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Abstract—This paper studies the impact of block asynchronism
on the capacity of a slotted Multiple Access Channel (MAC)
whose number of users Kn increases with the blocklength
n. In a slotted strong-asynchronous MAC, the Kn users have
independent transmission start times that are integer multiples
of n (slotted) which are uniformly distributed on a window of
length An = enα (strong-asynchronism). All users’ messages as
well as transmission times need to be reliably decoded at the
single receiver. We show that for Kn = enν with ν > α, not even
synchronization is possible when transmitting a single message
per user. We also show that for Kn = eν with ν = o(n), each
user can achieve its point-to-point asynchronous capacity, which
is a trivial upper bound for the capacity of the MAC. Finally,
achievable rates for Kn = enν with 0 < ν < α

2
are derived.

I. INTRODUCTION

One assumption used in much network information theoretic
analysis is that of block and symbol synchronous transmission
between transmitters and receivers. More specifically, it is
often assumed that the receiver knows the starting point of the
codeword and is only concerned about correctly decoding the
received symbols. In practice, this synchronization is usually
achieved by transmitting a pilot signal before the data signal.
The pilot signal does not carry any information and has
negligible impact (as the blocklength goes to infinity) on the
achievable rates for streams of data where synchronization is
done once, or for finitely many users. In large decentralized
networks, however, the use of pilot signals for synchronization
may cause an unacceptable amount of overhead. An example
of such a network is a large sensor network, where nodes
usually transmit bursts of data infrequently to an access point.
This motivated finding the channel capacity of a network
without an a priori assumption of synchronization.

In this work the usage of pilot symbols is not assumed, and
the codebook may in theory serve the purpose of synchroniza-
tion as well as of data transfer. For example, one could imagine
that the codebook is sufficiently different in idle and busy time
blocks so as to achieve synchronization at the receiver.

In addition, we do not assume preambles in our codebook
design to distinguish the users. Each user’s codebook should
be sufficiently different so as to allow the receiver to identify
both the message and its transmitter. These tasks become
harder to achieve as the length of the possible transmission
window as well as the number of users increases, in particular
if they increase exponentially with the blocklength.

Past Work. In the literature, different levels of asynchro-
nism have been considered. The level of asynchronism in a
system is defined by the length of a window An within which

the transmission can initiate and is defined with respect to the
codeword blocklength n. In a mildly asynchronous MAC [1],
An = o(n) and the capacity region is the same as that of
the classical synchronous MAC. In a totally asynchronous
MAC [2], An = n and users continuously send their messages
after transmission initiation. In this setting, time sharing is no
longer feasible; as a result, the capacity region lacks the convex
hull operation seen in the capacity region of the synchronous
MAC.

More recently, strongly asynchronous communication was
introduced in [3], [4], [5], [6] with An = enα for some α ≥ 0
where users only transmit once within each window. In [3] it
was shown that reliable communication is indeed possible for
0 < α < α0; α0 being the synchronization threshold. In [6]
the suboptimality of preamble based synchronization schemes
was shown. The capacity of a strong-asynchronous point-to-
point (SA-P2P) channel is [4]

CSA-P2P = max
PX :D([PXQ]‖Q?)>α

I(PX , Q), (1)

where the maximum is is defined to be zero for α > α0 =
maxx∈X D(Qx||Q?). The notation used here is further defined
in Section II.

The capacity in (1) may be interpreted as follows: while
in the synchronous point-to-point channel the maximization
is over all input distributions PX , the maximization is now
restricted to those input distributions that induce output dis-
tributions PY = [PXQ] that are sufficiently different from
the ‘idle output distribution’ Q?. In [3], [4], [5], [6] the SA-
P2P capacity was evaluated under the requirement of correct
decoding only (and not necessarily synchronization); in [7] the
author showed that imposing exact transmission time recovery
does not change the capacity in (1).

In addition, while [5] mainly focussed on point-to-point
communication per unit cost, the authors briefly discussed
in [5, Remark 3] the capacity of the strong-asynchronous
collision MAC with exponentially many users and with a
per-user probability of error (though their parametrization is
different from ours). In this model, simultaneous transmission
of two or more users results in a ‘collision’ that produces
as output distribution the same as if all users where idle,
regardless of the number of colliding users. The probability
of error at the MAC receiver is evaluated for each user
individually, as opposed to the classical (stronger) requirement
that all messages are jointly reliably decoded. In the proposed
achievable scheme for Kn = enν number of users with



ν < α/2, all users employ the same codebook and thus users
are not distinguishable unless an identifier is sent along with
the message.

A related line of work, but not dealing with asynchronism,
is the so-called many-user MAC. In [8] the authors consid-
ered a synchronous MAC with random user activity where
the number of users increases linearly with the blocklength.
This many-user model, while different from ours, faces some
challenges, as we do in here, which arise from the fact that
the number of users increases with the blocklength. In [8] one
of these challenges is that the number of possible error events
is exponential (in the blocklength), which prevents them from
using a simple union bound for bounding the probability of
error. Here we encounter the same problem as the number of
possible error events scales faster than exponential. Intuitively,
the blocklength as used in [8] may be thought of as our
asynchronous window length An = enα.

Contributions. In this paper, we investigate the Strong-
Asynchronous Slotted MAC (SAS-MAC) for an increasing
number of users with the blocklength. The slotted assumption
restricts the transmission start time to be integer multiples of
n; this assumption simplifies the error analysis yet captures the
essence of the problem. We consider the classical definition
of error in a MAC, with the error being the union of errors
for all users, as opposed to [5, Remark 2], which considers
the per-user probability of error. With an increasing number of
users and an exponential (in the blocklength) window length,
our number of error events scales faster than exponential
(in the blocklength). Data transfer, synchronization and user
identification are all achieved without imposing the use of pilot
symbols. We show:

1) for an exponential number of users Kn = enν and an
exponential window length An = enα, when ν < α

2 ,
users can transmit at positive rate,

2) however when ν ≥ α, users can not even be synchro-
nized when transmitting a single codeword, and

3) for a sub exponential number of users Kn with logKn =
o(n), each user can achieve its point-to-point strong-
asynchronous capacity.

Paper organization. In Section II we define the notation
and the system model. In Section III we investigate the
capacity of the SAS-MAC for different scalings of the number
of users with the blocklength. Section IV concludes the paper.

II. SYSTEM MODEL

Unless otherwise indicated, we use the notation convention
of [9]. In particular, the discrete memoryless classical MAC
with K-user, denoted as (X1 × . . .× XK , Q(.|.),Y), consists
of K + 1 finite sets (X1, . . . ,XK ,Y) and a collection of
conditional distributions Q(y|x1, . . . , xK) on Y , one for each
input (x1, . . . , xK). This MAC is memoryless since we assume

Q(yn|xn1 , . . . , xnK) =

n∏
t=1

Q(yt|x1,t, . . . , xK,t),∀n ∈ N.

An (M1, . . . ,MK , n,A, ε) code for the asynchronous MAC
is defined as follows. Each user i ∈ [1 : K] has an encoding

function fi :Wi → Xni over the message sets Wi := [1 : Mi]
where we define Xn

i (mi) := f(mi); it randomly and uni-
formly chooses a message mi ∈ Wi to convey to the receiver,
together with a slot/block index ti ∈ [1 : A] also chosen
uniformly at random and independently of the message mi;
it sends [?

n(ti−1)
i fi(mi) ?

n(A−ti)
i ] ∈ XnAi , where ?i ∈ Xi is

the designated ‘idle’ symbol for user i. The destination has a
decoding function g : YnA → ((A,W1) × . . . × ((A,WK)),
such that the average (over all messages and all blocks)
probability of error satisfies

ε ≥ P(E) :=
1

AK
∏K
i=1Mi

∑
(m1,t1)...,(mK ,tK)

P
[
g(ynA) 6=

(
(t1,m1), . . . , (tK ,mK)

)
| H(t1,m1),...,(tK ,mK)

]
,

where H(t1,m1),...,(tK ,mK) is the ‘hypothesis’ that user i has
chosen (ti,mi) for all i ∈ [1 : K].

For the SAS-MAC with asynchronism level α, a code is
defined over an asynchronous MAC channel with A increasing
exponentially with blocklength n as An = enα. For both
exponential number users Kn : log(Kn) = O(n), and
subexponential number of users Kn : log(Kn) = o(n), a tuple
(R1, . . . , RKn , α) is said to be achievable if there exists a
sequence of codes (enR1 , . . . , enRKn , n, enα, εn) with εn → 0
as n → ∞. The capacity region is the closure of all such
achievable tuples.

Special Notation. A vector of length n with a subscript
refers to Y ns := [Y(s−1)n+1, . . . , Ysn]; the subscript could also
indicate a user; its meaning should be clear from the context.

For two sequences (xn, yn), their joint empirical distribu-
tion is defined as

P̂xn,yn(a, b) :=
1

n

n∑
i=1

1{(xi,yi)=(a,b)},∀a, b ∈ X × Y,

where 1{A} is the indicator function of the event A. We say
that (xn, yn) are jointly strongly ε-typical according to PX,Y ,
and write (xn, yn) ∈ Tnε (PX,Y ), if

| P̂xnyn(a, b)− PX,Y (a, b) |≤ εPX,Y (a, b),∀(a, b) ∈ X × Y.

For a random variable (r.v.) X we denote with PX(x),∀x ∈
X , its marginal distribution; a stochastic kernel / transition
probability from X to Y is denoted by Q(y|x),∀(x, y) ∈ X ×
Y; the output distribution induced by PX and the channel Q
is denoted as [PXQ](y) :=

∑
x PX(x)Q(y|x)),∀y ∈ Y—

please note the square brackets,—and the joint input-output
distribution as PXQ(x, y) := PX(x)Q(y|x),∀(x, y) ∈ X ×Y.

For the SAS-MAC we use the shorthand notation

QS(y|xS) := Q(y|xS , ?Sc),∀S ⊆ [1 : K],

to indicate that the users indexed by S transmit xi, and
users indexed by Sc := [1 : K] \ S transmit their idle
symbol. We also define Q0(y) := Q(y|?[1:K]) and Qi(y |
xi) := Q{i}(y|xi). We use I(PXi , Qi) to denote the mutual
information between inputs and output when all users j 6= i
transmit their idle symbol ?j and user i a symbol from
distribution PXi .
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Fig. 1: Extended codebook.

III. MAIN RESULTS

In this section we consider the performance of the SAS-
MAC for three different scalings of the number of users.

A. Exponential regime: case log(Kn) = nν : ν > α

Theorem 1. For a SAS-MAC with asynchronism level α < α0

and log(Kn) = nν : ν > α, synchronization is not possible,
i.e., even with Mi = 1,∀i ∈ [1 : Kn], one has P̄[E ] > 0.

Proof: User i ∈ [1 : Kn] has a codebook with Mi = enRi

codewords of length n. Define for i ∈ [1 : Kn] an ‘extended
codebook’ consisting of AnMi codewords of length nAn
constructed such that ∀mi ∈ Wi and ∀ti ∈ [1 : An]

X̃nAn
i (mi, ti) :=

[
?
n(ti−1)
i fi(mi) ?

n(An−ti)
i

]
,

as depicted in Fig. 1. By using Fano’s inequality, i.e.,
H(XnAn

1 , . . . , XnAn
Kn
|Y nAn) ≤ nεn : εn → 0 as n → ∞,

for any codebook of length nAn we have

H(XnAn
1 , . . . , XnAn

Kn
) = H(m1, t1, . . . ,mKn , tKn)

= nαKn +
∑

i∈[1:Kn]

logMi

= H(XnAn
1 , . . . , XnAn

Kn
|Y nAn) + I(XnAn

1 , . . . , XnAn
Kn

;Y nAn)

≤ nεn + nenα |Y| ⇐⇒

ν +
log
(

1 + 1
αKn

∑
i∈[1:Kn]Ri

)
n

≤ α+
log
(

1 + εn
enα|Y|

)
n

,

where
log(1+ 1

αKn

∑
i∈[1:Kn] Ri)

n ≥ 0 and
log(1+ εn

enα|Y| )

n ≥ 0
vanish as n goes to infinity. This implies that ν ≤ α is a neces-
sary condition for reliable communications. In other words, for
ν > α not even synchronization, i.e., Mi = 1,∀i ∈ [1 : Kn],
is possible.

B. Sub-exponential regime: case log(Kn) = o(n)

For ν < α
2 the probability δn that more than one user

transmits a codeword in each block is:

δn = 1− An(An − 1) . . . (An −Kn + 1)

AKnn
, (2)

which goes to zero as n goes to infinity for ν < α
2 . Hence one

may analyze the probability of error conditioned on the fact
that users are transmitting in different blocks, i.e., no collision.

This assumption reduces the number of different hypotheses
for each block that must be considered in the error analysis.

Theorem 2. For a SAS-MAC with asynchronism level α < α0

and log(Kn) = o(n), the capacity region is the Cartesian
product of the corresponding strong asynchronous point-to-
point capacities given by

Ri < max
PXi :D([PXiQi]‖Q0)>α

I(PXi , Qi),∀i ∈ [1 : Kn]. (3)

Proof: Each user generates an i.i.d. random codebook
according to the distribution PXi on Xi,∀i ∈ [1 : Kn]. The
decoder uses the following ‘slot by slot’ strong typicality
decoder: for every block s ∈ [1 : A] it finds the empirical
distribution of the output sequence Y ns and codeword Xn

i (mi)
for every mi ∈ Wi, i ∈ [1 : Kn]; it announces that mi was
the sent codeword in block s if mi is the unique message
index such that (Xn

i (mi), Y
n
s ) ∈ Tnε (PXiQi); if no codeword

passes the test, the decoder declares that no user was active on
block s and moves forward to block s + 1; if more than one
codeword passes the test, the decoder picks one uniformly at
random and moves forward to block s+ 1.

Assuming no collision, since all hypotheses are equally
likely, and by averaging over all random codes C, we have that
the average probability of error is the same as that obtained by
conditioning over H ′ := H(1,1)...(Kn,1). We use PH′ to denote
the underlying probability measure given hypothesis H ′. By
the union bound we can write

EC [P[E|C]] ≤ PH′ [E ] + δn

≤ δn +
∑

i∈[1:Kn]

PH′ [(Xn
i (1), Y ni ) /∈ Tnε (PXiQi)] (4)

+
∑

i∈[1:Kn]

∑
mi∈[2:Mi]

PH′ [(Xn
i (m), Y ni ) ∈ Tnε (PXiQi)] (5)

+
∑

s∈[Kn+1:A]

∑
i∈[1:Kn]

∑
mi∈Wi

PH′ [(Xn
i (mi), Y

n
s ) ∈ Tnε (PXiQi)]

(6)

+
∑

i∈[1:Kn]

∑
j∈[1:Kn]
j 6=i

∑
mj∈Wj

PH′ [(Xn
j (mj), Y

n
i ) ∈ Tnε (PXjQj)]

(7)

≤ δn +
∑

i∈[1:Kn]

e−nε
2

+
∑

i∈[1:Kn]

e−n(I(PXi ,Qi)−Ri) (8)

+
∑

i∈[1:Kn]

e−n(I(PXi ,Qi)+D([PXiQi]‖Q0)−α−Ri) (9)

+
∑

i∈[1:Kn]

∑
j∈[1:Kn]
j 6=i

e−n(I(PXj ,Qj)+D([PXjQj ]‖[PXiQi])−Rj)

(10)

where δn is the probability of collision given in (2) which goes
to zero as n goes to infinity, the term (4) is the probability that
the true codeword is not typical with its corresponding output,
the term in (5) is the probability of classical synchronous
point-to-point error, the term in (6) is the probability that a
noise block, or a block where no user was active, mimics any



of the codewords, and finally the term in (7) is the probability
that users are confused with one another. The bound in (8)
is due to the typicality decoder and those in (9) and (10) are
proved in Appendix A. All together, by assuming Kn to be
sub-exponential in n, so that Kne

−nε2 → 0, we get

Rj < I(PXj , Qj), (11)
Rj + α < I(PXj , Qj) +D([PXjQj ] ‖ Q0), (12)

Rj < I(PXj , Qj) +D([PXjQj ] ‖ [PXiQi]),∀i 6= j,
(13)

where the bound in (13) is redundant due the more restrictive
bound in (11). The achievable rates obtained above match
the converse bound given by the Cartesian product of the
corresponding point-to-point capacities in (3). Finally, (11)
– (12) are equivalent to (3) as proven in [7] and hence the
theorem is proved.

Remark 1. As it can be seen in (8), this typicality decoder
imposes the condition enνe−nε

2 → 0 for exponential number
of users which corresponds to ν = 0 when ε → 0. This begs
the question of whether indeed it is possible to support expo-
nentially many users (ν > 0). Next subsections affirmatively
answer this question. Also note that in calculating the per-user
probability of error, all the summations over users i ∈ [1 : Kn]
in (8), (9), (10) are eliminated and hence would relax the
requirement ν = 0 for this typicality decoder.

C. Exponential regime: case log(Kn) = nν : 0 < ν < α
2

Now we investigate a SAS-MAC with an exponential num-
ber of users. This regime is the hardest to deal with as the
typicality decoder seems to fail as the number of users grow
exponentially fast. For example, if we apply the previously
introduced strong typicality decoder to this case, error events
as in (4) would restrict ν to be zero. The key ingredient
in our analysis is a novel way to bound the probability of
error reminiscent of Gallager’s error exponent. We show an
achievable scheme that allows a positive lower bound on the
rates and on ν. This proves that in fact reliable transmission
with an exponential number of users in an exponential level
of asynchronism is possible. We use a maximum likelihood
(ML) decoder sequentially in each block to identify the active
user and its message.

In our results, we use the following notation. The Chernoff
distance between two distributions is defined as

C(P,Q) := sup
0≤t≤1

− log

(∑
x

P (x)tQ(x)1−t

)
. (14)

We extend this definition and introduce the quantity

C(PXi , Qi, PXj , Qj) := sup
0≤t≤1

µ(t), (15)

where

µ(t) :=− log
∑

xj ,xs,y

PXj (xj)PXs(xs)Qs(y|xs)1−tQj(y|xj)t

is a concave function of t. We also define

C(., Q0, PXj , Qj) :=sup
0≤t≤1

− log
(∑
xj ,y

PXj (xj)Q0(y)1−tQj(y|xj)t
)

to address the special case with s = 0 where all users are idle.
Note that (see Appendix B):

B(P,Q) := C(P,Q, P,Q)

= − log
∑
x,x′,y

P (x)P (x′)
√
Q(y|x)Q(y|x′), (16a)

C( . , Q0, PXj , Qj) ≤ I(PXj , Qj) +D([PXjQj ] ‖ Q0),
(16b)

C(PXi , Qi, PXj , Qj) ≤ I(PXj , Qj)+D(PXi [PXjQj ]‖PXiQi),
(16c)

where, due to symmetry, in C(P,Q, P,Q) the supremum
is achieved at the midpoint t = 1

2 , and hence B(P,Q) =
C(P,Q, P,Q) = µ( 1

2 ). The bounds in (16) show that in the
achievable rates in Theorem 3 are less than the corresponding
point-to-point bounds.

Theorem 3. For a SAS-MAC with asynchronism level α < α0

and log(Kn) = nν : 0 < ν < α
2 , the following rates are

achievable

ν +Rj < B(PXj , Qj), (17)
2ν +Rj < C(PXi , Qi, PXj , Qj),∀i 6= j, (18)

α+ ν +Rj < C( . , Q0, PXj , Qj),∀j ∈ [1 : Kn]. (19)

Proof: Each user generates an i.i.d. random codebook
according to the distribution PXi on Xi,∀i ∈ [1 : Kn]. The
decoder uses the following ‘slot by slot’ decoder: for each
block s ∈ [1 : An], the decoder outputs

i∗ ∈ arg max
i∈[0:Kn],mi∈Wi

Qi(y
n
s |xni (mi)) ,

where W0 = {1}, xn0 = ∅. As discussed in the error
analysis for sub-exponential number of users, we can write
the probability of error as follows

EC [P[E|C]] ≤ PH′ [E ] + δn

≤
∑

i∈[1:Kn]

∑
mi∈[2:Mi]

PH′

[
log

Qi(Y
n
i | Xn

i (mi))

Qi(Y ni | Xn
i (1))

> 0

]

+
∑

i∈[1:Kn]

∑
j∈[0:Kn]
j 6=i

∑
mj∈Wj

PH′

[
log

Qj(Y
n
i |Xn

j (mj))

Qi(Y ni |Xn
i (1))

> 0

]

+
∑

s∈[Kn+1:An]

∑
j∈[1:Kn]

∑
mj∈Wj

PH′

[
log

Qj(Y
n
s |Xn

j (mj))

Q0(Y ns )
> 0

]

≤
∑

i∈[1:Kn]

enRie
−n supt− log E

[(
Qi(Yi|Xi)
Qi(Yi|Xi)

)t]

+
∑

i∈[1:Kn]

∑
j∈[0:Kn]
j 6=i

enRje
−n supt− log E

[(
Qj(Yi|Xj)
Qi(Yi|Xi)

)t]

+ enα
∑

j∈[1:Kn]

enRje
−n supt− log E

[(
Qj(Ys|Xj)
Q0(Ys)

)t]
,



where PXs,Xs(x, x
′) = PXs(x)PXs(x

′). The last inequality
is due to the Chernoff bound. In order for that each term in
the probability of error upper bound to vanish as n grows to
infinity, we find the conditions stated in the theorem.

D. Example

We now show a simple example of a channel for which the
bounds in Theorem 3 are strictly positive. Consider the SAS-
MAC with asynchronism level α with input output relationship
Y =

∑
i∈[1:Kn]Xi ⊕ Z with Z ∼ Ber(ξ) being a Bernoulli

random variable with parameter ξ. In our notation

Qi(y|a) = P[Xi ⊕ Z = y|Xi = a] = P[Z = a⊕ y]

=

{
1− ξ a⊕ y = 0 (i.e., a = y)

ξ a⊕ y = 1 (i.e., a 6= y)
.

Assume PXi = Ber(pi) for all i ∈ [1 : Kn]. We want
to show infi,j C(PXi , Qi, PXj , Qj) > 0, infiB(PXj , Qj) >
0, infj C(. , Q0, PXj , Qj) > 0. In this regard, we find strictly
positive lower bound on these quantities independent of
i, j. It can be shown that in this setting, the optimal t in
C(PXj , Qj , PXi , Qi) = supt µ(t) is equal to t = 1/2; thus

C(PXi , Qi, PXj , Qj) = g(pi ∗ pj , ξ),
B(PXj , Qj) = g(pj ∗ pj , ξ),

C(. , Q0, PXj , Qj) = g(pj , ξ),

g(a, b) := − log
(

1− a+ 2a
√
ξ(1− ξ)

)
,

pi ∗ pj := pi(1− pj) + (1− pi)pj .

Moreover the function g(a, ξ) is zero iff either a = 0 or
ξ = 1

2 . The case ξ = 1
2 is uninteresting, because in this case

even synchronous single-user point-to-point channel capacity
is zero. Finally, by setting pi = 1

2 ,∀i ∈ [1 : Kn], and
assuming without loss of generality that ξ 6= 1

2 , we get
g(., .) = − log

(
1/2 +

√
ξ(1− ξ)

)
> 0. So on the BSC(ξ)

strictly positive rates and ν are achievable. With this, and by
setting Ri = R for all i, the region in Theorem 3 reduces to

α+ ν +R < − log
(

1/2 +
√
ξ(1− ξ)

)
.

A trivial upper bound is the point-to-point capacity given in [7,
eq.(18)-(19)].

IV. CONCLUSION

In this paper we showed that for a strongly asynchronous
MAC with blocklength n, asynchronism level An = enα, α ≥
0, and Kn = enν , ν ≥ 0 users, reliable transmission is not
possible if ν > α. Scaling the number of users up to a
subexponential growth with n instead does not incur any loss
in the achievable rates for each user compared to a point-
to-point case. We also showed that it is indeed possible to
transmit at positive rate for each user in the regime 0 < ν < α

2 .
Converse bounds for 0 < ν ≤ α

2 , as well as, achievablity for
α
2 ≤ ν < α are subject of current investigation.
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APPENDIX

A. Proof of (10)
For any joint empirical distribution J defined on

Xj × Y, 1 ≤ i ≤ Kn

PH′ [(Xn
j (mj), Y

n
i )∈Tnε (PXjQj)] ≤

∑
J:J∈Tnε (PXjQj)

PH′ [P̂(Xnj (mj),Y
n
i ) =J ]

(a)
=

∑
J:J∈Tnε (PXjQj)

e−nD(J‖PXj [PXiQi])

≤
∑

J:J∈Tnε (PXjQj)

e−n
(
D(PXjQj‖PXj [PXiQi])−δε

)
(b)

≤ poly(n) e−n
(
D(PXjQj‖PXj [PXiQi])−δε

)
= poly(n) e−n

(
I(PXj ,Qj)+D([PXjQj ]‖[PXiQi])−δε

)
,

where δε can be made arbitrary small with the choice ε.
Equality in (a) is due to [10, Lemma 2.6] and (b) is by [10,
Lemma 2.2]. With similar reasoning, (9) can be proved.

B. Proof of (16b)
We find an upper bound on C( . , Q0, PXj , Qj) by noting

that µ(t) in (III-C) is concave in t with µ(1) = 0 and

∂µ(t)

∂t
|t=1= −I(PXj , Qj)−D([PXjQj ] ‖ Q0) ≤ 0.

Hence µ(t) is always less than (I(PXj , Qj) + D([PXjQj ] ‖
Q0))(1 − t) and that for 0 ≤ t ≤ 1 it is always less than
I(PXj , Qj) + D([PXjQj ] ‖ Q0). The inequality in (16c)
follows similarly.
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