
On the Capacity of the AWGN Channel with
Additive Radar Interference

Sara Shahi, Daniela Tuninetti, and Natasha Devroye
ECE, University of Illinois at Chicago, Chicago IL 60607, USA.

Email: sshahi7, danielat, devroye @uic.edu

Abstract—This paper investigates the capacity of a commu-
nications channel that, in addition to additive white Gaussian
noise, also suffers the interference from a co-existing radar
transmission. The radar interference (of short duty-cycle and
of much wider bandwidth than the intended communication
signal) is modeled as an additive term whose amplitude is known
and constant, but whose phase is independent and identically
uniformly distributed at each channel use. The capacity achieving
input distribution, under the standard average power constraint,
is shown to have independent modulo and phase. The phase
is uniformly distributed in [0, 2π]. The modulo is discrete with
countably infinite many mass points, but only finitely many in any
bounded interval. From numerical evaluations, a proper-complex
Gaussian input is seen to perform quite well for weak radar
interference. Interestingly, for very large radar interference, a
Gaussian input achieves 1

2
log (1 + S). Since a Gaussian input is

optimal to within one bit, it is concluded that the presence of the
radar interference results in a loss of half degrees of freedom
compared to an interference free channel.

I. INTRODUCTION

Shortage of spectrum resources, specially with the ever in-
creasing demand for commercial services, necessitates a more
sensible bandwidth allocation policy. In 2012, the President’s
council of Advisors on Science and Technology published a
report that recommended to release portions of governmental
radar bands (e.g. 3550-3620 MHz) to be shared with com-
mercial wireless services. Since then, several national funding
agencies have launched research programs to encourage re-
search in this area.

To understand how these two very different systems should
best share the spectrum, it is useful to have an idea of the
fundamental information theoretic performance limits of such
spectrum sharing channels. In this work, we investigate the
capacity of a white additive Gaussian noise communications
channel, which in addition to noise, suffers interference from
a radar transmission. In the channel model studied here, while
the interfering radar transmission is modeled to be additive,
it is not Gaussian. Rather, it is modeled as a constant (thus
known) amplitude signal, but with unknown and uniformly
distributed phase at each channel use. The reason is that
radar systems usually operate with a high power, short duty-
cycle waveform of much wider bandwidth than the intended
communication signal. The capacity of an additive Gaussian
noise channel under an average power constraint is well
known: the optimal input is Gaussian of power equal to the
power constraint. However, since the channel studied here is
no longer Gaussian, several questions emerge: (i) what is the

capacity of this channel and how does it differ from that of a
Gaussian noise channel (without the radar interference), and
(ii) what input achieves the capacity. In this paper we aim to
address both these questions.

A. Past Work

The capacity of channels with additive noise and various
input constraints has been studied before.

In [1] bounds on the capacity of additive, but not necessarily
Gaussian, noise channel were given. Applying Ihara’s upper
bound to our channel model yields a bound that grows as
the radar signal amplitude increases. This bound is not tight
because the capacity of our channel is upper bounded by
the capacity of the classical power-contained Gaussian noise
channel without radar interference.

In [2, Theorem 1] is was shown that for any memoryless
additive noise channel with a second moment/power constraint
on the input, the rate achievable by using a white Gaussian
input never incurs a loss of more than half a bit per real
dimension with respect to capacity. This implies that one can
obtain a capacity upper bound for a complex-valued additive
noise channel by adding 1 bit to the rate attained with a proper-
complex Gaussian input for the same channel.

In the seminal work by Smith [3], it was shown that the
capacity of a real-valued white Gaussian noise channel with
peak amplitude and average power constraints is achieved by
a discrete input with a finite number of mass points. This is
in sharp contrast to Gaussian inputs that achieve the capacity
when the amplitude constraint is dropped. Later, the optimality
of a discrete input under peak amplitude constraint was shown
to hold for a wide class of additive noise channels [4].
Recently it was shown that, under average power constraint
and certain ‘smoothness’ conditions on the noise distribution,
the only additive noise channel whose capacity achieving input
is continuous is the Gaussian noise channel [5].

The model considered in this paper, is a complex-valued
additive noise channel with an average power constraint. When
we transform the mutual information optimization problem
over a bivariate (modulo and phase) input distribution into
one over a univariate (modulo only) input distribution, the
equivalent channel is no longer additive. For this equivalent
non-additive channel, we can not proceed as per the steps
preceding [5, eq.(4)]. This is so because [5, eq.(4)] heavily
relies on certain integrals being convolution integrals and thus
passing to the Fourier domain to study/infer certain properties



of the optimal input distribution. In non-additive channels this
is not possible. In this respect, our approach is similar to that
of [6] where the capacity of the complex-valued Gaussian
noise channel under average power and peak amplitude con-
straints was shown to be achieved by a complex-valued input
with independent amplitude and phase; the optimal phase is
uniformly distributed in the interval [0, 2π], and the optimal
amplitude is discrete with finitely many mass points. In this
work we follow closely the steps in [6].

Extensions of Smith’s work [3] to Gaussian channels with
various fading models, possibly MIMO, are known in the
literature but are not reported here because they are not directly
relevant.

In [7], [8] a subset of the authors studied the uncoded
average symbol error rate performance of the same channel
model considered in this paper. Two regimes of operation
emerged. In the low Interference to Noise Ratio (INR) regime,
it was shown that the optimal decoder is a minimum Euclidean
distance decoder, as for Gaussian noise only; while in the high
INR regime, radar interference estimation and cancellation is
optimal. Interestingly, in the process of canceling the radar
interference at high INR, also part of the useful signal is
removed, and that after cancellation the equivalent output is
real-valued (one of the two real-valued dimensions of the
original complex-valued output is lost). We shall observe a
similar behavior for the capacity of this channel.

B. Contributions

The capacity of the channel model proposed here has not, to
the best of our knowledge, been studied before and provides a
new model for bounding the performance of a communication
system in the presence of radar interference. Likewise, in the
literature on the co-existence of radar and communications
channels, we are not aware of any capacity results. Our
contributions thus lie in the study of the capacity of this
novel channel model, in which we show that the optimal input
distribution has independent modulo and phase. The phase is
uniformly distributed in [0, 2π]. The modulo is discrete with
countably infinite many mass points, but only finitely many in
any bounded interval.

We also show achievable rates. The Gaussian input is seen
to perform very well for weak radar interference, where it
closely follows the upper bound in [1], while for very large
radar interference, it attains exactly half the interference-free
capacity. This implies, based on [2, Theorem 1], that for large
radar interference radar interference fundamentally limits the
performance by entailing a loss of half the degrees of freedom
compared to the interference free channel.

C. Paper organization

The paper is organized as follows. Section II introduces the
channel model. Section III derives our main result. Section IV
provides numerical results. Section V concludes the paper.
Proofs can be found in the Appendix.

II. SYSTEM MODEL

Next, boldface letters indicate complex-valued random vari-
ables, while lightface letters real-valued ones. In addition, we
use R+ to represent the set

R+ = {x : x ≥ 0}.

We model the effect of a high power, short duty cycle radar
pulse at the receiver of a narrowband data communication
system as

Y = X + W, (1)

W =
√
IejΘI + Z, (2)

where Y is the channel output, X is the input signal subject
to the average power constraint E[|X|2] ≤ S, ΘI is the random
phase of the radar interference uniformly distributed in [0, 2π],
and Z is a zero-mean proper-complex unit-variance Gaussian
noise. The random variables (X,ΘI,Z) are mutually indepen-
dent. ΘI and Z are independent and identically distributed
over channel uses, that is, the channel is memoryless. Our
normalizations imply that S is the average Signal to Noise
Ratio (SNR) while I is the average Interference to Noise Ratio
(INR). We assume I to be fixed and thus known. For later use,
the distribution of the additive noise in (2) is given by

fW(w) = EΘI

[
e−|w−

√
IejΘI |2

π

]
=
e−|w|

2−I

π
I0

(
2
√
I|w|2

)
,

(3)

where I0(w) = E[ew cos(ΘI)] ∈ [1, e|w|] for w ∈ C is the zero-
order modified Bessel function of the first kind. The channel
transition probability is thus

fY|X(y|x) = fW(y − x), (x,y) ∈ C2. (4)

Our goal is to characterize the capacity of the memoryless
channel in (1)-(2) given by

C = sup
FX:E[|X|2]≤S

I(X;Y), (5)

where FX is the cumulative distribution function of X.

III. CHANNEL CAPACITY

A. Trivial Bounds
Trivially, one can lower bound the capacity in (5) by treating

the radar interference as a Gaussian noise and obtain

log

(
1 +

S

1 + I

)
≤ C, (6)

and upper bound it as

C ≤ max
FX:E[|X|2]≤S

I(X;Y,ΘI) = log (1 + S) , (7)

or from Ihara’s work [1] as

C ≤ log (πe(1 + S + I))− h(W), (8)

or from Zamir and Erez’s work [2, Theorem 1], as

C ≤ I(XG;Y) + log(2), (9)

where I(XG;Y) is the achievable rate with a proper-complex
Gaussian input that meets the power constraint with equality.



B. Equivalent Problem Formulation and Definitions
We aim to show that the supremum in (5) is actually attained

by a unique input distribution, for which we want to derive its
structural properties. Before we continue however, we rewrite
the optimization for the original channel (involving the real
and the imaginary part of the input) in a way that it is sufficient
to optimize with respect to a univariate distribution only.

By following steps similar to those in [6, Section II.B], we
can show that an optimal input distribution induces Ỹ := |Y|2
and ∠Y independent given X, with ∠Y uniformly distributed
over the interval [0, 2π]; such an output distribution can be
attained by the uniform distribution on ∠X and by ∠X
independent of X̃ := |X|2; therefore, it is convenient for later
use to denote the channel transition probability fỸ |X̃(y|x) as
the kernel K(x, y) given by (see Appendix VI-A)

K(x, y) := fỸ |X̃(y|x) (10a)

=

∫
|b|≤π

e−I−ξ(b;x,y)

2π
I0

(
2
√
I ξ(b;x, y)

)
db, (10b)

ξ(b;x, y) := y + x− 2
√
yx cos(b) ≥ 0, (y, x) ∈ R2

+. (10c)

Since the random variables X̃ = |X|2 and Ỹ = |Y|2
are connected through a channel with kernel K(x, y), an
input distributed as FX̃ results in an output with probability
distribution function (pdf) given by1

fỸ (y;FX̃) :=

∫
x≥0

K(x, y)dFX̃(x), y ∈ R+. (11)

We stress the dependence of the output pdf on the input
distribution FX̃ by adding it as an ‘argument’ in fỸ (y;FX̃).

Finding the channel capacity in (5) can thus be equivalently
expressed as the following optimization over the distribution
of a non-negative random variable X̃

C + h(|W|2) = sup
F
X̃

:E[X̃]≤S
h(Ỹ ;FX̃), (12)

where h(Ỹ ;FX̃) is the output differential entropy given by 2

h(Ỹ ;FX̃) =

∫
y≥0

fỸ (y;FX̃) log
1

fỸ (y;FX̃)
dy. (13)

We express h(Ỹ ;FX̃) in (13) as

h(Ỹ ;FX̃) =

∫
y≥0

∫
x≥0

K(x, y) log
1

fỸ (y;FX̃)
dFX̃(x) dy

=

∫
x≥0

h(x;FX̃) dFX̃(x), (14)

where we defined the marginal entropy h(x;FX̃) as 3

h(x;FX̃) :=

∫
y≥0

K(x, y) log
1

fỸ (y;FX̃)
dy, x ∈ R+, (15)

1The pdf f
Ỹ
(y;F

X̃
) in (11) exists since the kernel in (10) is a continuous

and bounded (see (16)) function and thus integrable.
2The entropy h(Ỹ ;F

X̃
) in (13) exists since the output pdf in (11) is a

continuous and bounded (see (17)) function and thus integrable.
3The marginal entropy h(x;F

X̃
) in (15) exists since the involved functions

are integrable by (16) and (17).

and where the order of integration in the line above (14) can
be swapped by Fubini’s theorem.

For later use, we note that the introduced functions can be
bounded as follows: for the kernel in (10)

e−(y+x+I) ≤ K(x, y) ≤ 1, (x, y) ∈ R2
+; (16)

for the output pdf in (11)

e
−(y+I+βF

X̃
) ≤ fỸ (y;FX̃) ≤ 1, y ∈ R+, (17)

where βF
X̃

is defined and bounded (by using Jensen’s inequal-
ity together with the power constraint) as

0 ≤ βF
X̃

:= − ln

(∫
x≥0

e−xdFX̃(x)

)
≤ S; (18)

for the marginal entropy in (15)

0 ≤ h(x;FX̃) ≤ E[Ỹ |X̃ = x] + I + βF
X̃
, x ∈ R+, (19)

where the conditional mean of Ỹ = |Y|2 given X̃ = |X|2 is

E[Ỹ |X̃ = x] = x+ I + 1, x ∈ R+, (20)

C. Main Result

We are now ready to state our main result: a characterization
of the structural properties of the optimal input distribution
in (5), in relation to the problem in (12).

Theorem 1. The optimal input distribution in (5) unique and
has independent modulo and phase. The phase is uniformly
distributed in [0, 2π]. The modulo is discrete with countably
infinite many mass points, but only finitely many in any
bounded interval.

Proof: As argued in Section III-B, an optimal input
distribution in (5) has ∠X uniformly distributed in [0, 2π]
and independent of X̃ := |X|2. The modulo X̃ solves the
problem in (12), whose supremum is attained by the unique
input distribution F opt

X̃
that solves (12) because (see [9]):

1) the space of input distributions F is compact and convex
(see [9, Theorem 1]); F is given by

F :=
{
FX̃ : FX̃(x) = 0, ∀x < 0, (21a)

dFX̃(x) ≥ 0, ∀x ≥ 0, (21b)∫
x≥0

1 · dFX̃(x) = 1, (21c)

L(FX̃) :=

∫
x≥0

x · dFX̃(x)− S ≤ 0
}
, (21d)

where the various constraints are: (21a) for non-
negativity, (21b) and (21c) for a valid input distribution,
and (21d) for the average power constraint; and

2) The differential entropy h(Ỹ ;FX̃) in (14) is a weak?

continuous (see Appendix VI-B) and strictly concave
(Appendix VI-C) functional of the input distribution FX̃ .



From this and by Smith’s approach [3], the solution of the
optimization problem in (12) is equivalent to the solution of

h′
F opt
X̃

(Ỹ ;FX̃)− λL′
F opt
X̃

(FX̃) ≤ 0, for all FX̃ ∈ F , (22a)

λ ≥ 0 : L(F opt
X̃

) = 0, (22b)

where the functional L(.) was defined in (21d), and where
the prime denotes the weak? derivative (see Appendix VI-D).

The conditions in (22) can be equivalently expressed as the
necessary and sufficient Karush-Kuhn-Tucker (KKT) condi-
tion: for some λ ≥ 0

h(x;F opt
X̃

) ≤ h(Ỹ ;F opt
X̃

) + λ(x− S), ∀x ∈ R+, (23)

where equality in (23) holds only at the points of increase of
F opt
X̃

(see Appendix VI-E).
At this point, as it is usual in these types of problems [3],

the proof follows by ruling out the other types of distributions
different from the stated one. Generally speaking a distribution
can have one of the following forms:

1) Its support contains an infinite number of mass points
in some bounded interval;

2) It is discrete with finitely many mass points; and
3) It is discrete with countably infinitely many mass points

but only a finite number of them in any bounded interval.

Next, we will rule out cases 1 and 2 by contradiction.
Rule out case 1 (F opt

X̃
has an infinite number of mass points

in some bounded interval). We prove that this case corresponds
to the situation where the inequality in (23) must hold with
equality for all x ≥ 0, which is impossible.

We start by noting that the optimal Lagrange multiplier
λopt(S), which represents the weak? derivative of the capacity
C with respect to S, must satisfy 0 < λopt(S) < 1 for all
S > 0. This is so because, by the Envelope Theorem [10] and
the upper bound in (7), the case λ ≥ 1 is impossible. Also
the case λopt(S) = 0 is impossible; if otherwise, the unique
solution of (23) (where uniqueness follows by invertibility of
the integral transform in (11) as proven in Appendix VI-G)
would induce the output pdf

fỸ (y;F opt
X̃

) = exp{−h(Ỹ ;F opt
X̃

)}, ∀y ∈ R+, (24)

which is not a valid pdf since it does not integrate to one.
Therefore we conclude that we must have 0 < λopt(S) < 1.

For the remaining case 0 < λ < 1, we re-write the KKT
condition in (23) by following the recent work [5]. Given the
conditional output power expressed as in (20), we can write

x− S =

∫
y≥0

(
y − (1 + I + S)

)
K(x, y) dy, ∀x ∈ R+. (25)

With (25), the KKT condition in (23) reads: there exists a
constant 0 < λ < 1 such that

g(x, λ) ≤ h(Ỹ ;F opt
X̃

) = constant for all x ∈ R+, (26)

with equality only at the points of increase of F opt
X̃

, and where

g(x, λ) :=

∫
y≥0

K(x, y) log

(
λe−λy

fỸ (y;F opt
X̃

)

)
dy (27a)

+ log
1

λ
+ λ(1 + I + S). (27b)

We show next that (26) can not be satisfied if F opt
X̃

contains
an infinite number of mass points in some bounded inter-
val. This step is accomplished by showing that the function
g(x, λ), x ∈ R+, in (27) can be extended to the complex
domain and that g(z, λ), z ∈ C : <(z) > 0, is analytic.
Note that it is sufficient to prove the analiticity of g(z, λ)
only for a strip around the non-negative real line but we prove
it for all the right half plane in the complex domain (see
Appendix VI-F). The analyticity of g(z, λ), z ∈ C : <(z) > 0,
and the existence of an accumulation point for the set of
points of increase of F opt

X̃
(by Bolzano Weierstrass Theo-

rem [11]) together with the Identity Theorem [11], implies
that g(z, λ) = constant ∀z ∈ C : <(z) > 0. From this we
conclude that g(x, λ) = constant ∀x ∈ R+. One solution, and
the only solution due to invertibility of the kernel K(x, y) (see
Appendix VI-G), for g(x, λ) not to depend on x is that the
function that multiplies the kernel in the integral in (27a) is a
constant (in which case

∫
y≥0

K(x, y) dy = 1 for all x ∈ R+).
For this to happen, we need

fỸ (y;F opt
X̃

) = λe−λy, ∀y ∈ R+, (28)

or in other words, we need that the output Y is a zero-mean
proper-complex Gaussian random variable. Such an output
in additive models is only possible if the noise is Gaussian,
which is only possible if I = 0. Therefore, for all I > 0
is it impossible for F opt

X̃
to have an accumulation point and

therefore F opt
X̃

must have finitely many masses in any bounded
interval. Thus, we ruled out case 1.

Rule out case 2 (F opt
X̃

has a finite number of points). We
again proceed by contradiction. We assume that the number
of masse points is finite, say given by an integer M < +∞,
with masses located at 0 ≤ x1 < . . . < xM < ∞ and each
occurring with probability p1, . . . , pM , respectively. Then the
output pdf corresponding to this specific input distribution is

fỸ (y;F opt
X̃

) =

M∑
i=1

piK(xi, y) (29a)

=

M∑
i=1

∫
|b|≤π

e−(y+xi+I+2
√
xiI cos b)

2π
(29b)

· I0
(

2

√
y(xi + I + 2

√
xiI cos b)

)
db, (29c)

where the expression in (29) is based on an equivalent way
to write the kernel (10) (see eq.(36) in Appendix VI-A).
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Fig. 1: Lower and upper bounds to the capacity vs I for
S = 7 = 8.4510dB.

With (29), one can bound the marginal entropy in (15) as

− h(x;F opt
X̃

) =

∫
y≥0

K(x, y) log fỸ (y;F opt
X̃

)dy (30a)

≤ −
(
x+I+1+log(2π)

)
+log

(
M∑
i=1

pie
−(
√
xi+
√
I)2

)
(30b)

+

∫
y≥0

K(x, y)
(

2
√
y(
√
xM +

√
I)
)
dy, (30c)

where the second term in (30b) is independent of x and hence
we only need to deal with (30c). The term in (30c) can be
bounded as

E
[√

Ỹ
∣∣∣X̃ = x

]
≤
√
E
[
Ỹ
∣∣∣X̃ = x

]
=
√

1 + x+ I, (31)

where (31) follows from Jensen’s inequality and by (20). With
the bound in (30) back into the KKT condition in (23) we get

−x+ c
√
x+ κ1 > −λx+ κ2 (32)

for some finite constants c > 0, κ1, κ2 that are not functions
of x. However, as x → ∞, and since we know that λ < 1,
the right-hand-side of (32) grows faster than the left-hand-
side, which is impossible. We reached a contradiction, which
implies that the optimal number of mass points can not be
finite. Thus, we ruled out case 2.

Having ruled out the possibility that F opt
X̃

has either infinitely
many mass points in some bounded interval or is discrete
with finitely many mass points, the only remaining option
is that F opt

X̃
has countably infinitely many mass points, but

only a finite number of masses in any bounded interval. This
concludes the proof.

IV. NUMERICAL EVALUATIONS

In this section we evaluate achievable rates and compare
them with the bound in Section III-A. In Fig.1 we plot
achievable rates as function of I for fixed S = 7:

• (red solid line) an equally likely 4-QAM constellation,
• (cyan solid line) a distribution with uniform phase and

only one mass point at
√
S for the modulo,

• (orange solid line) a proper-complex Gaussian input, and
• (green solid line) treat the radar interference as Gaussian

noise.
We also show the outer bound in (8) (blue dashed line) and the
one in (7) (purple dashed line). We distinguish two regimes.

Low INR regime. The Gaussian input performs very well
for α := I(dB)

S(dB)
< 1, where it follows closely the upper in (8),

in comparison to the discrete 4-QAM input and a distribution
with uniform phase and only one mass point at

√
S for the

modulo. Although this behavior was expected for I � 1
(actually a Gaussian input is optimal for I = 0), it is very
pleasing to see that it actually performs very well for the whole
regime I ≤ S.

High INR regime. For I� S, we see that the Gaussian input
rate flattens at half the interference-free capacity because

lim
I→∞

I(XG;Y) = lim
I→∞

h(Y)− h(W)

= lim
I→∞

log(1 + S) + h

(√
I

1 + S
ejΘI + Z

)
− h

(√
IejΘI + Z

)
= lim

I→∞
log(1 + S) +

1

2
log

(
1 +

I

1 + S

)
− 1

2
log (1 + I)

=
1

2
log(1 + S) + lim

I→∞

1

2
log

(
1 +

S

1 + I

)
=

1

2
log(1 + S),

since for I � 1 the entropy of a non-central Chi-square
random variable with 2 degress of freedom and non-centrality
parameter I behaves as [12] h(W) = 1

2 log (1 + I)+o(I). This,
together with the upper bound in (9), implies that for I � 1
the communication system has only 1/2 degrees of freedom.
Although this is a loss of 1/2 degrees of freedom compared
to the interference-free system, it is a substantial improvement
from the zero rate achieved when communication in presence
of radar signal is prohibited.

We note that the equally likely 4-QAM and the distribution
with uniform phase and only one mass at

√
S for the modulo

are only a ‘constant gap’ away from the the upper bound in (9)
for the simulated S = 7, which shows that capacity can be well
approximated by inputs with a finite number of masses. The
problem of designing efficient numerical routines to evaluate
the capacity is currently under investigation. We note that the
search for an optimal input is practically only needed in the
regime I ≥ S where we could potentially gain at most 1 bit
compared to the rate achieved by a proper-complex Gaussian
input.

V. CONCLUSION

In this paper we studied the structural properties of the
optimal (communication) input of a new channel model which
models the impact of a high power, short duty cycle, wideband,
radar interference on a narrowband communication signal. In



particular, we showed that the optimal input distribution has
uniform phase independent of the modulo, which is discrete
with countably infinite mass points. We also argue that for
large radar interference there is a loss of half the degrees of
freedom compared to the the interference-free channel.
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VI. APPENDICES

A. Derivation of the kernel K(x, y) in (10)

By (4) and by passing to polar coordinates we have

K(x, y) := f
Ỹ
∣∣X̃(y|x) (33)

=

∫ 2π

0

dφ

∫ 2π

0

dα

2π
· e
−|√yejφ−

√
xejα|2−I

2π
·

· I0
(

2
√
I|√yejφ −

√
xejα|

)
(34)

=

∫
|b|≤π

e−(y+x+I−2
√
yx cos(b))

2π

· I0
(

2
√
I
√
y + x− 2

√
yx cos(b)

)
db (35)

=

∫
|b|≤π

e−(y+x+I+2
√
xI cos(b))

2π

· I0
(

2
√
y

√
x+ I + 2

√
xI cos(b)

)
db, (36)

where the two expressions for the kernel K(x, y) in (35)
and (36) correspond to solving for the two integrals in different
orders.

B. The map FX̃ → h(Ỹ ;FX̃) is weak? continuous

To prove the weak? continuity of the h(Ỹ ;FX̃) in (14), we
have to show that for any sequence of distribution functions
{Fn}∞n=1 ∈ F if Fn

w∗

→ FX̃ then h(Ỹ ;Fn) → h(Ỹ ;FX̃). In
this regard we have

lim
n→∞

h(Ỹ ;Fn) = lim
n→∞

∫
y≥0

fỸ (y;Fn) log
1

fỸ (y;Fn)
dy

=

∫
y≥0

lim
n→∞

fỸ (y;Fn) log
1

fỸ (y;Fn)
dy (37)

= h(Ỹ ;FX̃), (38)

where the exchange of limit and integral in (37) is due to the
Dominated Convergence Theorem [13], and equality in (38) is
due to continuity of the map FX̃ → fỸ (y;FX̃) log fỸ (y;FX̃).
This last assertion is true by noting that x → x log x is a
continuous function of x ∈ R+ and fỸ (y;FX̃) in (11) is a
continuous function of FX̃ since K(x, y) in (10) is a bounded
continuous function of x for all y ∈ R+.

Back to (37), to satisfy the necessary condition required in
the Dominated Convergence Theorem, we have to show that
there exists an integrable function g(y) such that

| fỸ (y;Fn) log fỸ (y;Fn) |< g(y). (39)

Lemma 1. For any δ1 > 0 and 0 < x ≤ 1

0 ≤ −x log x ≤ e−1

δ1
x1−δ1 . (40)

Proof. Fix a δ1 > 0; the fuction x → −xδ1 log x is concave
in 0 < x ≤ 1, and is maximized at x = e−1/δ1 . Hence
−xδ1 log x ≤ e−1

δ1
and (40) follows.

According to Lemma 1 we can write

| fỸ (y;Fn) log fỸ (y;Fn) |≤ e−1

δ1
fỸ (y;Fn)1−δ1 ;

We next need to find Φ(y) : fỸ (y;Fn) ≤ Φ(y) such that

g(y) =
e−1

δ1
Φ(y)1−δ1 (41)

is integrable for some 0 < δ1. Similarly to [14, eq. A9] we
can show that for any δ2 > 0

Φ(y) =

{
1 y ≤ 16I
M

y1.5−δ2 y > 16I
, (42)

is such a desirable upper bound for some M <∞. The proof
is as follows. For y > 16I we write

fỸ (y;FX̃) =

∫ (
√
y/4−

√
I)2

0

K(x, y)dFX̃(x) (43)

+

∫ ∞
(
√
y/4−

√
I)2

K(x, y)dFX̃(x). (44)

The term in (43) can be upper bounded as

∫ (
√
y/4−

√
I)2

0

K(x, y)dFX̃(x)

≤ e−y
∫ (
√
y/4−

√
I)2

0

∫ 2π

0

e−(x+I+2
√
xI cos b)

2π
·

· I0
(

2
√
y(
√
x+
√
I)
)
db dFX̃(x)

≤ e−yI0
(

2
√
y

√
y

4

)
·
∫ (
√
y/4−

√
I)2

0

∫ 2π

0

e−(x+I+2
√
xI cos b)

2π
db dFX̃(x)

≤ e−yI0
(
y/2
)
· 1 ≤ e−y/2; (45)



while in (44) can be upper bounded as∫ ∞
(
√
y/4−

√
I)2

K(x, y)dFX̃(x)

≤ P[X̃ > (
√
y/4−

√
I)2]·

· e
−y

2π

∫ 2π

0

sup
xb>0

{
e−xbI0

(
2
√
y
√
xb

)}
db

≤ e−y

2π

∫ 2π

0

S
supxb>0

{
e−xbI0

(
2
√
y
√
xb

)}
(
√
y/4−

√
I)2

db (46)

≤ e−y 3

2

ey√
4πy

[
1 +O(1/y)

] S

(
√
y/4−

√
I)2
, (47)

where xb := x+ I+2
√
xI cos(b), the inequality in (46) is from

Markov’s inequality, and the one in (47) is by [15, eq.(E.6)].
By (45) and (47), we have

fỸ (y;Fn) ≤ 12S√
π

[ 1

y1.5
+O(

1

y2.5
)
]
.

Hence, for any 0 < δ2 < 1 there exists some M < ∞ and
y∗δ2 , such that

fỸ (y;Fn) <
M

y1.5−δ2
, (48)

for all y ≥ y∗δ2 . We fix δ2 now. Due to continuity of the
fỸ (y;Fn) in [16I, y∗δ2 ], there exists an M <∞ such that (48)
holds for all y > 16I. (48) together with (17) gives

fỸ (y;Fn) ≤ Φ(y),

for any 0 < δ2 < 1 and some M < ∞ and where Φ(y) was
defined in (42). Finally, one can find small enough δ1 and δ2
such that g(y) given in (41) is integrable.

C. The map FX̃ → h(Ỹ ;FX̃) is strictly concave

The function h(Ỹ ;FX̃) in (13) is concave in fỸ (y;FX̃)
in (11) (because x → −x log(x) is). Since fỸ (y;FX̃) is an
injective function of FX̃ (due to invertibility of the kernel
as proved in VI-G), we conclude that h(Ỹ ;FX̃) is a strictly
concave function of FX̃ .

D. Weak? differentiability of FX̃ → h(Ỹ ;FX̃)− L(FX̃)

Using the definition of the functional derivative, we show
that h′

F opt
X̃

(Ỹ ;FX̃) and L′
F opt
X̃

(FX̃) exist for all FX̃ , F
opt
X̃

and

hence h(Ỹ ;FX̃)− L(FX̃) is weak? differentiable.
First, for θ ∈ [0, 1], we define Fθ := (1 − θ)F opt

X̃
+ θFX̃

and then we find the weak? derivative of h(Ỹ ;FX̃) at F opt
X̃

as

follows

h′
F opt
X̃

(Ỹ ;FX̃) = lim
θ→0+

1

θ

[
h(Ỹ ;Fθ)− h(Ỹ ;F opt

X̃
)
]

= lim
θ→0+

1

θ

∫
x≥0

∫
y≥0

K(x, y) log
1

fỸ (y;Fθ)
dy dFθ(x)

− lim
θ→0+

1

θ

∫
x≥0

∫
y≥0

K(x, y) log
1

fỸ (y;F opt
X̃

)
dy dF opt

X̃
(x)

=

∫
x≥0

h(x;F opt
X̃

)dFX̃(x)− h(Ỹ ;F opt
X̃

)

−
∫
y≥0

lim
θ→0+

1

θ
fỸ (y;Fθ) log

fỸ (y;Fθ)

fỸ (y;F opt
X̃

)
dy, (49)

where the interchange of limit and integral in (49) is due to
Dominated Convergence Theorem. By [16, Lemma 6], we can
write∣∣∣fỸ (y;Fθ)

θ
log

fỸ (y;Fθ)

fỸ (y;F opt
X̃

)

∣∣∣ ≤ fỸ (y;FX̃) + fỸ (y;F opt
X̃

)

− fỸ (y;FX̃) log fỸ (y;FX̃)− fỸ (y;FX̃) log fỸ (y;F opt
X̃

)

≤ fỸ (y;FX̃) + fỸ (y;F opt
X̃

) + 2fỸ (y;FX̃)(y + I + S), (50)

where the right hand side of (50) is integrable. In addition, the
term given in (49) is vanishing by L’Hospital’s Rule. Hence,
the weak? derivative is given by

h′
F opt
X̃

(Ỹ ;FX̃) =

∫
x≥0

h(x;F opt
X̃

)dFX̃(x)− h(Ỹ ;F opt
X̃

). (51)

It is also easy to show that

L′
F opt
X̃

(FX̃) = L(FX̃)− L(F opt
X̃

), (52)

exists because of the linearity of the power constraint.

E. KKT conditions

Let Eopt be the set of points of increase of the optimal input
distribution F opt

X̃
. Then∫

x≥0

(
h(x;F opt

X̃
)− λx

)
dFX̃(x) ≤ h(Ỹ ;F opt

X̃
)− λS (53)

for all FX̃ ∈ F if and only if

h(x;F opt
X̃

) ≤ h(Ỹ ;F opt
X̃

) + λ(x− S), ∀x ∈ R+, (54)

h(x;F opt
X̃

) = h(Ỹ ;F opt
X̃

) + λ(x− S), ∀x ∈ Eopt. (55)

The if direction is trivial since the derivative given in (51)
has to be non-positive. To prove the only if direction, assume
that (54) is false. Then there exists an x̃ such that

h(x̃;F opt
X̃

) > h(Ỹ ;F opt
X̃

) + λ(x̃− S).

If F opt
X̃

is a unit step function at x̃, then∫
x≥0

(
h(x;F opt

X̃
)− λx

)
dFX̃(x) = h(x̃, F opt

X̃
)− λx̃

> h(Ỹ ;F opt
X̃

)− λS,



which contradicts (53). Now assume that (54) holds but (55)
does not, i.e., there exists x̃ ∈ Eopt such that

h(x̃;F opt
X̃

) < h(Ỹ ;F opt
X̃

) + λ(x̃− S). (56)

Since all functions in (56) are continuous in x, the inequality
is satisfied strictly on a neighborhood of x̃ indicated as Ex̃.
Since x̃ is a point of increase, the set Ex̃ has nonzero measure,
i.e.,

∫
Ex̃
dF opt

X̃
(x) = δ > 0; hence

h(Ỹ ;F opt
X̃

)− λS =

∫
x≥0

(
h(x;F opt

X̃
)− λx

)
dF opt

X̃
(x)

=

∫
Ex̃

(
h(x;F opt

X̃
)− λx

)
dF opt

X̃
(x)

+

∫
Eopt\Ex̃

(
h(x;F opt

X̃
)− λx

)
dF opt

X̃
(x)

<δ(h(Ỹ ;F opt
X̃

)− λS) + (1− δ)(h(Ỹ ;F opt
X̃

)− λS),

which is a contradiction.

F. The function z → g(z, λ) is analytic
The analyticity of g(z, λ), z ∈ C : <{z} > 0 follows

from the analyticity of h(z;FX̃) on the same domain, where
h(x;FX̃) was defined in (15). In other words, we want to show
that the function

h(z;FX̃) =

∫
y≥0

K(z, y) log
1

fỸ (y;FX̃)
dy, z ∈ C, (57)

is analytic through the domain {z ∈ C : <{z} > 0}. Note
that the integrand in (57) is a continuous function on {z ∈ C :
<{z} > 0}×{y ∈ R+} and analytic for each y so we use the
Differentiation Lemma [11] to prove the analyticity by proving
that h(x;FX̃) is uniformly convergent for any rectangle K :=
{z ∈ C : 0 < a ≤ <(z) ≤ b,−b ≤ =(z) ≤ b, } (since any
compact set K ∈ C is closed and bounded in the complex
plane). By (17) we have∣∣log fỸ (y;FX̃)

∣∣ ≤ y + I + βF
X̃
,

and as a result we have

|h(z;FX̃)| ≤
∫
y≥0

|K(z, y)| | log fỸ (y;FX̃)| dy

≤
∫
y≥0

1

2π

∫
|b|≤π

∣∣∣e−(z+y−2
√
zy cos b+I)

∣∣∣
·
∣∣∣∣I0(2

√
I(z + y − 2

√
zy cos b)

)∣∣∣∣ · ∣∣y + I + βF
X̃

∣∣ db dy
≤
∫
y≥0

1

2π

∫
|b|≤π

e−<(z+y−2
√
zy cos b+I)

· I0
(

2<
{√

I(z + y − 2
√
zy cos b)

}) (
y + I + βF

X̃

)
db dy

≤
∫
y≥0

1

2π

∫
|b|≤π

e−<(y+z−2
√
zy cos b+I)

· e2<{
√

I(z+y−2
√
zy cos b)}

(
y + I + βF

X̃

)
db dy

=

∫
y≥0

1

2π

∫
|b|≤π

e−(
√
<(y+z−2

√
zy cos b)−

√
I)2

·
(
y + I + βF

X̃

)
db dy. (58)

Since (58) is exponentially decreasing in y ∈ R+, the integral
is bounded. This concludes the proof.

G. Invertibility of integral transform in (11)

To prove the invertibility of transform

ğ(y) =

∫
x≥0

K(x, y)g(x) dx, y ∈ R+, (59)

we will show that if

ğ(y) ≡ 0 for all y ∈ R+,

then

g(x) ≡ 0 for all x ∈ R+.

From the invertibility of (59), also the integral transform∫
y≥0

K(x, y)g(y)dy is invertible due to the symmetry of the
kernel K(x, y) in (10) in x and y.

We first define the following two integrals [17, eq(6.633)
and eq(6.684)]∫ ∞

0

e−αyIν(β
√
y)Jν(γ

√
y) dy =

1

2α
exp

(β2 − γ2

4α

)
J0

(
βγ

2α

)
,

<{α} > 0,<{ν} > −1 (60)

where J0(.) is the zero order Bessel function of the first kind,
and ∫ π

0

(sin θ)2ν
Jν

(√
α2 + β2 − 2αβ cos θ

)
(√

α2 + β2 − 2αβ cos θ
)ν dθ

= 2ν
√
πΓ
(
ν +

1

2

)Jν(α)

αν
Jν(β)

βν
, <{ν} > −1

2
, (61)

where Γ(.) is the Gamma function.
We next use (60) and (61) as follows. If ğ(y) = 0 for all

y ≥ 0, then for all γ ≥ 0 we have

⇐⇒
∫ ∞

0

J0(γ
√
y)ğ(y) dy = 0 (62)

⇐⇒
∫ ∞

0

g(x)dx

∫ π

0

J0

(
γ

√
x+ I + 2

√
xI cos θ

)
dθ = 0

(63)

⇐⇒
∫ ∞

0

g(x)J0(γ
√
x)J0(γ

√
I) dx = 0 (64)

⇐⇒
∫ ∞

0

g(z2)J0(γz)z dz = 0 (65)

⇐⇒ H{g(z2)} = 0, (66)

⇐⇒ g(z2) = 0, ∀z ∈ R+, (67)
⇐⇒ g(x) = 0, ∀x ∈ R+, (68)

where (63) follows by (60) and (64) by (61), and where
H{g(z)} in (66) denotes the Hankel transform [18] of the
function g(z).
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