

0 ≤ −x log x ≤ e−1

δ1
x1−δ1 . (45)

Proof: Fix a δ1 > 0; the fuction x → −xδ1 log x is
concave in 0 < x ≤ 1, and is maximized at x = e−1/δ1 .
Hence −xδ1 log x ≤ e−1

δ1
and (45) follows. �

According to Lemma 1 we can write

| f
˜Y (y; Fn) log f

˜Y (y; Fn) |≤ e−1

δ1
f
˜Y (y; Fn)

1−δ1 .

We next need to find (y) : f
˜Y (y; Fn) ≤ (y) which would

then lead to

g(y) = e−1

δ1
(y)1−δ1, (46)

which is integrable for some 0 < δ1. Similarly to [21, eq. (A9)]
we can show that for any δ2 > 0

(y) =
⎧

⎨

⎩

1 y ≤ 16I
M

y1.5−δ2
y > 16I

, (47)

is such a desirable upper bound for some M < ∞. The proof
is as follows. For y > 16I we write

f
˜Y (y; F

˜X ) =
∫ (

√
y/4−√

I)2

0
K (x, y)d F

˜X (x) (48)

+
∫ ∞

(
√

y/4−√
I)2

K (x, y)d F
˜X (x). (49)

The term in (48) can be upper bounded as
∫ (

√
y/4−√

I)2

0
K (x, y)d F

˜X (x)

≤ e−y
∫ (

√
y/4−√

I)2

0

∫ 2π

0

e−(x+I+2
√

x I cos θ)

2π

· I0

(

2
√

y(
√

x + √
I)
)

dθd F
˜X (x)

≤ e−y I0

(

2
√

y
√

y

4

)

×
∫ (

√
y/4−√

I)2

0

∫ 2π

0

e−(x+I+2
√

x I cos θ)

2π
dθd F

˜X (x)

≤ e−y I0 (y/2) · 1 ≤ e−y/2, (50)

while the term in (49) can be upper bounded as
∫ ∞

(
√

y/4−√
I)2

K (x, y)d F
˜X (x) ≤ P[˜X > (

√
y/4 − √

I)2]

· e−y

2π

∫ 2π

0
sup
xθ>0

{

e−xθ I0
(

2
√

y
√

xθ

)

}

dθ

≤ e−y

2π

∫ 2π

0
S

supxθ>0

{

e−xθ I0
(

2
√

y
√

xθ

)

}

(
√

y/4 − √
I)2

dθ (51a)

≤ e−y 3

2

ey

√
4πy

[1 + O(1/y)]
S

(
√

y/4 − √
I)2

, (51b)

where xθ := x + I + 2
√

x I cos(θ), the inequality in (51a)
is from Markov’s inequality, and the one in (51b) is
by [22, eq. (E.6)]. By (50) and (51b), we have

f
˜Y (y; Fn) ≤ 12S√

π

[

1

y1.5
+ O(

1

y2.5
)

]

.

Hence, for any 0 < δ2 < 1 there exists some M < ∞ and y∗
δ2

,
such that

f
˜Y (y; Fn) <

M

y1.5−δ2
, (52)

for all y ≥ y∗
δ2

. We fix δ2 now. Due to continuity of the
f
˜Y (y; Fn) for y ∈ [16I, y∗

δ2
], there exists an M < ∞ such

that (52) holds for all y > 16I. The bound in (52) together
with the one in (17) gives

f
˜Y (y; Fn) ≤ (y),

for any 0 < δ2 < 1 and some M < ∞ and where (y) was
defined in (47). Finally, one can find small enough δ1 and δ2
such that g(y) given in (46) is integrable.

C. The Map F
˜X → h(˜Y ;F

˜X ) Is Strictly Concave

The function h(˜Y ; F
˜X ) in (13) is strictly concave in

f
˜Y (y; F

˜X ) in (11) (because x → −x log(x) is). Since
f
˜Y (y; F

˜X ) is an injective linear function of F
˜X (due to

invertibility of the kernel as proved in Appendix VI-G),
we conclude that h(˜Y ; F

˜X ) is a strictly concave function
of F

˜X .

D. The Functional h(˜Y ;F
˜X )−L(F

˜X ), Is Weakly*
Differentiable at Fopt

˜X

A function h : F → R for the convex space F , is said to
be weakly* differentiable at F0 if

h�
F0

(F) = lim
θ→0+

h ((1 − θ)F0 + θ F) − h(F0)

θ

exists for all F ∈ F . By using the above definition, we show
that h�

Fopt
˜X

(˜Y ; F
˜X ) and L �

Fopt
˜X

(F
˜X ) exist for all F

˜X , Fopt
˜X

and

hence h(˜Y ; F
˜X ) − L(F

˜X ) is weakly* differentiable.
First, for θ ∈ [0, 1], we define Fθ := (1 − θ)Fopt

˜X
+ θ F

˜X

and then we find the weak* derivative of h(˜Y ; F
˜X ) at Fopt

˜X



638 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 2, FEBRUARY 2018

as follows

h�
Fopt
˜X

(˜Y ; F
˜X )

= lim
θ→0+

1

θ

[

h(˜Y ; Fθ ) − h(˜Y ; Fopt
˜X

)
]

= lim
θ→0+

1

θ

∫

x≥0

∫

y≥0
K (x, y) log

1

f
˜Y (y; Fθ )

dy d Fθ (x)

− lim
θ→0+

1

θ

∫

x≥0

∫

y≥0
K (x, y) log

1

f
˜Y (y; Fopt

˜X
)
dy d Fopt

˜X
(x)

=
∫

x≥0
h(x; Fopt

˜X
)d F

˜X (x) − h(˜Y ; Fopt
˜X

)

−
∫

y≥0
lim

θ→0+
1

θ
f
˜Y (y; Fθ ) log

f
˜Y (y; Fθ )

f
˜Y (y; Fopt

˜X
)
dy, (53)

where the interchange of limit and integral in (53) is due to
Dominated Convergence Theorem. By [23, Lemma 6], we can
write
∣

∣

∣

f
˜Y (y; Fθ )

θ
log

f
˜Y (y; Fθ )

f
˜Y (y; Fopt

˜X
)

∣

∣

∣

≤ f
˜Y (y; F

˜X ) + f
˜Y (y; Fopt

˜X
)

− f
˜Y (y; F

˜X ) log f
˜Y (y; F

˜X ) − f
˜Y (y; F

˜X ) log f
˜Y (y; Fopt

˜X
)

≤ f
˜Y (y; F

˜X )+ f
˜Y (y; Fopt

˜X
)+2 f

˜Y (y; F
˜X )(y+I+S), (54)

where the right hand side of (54) is integrable. In addition,
the term given in (53) is vanishing by L’Hospital’s Rule.
Hence, the weak* derivative is given by

h�
Fopt
˜X

(˜Y ; F
˜X ) =

∫

x≥0
h(x; Fopt

˜X
)d F

˜X (x) − h(˜Y ; Fopt
˜X

). (55)

It is also easy to show that

L �
Fopt
˜X

(F
˜X ) = L(FX̃ ) − L(Fopt

˜X
), (56)

exists because of the linearity of the power constraint.

E. Equivalence of KKT Conditions in (27) to (26)

We proceed as the proof of [15, Th. 4]. Then
∫

x≥0

(

h(x; Fopt
˜X

) − γx
)

d F
˜X (x) ≤ h(˜Y ; Fopt

˜X
) − γS (57)

for all F
˜X ∈ F if and only if

h(x; Fopt
˜X

) ≤ h(˜Y ; Fopt
˜X

) + γ(x − S), ∀x ∈ R+, (58)

h(x; Fopt
˜X

) = h(˜Y ; Fopt
˜X

) + γ(x − S), ∀x ∈ Eopt. (59)

The if direction is trivial since the derivative given in (55)
has to be non-positive. To prove the only if direction, assume
that (58) is false. Then there exists an x̃ such that

h(̃x; Fopt
˜X

) > h(˜Y ; Fopt
˜X

) + γ(̃x − S).

If Fopt
˜X

is a unit step function at x̃ , then
∫

x≥0

(

h(x; Fopt
˜X

) − γx
)

d F
˜X (x) = h(̃x, Fopt

˜X
) − γx̃

> h(˜Y ; Fopt
˜X

) − γS,

which contradicts (57). Assume that (58) holds but (59) does
not, i.e., there exists x̃ ∈ Eopt:

h(̃x; Fopt
˜X

) < h(˜Y ; Fopt
˜X

) + γ(̃x − S). (60)

Since all functions in (60) are continuous in x , the inequality
is satisfied strictly on a neighborhood of x̃ indicated as Ex̃ .
Since x̃ is a point of increase, the set Ex̃ has nonzero measure,
i.e.,

∫

Ex̃
d Fopt

˜X
(x) = δ > 0; hence

h(˜Y ; Fopt
˜X

) − γS

=
∫

x≥0

(

h(x; Fopt
˜X

) − γx
)

d Fopt
˜X

(x)

=
∫

Ex̃

(

h(x; Fopt
˜X

) − γx
)

d Fopt
˜X

(x)

+
∫

Eopt\Ex̃

(

h(x; Fopt
˜X

) − γx
)

d Fopt
˜X

(x)

< δ(h(˜Y ; Fopt
˜X

) − γS) + (1 − δ)(h(˜Y ; Fopt
˜X

) − γS),

which is a contradiction.

F. The Function z → g(z, γ) Is Analytic

The analyticity of g(z, γ), z ∈ C+, follows from the
analyticity of h(z; F

˜X ) on the same domain, where h(x; F
˜X )

was defined in (15). In other words, we want to show that the
function

h(z; F
˜X ) =

∫

y≥0
K (z, y) log

1

f
˜Y (y; F

˜X )
dy, z ∈ C+, (61)

is analytic. Note that the integrand in (61) is a continuous
function on {z ∈ C+} × {y ∈ R+} and analytic for each
y so we use the Differentiation Lemma [17] to prove the
analyticity by proving that h(x; F

˜X ) is uniformly convergent
for any rectangle K := {z ∈ C : 0 ≤ a ≤ �(z) ≤
b,−b ≤ �(z) ≤ b} (since any compact set K ∈ C is
closed and bounded in the complex plane). By (17) we have
∣

∣log f
˜Y (y; F

˜X )
∣

∣ ≤ y + I + βF
˜X
,, and as a result we have

|h(z; F
˜X )|

≤
∫

y≥0
|K (z, y)| | log f

˜Y (y; F
˜X )| dy

≤
∫

y≥0

1

2π

∫

|θ |≤π

∣

∣

∣e−(z+y−2
√

zy cos θ+I)
∣

∣

∣

·
∣

∣

∣

∣

I0

(

2
√

I(z + y − 2
√

zy cos θ)

)∣

∣

∣

∣

· ∣∣y + I + βF
˜X

∣

∣ dθ dy

≤
∫

y≥0

1

2π

∫

|θ |≤π
e−�(z+y−2

√
zy cos θ+I)

· I0

(

2�
{
√

I(z + y − 2
√

zy cos θ)
}

)

(

y + I + βF
˜X

)

dθ dy

≤
∫

y≥0

1

2π

∫

|θ |≤π
e−�(y+z−2

√
zy cos θ+I)

· e2�{√I(z+y−2
√

zy cos θ)} (y + I + βF
˜X

)

dθ dy

=
∫

y≥0

1

2π

∫

|θ |≤π
e−(

√�(y+z−2
√

zy cos θ)−√
I)2

· (y + I + βF
˜X

)

dθ dy. (62)

Since (62) is exponentially decreasing in y ∈ R+, the integral
is bounded, concluding the proof.
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G. Invertibility of the Integral Transform in (11)

In order to prove the invertibility of the integral transforms
in (11) and (30a), we use the following general notation

h̆(y) =
∫

x≥0
K (x, y) dh(x), y ∈ R+, (63)

in which h(x) may represent the difference of two distri-
bution functions or just a function. We will show that if
h̆(y) ≡ 0 for all y ∈ R+, then dh(x) ≡ 0 for all x ∈ R+.
From the invertibility of (63), also the integral transform
∫

y≥0 K (x, y) dh(y) is invertible due to the symmetry of the
kernel K (x, y) in x and y.

We first define the following two integrals
[24, eq. (6.633) and eq. (6.684)]
∫ ∞

0
e−αy Iν(β

√
y)Jν(γ

√
y) dy

= 1

2α
exp

(

β2 − γ 2

4α

)

J0

(

βγ

2α

)

, �{α}>0, �{ν}>−1,

(64)
∫ π

0
(sin θ)2ν

Jν

(

√

α2 + β2 − 2αβ cos θ
)

(

√

α2 + β2 − 2αβ cos θ
)ν dθ

= 2ν√π�

(

ν + 1

2

)

Jν(α)

αν

Jν(β)

βν
, �{ν} > −1

2
, (65)

where Jν(.) and Iν (.) are the ν-th order Bessel function of the
first kind and ν-th order modified Bessel function of the first
kind, and where �(.) is the Gamma function.

We next use (64) and (65) as follows. If h̆(y) = 0 for
all y ≥ 0, then for all γ ≥ 0 we have
∫ ∞

0
J0(γ

√
y)h̆(y) dy = 0

⇐⇒
∫ ∞

0
dh(x)

∫ π

0
J0

(

γ

√

x + I + 2
√

x I cos θ

)

dθ = 0

(66a)

⇐⇒
∫ ∞

0
J0(γ

√
x)J0(γ

√
I) dh(x) = 0 (66b)

⇐⇒
∫ ∞

0
J0(γ z) dh(z2) = 0

⇐⇒
∫ ∞

0
dh(z2)

∫ ∞

0
J0(γ z)J0(γ s)γ dγ = 0, ∀s ≥ 0

⇐⇒
∫ ∞

0

δ(s − z)

s
dh(z2) = 0, ∀s ≥ 0 (66c)

⇐⇒
∫ ∞

0
dh(z2)

∫ ∞

0
e−stδ(s − z)ds = 0, ∀t ≥ 0

⇐⇒
∫ ∞

0
e−zt dh(z2) = 0, ∀t ≥ 0

⇐⇒ dh(z2) = 0, ∀z

⇐⇒ dh(x) = 0, ∀x ≥ 0, (66d)

where (66a) follows by (64), (66b) by (65), and where (66c)
is by orthogonality of Bessel functions given by

∫ ∞

0
Jν(kr)Jν(k

�r)r dr = δ(k − k �)
k

.

Equation (66d) also follows by invertibility of the Laplace
transform.

H. Justification of (40b)

In order to show that

lim
I→∞

∫

x≥0,y≥0
K (x, y) log I0

(

2

√

yI
S + 1

)

dy d F
˜X (x)

= lim
I→∞

∫

x≥0,y≥0
K (x, y) log

⎛

⎜

⎜

⎝

e2
√

yI
S+1

√

4π

√
yI

S+1

⎞

⎟

⎟

⎠

dy d F
˜X (x),

we make the variable change yI = z and prove

lim
I→∞

∫

x≥0
z≥0

K
(

x,
z

I

)

× log

⎛

⎝I0

(

2

√
z

S + 1

)

e−2
√

z
S+1

√

4π

√
z

S + 1

⎞

⎠

dz

I
d F

˜X (x)

= lim
I→∞

1

I

∫

z≥0
f
˜Y

( z

I

)

log

⎛

⎝I0

(

2
√

z

S + 1

)

e−2
√

z
S+1

√

4π

√
z

S+1

⎞

⎠dz

= lim
I→∞

1

I

∫

√
I

0
f
˜Y

( z

I

)

log

⎛

⎝I0

(

2
√

z

S + 1

)

e−2
√

z
S+1

√

4π

√
z

S+1

⎞

⎠dz

(67)

+ lim
I→∞

1

I

∫ ∞
√

I
f
˜Y

( z

I

)

log

⎛

⎝I0

(

2

√
z

S+1

)

e−2
√

z
S+1

√

4π

√
z

S+1

⎞

⎠dz

(68)

= 0

We first claim that the limit in (67) is equal to zero since

lim
I→∞

1

I

∣

∣

∣

∣

∣

∣

∫

√
I

z=0
f
˜Y

( z

I

)

log

⎛

⎝I0(2
√

z

S + 1
)e−2

√
z

S+1

√

4π

√
z

S + 1

⎞

⎠ dz

∣

∣

∣

∣

∣

∣

≤ lim
I→∞

1

I

∫

√
I

z=0
f
˜Y

( z

I

)

⎛

⎝4
√

z

S + 1
+
∣

∣

∣

∣

∣

∣

log

⎛

⎝

√

4π

√
z

S + 1

⎞

⎠

∣

∣

∣

∣

∣

∣

⎞

⎠ dz

(69a)

≤ lim
I→∞

1

I

∫

√
I

z=0

(

4

√
z

S + 1
+ 1

2

∣

∣

∣

∣

log(
4π

S + 1
)

∣

∣

∣

∣

+ 1

4
|log(z)|

)

dz

≤ lim
I→∞

1

I

{

8

3(S + 1)

√
I
3/2 + 1

2

∣

∣

∣

∣

log(
4π

S + 1
)

∣

∣

∣

∣

√
I
}

+ lim
I→∞

{

−1

4
(z log z − z)

∣

∣

1
0 + 1

4
(z log z − z)

∣

∣

√
I

1

}

= 0,

(69b)

where (69a) is due to the fact that 1 ≤ I0(x) ≤ ex and (69b)
is by (17).

To prove that the limit in (68) is also equal to zero, we note
that for x � 1 the modified Bessel function of the first kind
admits the following asymptotic expansion

I0(x) ∼ ex

√
2πx

(

1 + 1

8x
+ 9

128 x2 + . . .

)
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and hence we can write

I0(x)e−x
√

2πx −
(

1 + 1

8x

)

= O

(

1

x2

)

.

Consequently, we can claim that there exists I� and c > 0 such
that

−c

z
≤ I0

(

2
√

z

S + 1

)

e−2
√

z
S+1

√

4π

√
z

S + 1
−
(

1 + S + 1

16
√

z

)

≤ c

z
,

(70)

for all z ≥ √
I�. Moreover, there also exists I�� such that

S + 1

16
√

z
− c

z
≥ 0, (71)

for all z ≥ √
I��. We define the function

g(I) :=
∫ ∞

√
I

1

I
f
˜Y

( z

I

)

log

⎛

⎝I0

(

2

√
z

S + 1

)

e−2
√

z
S+1

√

4π

√
z

S+1

⎞

⎠ dz.

Based on (70) and (71), for the regime I ≥ max{I�, I��}, we have

g(I) ≥
∫ ∞

√
I

1

I
f
˜Y

( z

I

)

log

(

1 + S + 1

16
√

z
− c

z

)

dz ≥ 0, (72)

and

g(I) ≤
∫ ∞

√
I

1

I
f
˜Y

( z

I

)

log

(

1 + S + 1

16
√

z
+ c

z

)

dz (73)

≤
∫ ∞

√
I

1

I
f
˜Y

( z

I

)

(

S + 1

16
√

z
+ c

z

)

dz (74)

≤
∫ ∞

√
I

1

I
f
˜Y

( z

I

)

(

S + 1

16
√√

I
+ c√

I

)

dz (75)

=
∫ ∞

1√
I

f
˜Y (y)

(

S + 1

16
√√

I
+ c√

I

)

dy (76)

≤
(

S + 1

16
√√

I
+ c√

I

)

∫ ∞

0
f
˜Y (y) dy = S + 1

16I1/4 + c√
I
,

(77)

where in (74) we used the inequality log(1 + x) < x, x ≥ 0,
and in (75) the fact that 1√

z and 1
z are decreasing functions in z,

in (76) we did the change of variable yI = z, and in (77) we
used that fact that f

˜Y (y) integrates to one. By (72) and (77),
we conclude that

lim inf
I→∞

g(I) ≥ 0,

lim sup
I→∞

g(I) ≤ lim sup
I→∞

(

S + 1

16
√√

I
+ c√

I

)

= 0,

and hence limI→∞ g(I) = 0 and the proof is complete.

I. Justification of (40c): Lower Bound on
limI→∞

√
I[E[

√
˜Y ] − √

I]

We claim that

lim
I→∞

√
I
[

E[
√

˜Y ] − √
I
]

≥ S + 1

4
. (78)

In this regard, we first find a lower bound on E[
√
˜Y ] as follows

E

[√

˜Y
]

=
∫

x≥0

∫

|θ |<π

1

2π

∫

y≥0

√
ye

−
(

x+I+2
√

x I cos θ
)

· I0

(

2
√

y

√

x + I + 2
√

x I cos θ

)

dydθ d F
˜X (x) (79a)

=
∫

x≥0

∫

|θ |<π

1

2π
e−(x+I+2

√
x I cos θ)�(3/2)

×1 F1

(

3

2
, 1, x + I + 2

√
x I cos θ

)

dθ d F
˜X (x) (79b)

=
∫

x≥0

∫

|θ |<π−δ

1

2π
e−(x+I+2

√
x I cos θ)�(3/2)

× 1 F1

(

3

2
, 1, x + I + 2

√
x I cos θ

)

dθ d F
˜X (x)

+
∫

x≥0

∫ π+δ

π−δ

1

2π
e−(x+I+2

√
x I cos θ)�(3/2)

×1 F1

(

3

2
, 1, x + I + 2

√
x I cos θ

)

dθ d F
˜X (x)

≥
∫

x≥0

∫

|θ |<π−δ

1

2π

×
[

√

x + I + 2
√

x I cos θ+ 1

4
√

x + I + 2
√

x I cos θ

]

× dθ d F
˜X (x) (79c)

+
∫ A

x=0

∫ π+δ

π−δ

1

2π

×
[

√

x + I + 2
√

x I cos θ + 1

4
√

x + I + 2
√

x I cos θ

]

× dθ d F
˜X (x) (79d)

≥
∫

x≥0

∫

|θ |<π−δ

1

2π
⎡

⎣

√

x + I + 2
√

x I cos θ + 1

4
(√

x + √
I
)

⎤

⎦ dθ d F
˜X (x)

+
∫ A

x=0

∫ π+δ

π−δ

1

2π

√

x + I + 2
√

x I cos θdθ d F
˜X (x)

=
∫

x≥0

∫

|θ |<π

1

2π

√

x + I + 2
√

x I cos θdθ d F
˜X (x)

+ 1

4
(√

S + √
I
) (79e)

−
∫ ∞

x=A

∫ π+δ

π−δ

1

2π

√

x + I + 2
√

x I cos θdθ d F
˜X (x)

(79f)
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where A = I1−�1 and δ = I−(1−�2) for some �1, �2 > 0. The
equality in (79b) is due to [24, eq. (6.631)]

∫

x≥0

√
xe−αx I0(2β

√
x)dx = �( 3

2 )

α3/2 1 F1

(

3/2, 1,
β2

α

)

,

where 1 F1(a, b, x) is the confluent hypergeometric func-
tion [25, Ch. 13]. In (79c) and (79d) we have used the
series expansion of 1 F1(a, c, x) for x � 1 (which is
admissible for |θ | < π − δ and x  I), which is given
by [25, Sec. 13.7]

1 F1(a, c, x) = �(c)ex xa−c

�(a)

∞
∑

n=0

(c − a)n(1 − a)n

n! x−n

= �(c)ex xa−c

�(a)

[

1+ (c − a)(1 − a)

x
+O

(

1

x2

)]

,

where (a)n := a(a+1) . . . (a+n−1). The second term in (79e)
is derived by the Jensen’s inequality.

The term in (79f) times
√

I is vanishing as I → ∞ by noting
that

lim
I→∞

√
I
∫ ∞

x=A

∫ π+δ

π−δ

1

2π

√

x + I + 2
√

x I cos θdθ d F
˜X (x)

≤ lim
I→∞

√
I
∫ ∞

x=A

δ

π

(√
x + √

I
)

d F
˜X (x)

≤ lim
I→∞

(√
Iδ

√
S

π
+ δ

π
IP[X > A]

)

≤ lim
I→∞

(√
I
δ

π

√
S + δ

π
I
S
A

)

→ 0,

for the chosen values of A and δ. In addition, we handle the
first term in (79e) by using the fact that

Eθ

[
√

r + 1 + 2
√

r cos θ

]

>
r

4
+ 1,

for r ≤ 4 and hence

lim
I→∞

√
I

[

∫

|θ |<π
x≥0

1

2π

√

x + I + 2
√

x I cos θdθ d F
˜X (x) − √

I

]

= lim
I→∞

√
I
[∫ 4I

x=0

∫

|θ |<π

1

2π

[√

x + I + 2
√

x I cos θ − √
I
]

× dθ d F
˜X (x)

]

+ lim
I→∞

√
I
[ ∫ ∞

x=4I

∫

|θ |<π

1

2π

[√

x + I + 2
√

x I cos θ−
√

I
]

× dθ d F
˜X (x)

]

≥ lim
I→∞

√
I

[

∫ 4I

x=0

[

x

4
√

I

]

d F
˜X (x)

]

+ lim
I→∞

√
I
[∫ ∞

x=4I

1

2π

[√
4I−√

I − √
I
]

d F
˜X (x)

]

≥ S
4

.

(80)

By (79e) and (80), the claim (78) is proved.

J. Justification of (40c): Calculation of
limI→∞[Eθ,˜X [log(˜X + I + 2

√
˜X Icosθ )] − √

I]

We first find the expected value of log(˜X + I+ 2
√
˜X I cos θ)

with respect to ˜X and θ given by

Eθ,˜X

[

log(˜X + I + 2
√

˜X I cos θ)
]

=
∫

x≥0

∫ 2π

0
log(x + I + 2

√
x I cos θ)dθ d F

˜X (x)

= C1 + C2,

where

C1 =
∫ I

x=0

∫ 2π

0
log(x + I + 2

√
x I cos θ) dθ d F

˜X (x),

C2 =
∫

x≥I

∫ 2π

0
log(x + I + 2

√
x I cos θ) dθ d F

˜X (x).

To calculate C1, we state the following lemma.
Lemma 2:
∫ 2π

0
log(1 + 2r cos(x) + r2) dx = 0, 0 ≤ r ≤ 1 (81)

Proof: Based on Cauchy’s integral formula

f (a) = 1

2π j

∮

γ

f (z)

z − a
dz,

for 0 ≤ r < 1, we can write
∫ 2π

0
log(1 + 2r cos(x) + r2) dx

=
∫ 2π

0
log(1 + re j x) dx +

∫ 2π

0
log(1 + re− j x) dx

= 2
∮

γ

log(1 + z)

j z
dz = 0.

For r = 1, we have
∫ 2π

0
log(1 + 2r cos(x) + r2) dx

= 4π log(2) + 4
∫ π

0
log (cos(θ)) dθ (82a)

= 4π log(2)+4
∫ π

2

0
log (cos(θ)) dθ+4

∫ π
2

0
log (sin(θ)) dθ

= 4π log(2) + 4
∫ π

2

0
log

(

sin(2θ)

2

)

dθ

= 2π log(2) + 2
∫ π

0
log (sin(θ)) dθ

= 2π log(2) + 2
∫ π

0
log (cos(θ)) dθ, (82b)
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which according to (82a) and (82b), results in

4π log(2) + 4
∫ π

0
log (cos(θ)) dθ

= 2π log(2) + 2
∫ π

0
log (cos(θ)) dθ = 0.

�
Based on lemma 2, we see that

C1 =
∫ I

x=0

∫ 2π

0
log(x + I + 2

√
x I cos θ) dθ d F

˜X (x),

=
∫ I

x=0
log(I) d F

˜X (x)

+
∫ I

x=0

∫ 2π

0
log(1 + 2

√

x

I
cos θ + x

I
)dθ d F

˜X (x)

=
∫ I

x=0
log(I) d F

˜X (x).

In addition,

C2 =
∫

x≥I

∫ 2π

0
log(x + I + 2

√
x I cos θ) dθ d F

˜X (x)

=
∫

x≥I
log(x) d F

˜X (x).

As the result

lim
I→∞

[

Eθ,˜X

[

log(˜X + I + 2
√

˜X I cos θ)
]

− log(I)
]

= lim
I→∞

[

∫ I

x=0
log(I) d F

˜X (x) +
∫

x≥I
log(x) d F

˜X (x)

−
∫ ∞

x=0
log(I) d F

˜X (x)
]

= lim
I→∞

∫

x≥I
log(

x

I
) d F

˜X (x) = 0, (83)

where the last step is by Dominated Convergence Theorem.
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