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Optimization of Two-way Communication with
ARQ Feedback

Besma Smida, Natasha Devroye and Tian Li

Abstract—In this paper, we study ARQ feedback in the context
of two-way wireless communications. In particular, we consider
two nodes which wish to exchange data over a frequency division
duplex, time-varying wireless additive white Gaussian noise with
Rayleigh fading, channel. In two-way scenarios, unlike the more
well studied one-way data scenarios, the data and resources
allocated to feedback and channel estimation may share the
same link, leading to interesting tradeoffs. To analyze these, we
present a two-way framework in which 1) training (estimation
of channel state), 2) feedback (in the form of ARQ), and 3)
data are taken into account, and share the same noisy fading
channel. We obtain an expression which captures the tradeoffs
between allocating resources for these three tasks on the overall
throughput achievable in each direction, which we numerically
evaluate. In particular, we obtain the optimal resource allocations
corresponding to different channel conditions, SNR regimes, and
receiver feedback protocols under fast and slow fading conditions.

Index Terms—bi-directional communication, feedback,
throughput, time-varying channel

I. INTRODUCTION
Feedback in wireless systems may improve data rates in

several ways: it may enable the collaborative encoding or
decoding of messages, allow terminals to learn the channel
state, or request the re-transmission of a failed reception.
In general, feedback has been studied from a one-way per-
spective, meaning data travels in one direction, and feedback
– often assumed to be perfect – in the other. We propose
to extend the study of perfect one-way feedback to noisy
feedback in two-way communications. When no data besides
feedback is conveyed over the reverse link, it may appear to be
“free” as it does not utilize system resources for the forward
direction. However, when pairs of nodes wish to exchange
messages in a two-way fashion, the forward and reverse links
may each be used to transmit data in one direction, or to feed-
back bits for the user in the other direction. Allocating more
resources to training reduces the number of retransmissions
needed for successful decoding, and the system performance
may be dominated by the channel estimation accuracy. In
contrast, by allocating less resources to training, the number
of retransmissions may increase and the performance may
be dominated by the number of retransmissions. We aim to
explore the inter-dependent forward and reverse link rates in
a two-way communication with feedback, something about
which relatively little is known despite its immediate practical
relevance in wireless networks.
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Related work. While most research on wireless systems
with feedback has considered one-way data, some interesting
exceptions include [1]–[8]. In the most related [1], a two-way
beamforming system is considered, where data and CSI flow
in both directions between two multi-antenna transceivers.
For this system, bounds on the feedback rate for maximizing
“net throughput” – throughput minus average feedback cost –
are derived under block fading assumptions, and without the
possibility of re-transmission. Similarly, the authors of [3], [4]
took into account 1) all resources used to obtain CSI at the
source and destination, and 2) that channel estimates at the
source and destination are mismatched and noisy. They derive
the full diversity-multiplexing tradeoff.
The key departure from prior work is that a) our model

combines a time-varying channel model and limited feedback
in one framework, while previous models have considered
only block fading or static channels, and 2) forward and
feedback (ARQ) links are modeled as fading wireless channels
and all training / feedback resources are accounted for; prior
works have not considered re-transmission which is crucial to
exploring the tradeoffs particular to the two-way network.
Contributions. Our main contributions are the:

1) The study of feedback in two-way networks which cap-
tures time-variation of the channel rather than block fading,
accounts for training, feedback, and data bits all of which are
over noisy, imperfect channels.
2) Derivation of an achievable throughput and tradeoff be-
tween training, data, and ARQ bits in a two-way scenario.

II. SYSTEM SETUP: FRAMEWORK
We first propose a transmission protocol that captures the

tradeoff between feedback and data in two-way scenarios.
Then, we outline the time-varying fading channel model before
deriving an expression for the throughput which demonstrates
many of the two-way tradeoffs involved.
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Fig. 1. The two-way packet-structure and inter-dependence of
streams. Node 1 is the “mobile”, node 2 is the “base-station” (BS).

A. Transmission Protocols
We consider Frequency Division Duplex (FDD) two-way

systems with limited feedback. Two users exchange packets
whose structure is shown in Figure 1. Each packet is divided
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into three phases: training, feedback (ARQ only), and data
transmission. We fix the power allocated to each channel use
and study the throughput tradeoffs by varying the duration of
each phase. We consider a completely symmetric system1, i.e.
both users have the same transmit SNR and channels will have
identical models (though not realizations). We next describe
these three phases in more detail. By symmetry, we need only
focus on the forward link. Let each packet contain T symbols,
or channel uses. The transmission s is divided into:
Training Phase: Tt(s) channel uses are employed by user
1 for transmitting training symbols known to both users,
enabling the user 2 to estimate the channel gain. We assume
imperfect CSI at the receiver and no CSI at the transmitter.
Feedback Phase: user 2 asks for a re-transmission using an
ARQ (TfARQ(s) symbols). The receiver sends a one-bit ACK
or NAK to indicate the success/failure of transmission (which
may be repeated or coded over more symbols for extra pro-
tection). The transmitter moves on to the next message in the
transmission queue if it receives an ACK and re-transmits if it
receives a NAK. Receivers may employ the re-transmissions
in an ARQ system in different ways, three of which are
considered in this work: 1) in the simplest “basic ARQ” used
in the ALOHA protocol (ALO), the transmitter sends the same
packet and the receiver discards the erroneous packets. 2)
In diversity-combining systems, several noisy observations of
the same packet are combined [9]–[12]. A popular Hybrid-
ARQ (HARQ) scheme called chase combining HARQ (CC-
HARQ [12]) performs coherent combining of all retransmis-
sions, thus improving the probability of successful decoding.
3) With incremental redundancy HARQ (IR-HARQ), each
retransmission typically uses a different set of coded bits than
the previous transmission. Thus, at every retransmission the
receiver gains extra information [13]–[15].
Data Transmission Phase: user 1 uses the remaining T −
Tt(s)− TfARQ(s) symbols to transmit data to user 2.

III. CHANNEL MODEL: BASIS EXPANSION MODEL

A. Modeling of Time Varying Channel Gain
Accurate radio channel modeling is important when study-

ing tradeoffs in two-way communications with feedback. In
particular, different models lead to different evaluations of the
minimum channel estimation error which is needed to derive
the throughput as a function of the resources dedicated to
channel training. We consider a time-selective fading channel
model which is able to capture static, quasi-static, block fading
and fast fading channels. The input-output relationship for the
i-th symbol or channel use of the s-th transmission (or packet),
is given by the additive Gaussian noise channel2

ys(i) = hs(i)xs(i) + ws(i), i ∈ [0, T − 1] (1)

where ys(i) is the received signal (at user 2), xs(i) is the
transmitted signal (at user 1) of maximal power P , ws(i) is
additive white Gaussian noise (AWGN) with mean zero and

1Due to the inherent complexity of the problem, we address the symmetric
case first and leave the asymmetric case for future work.
2For sake of simplicity we assume a frequency flat fading channel, the

generalization to frequency selective fading channel is straight-forward.

variance N0, and the channel gain hs(i) is a time varying
random variable to be specified. The time-varying channel gain
is often approximated as a wide-sense-stationary narrow-band
complex Gaussian process, with the so-called Jake’s power
spectrum [16]. Since the number of channel realizations (one
per channel use) to estimate in each packet is greater than the
number of training symbols, it is not efficient to estimate the
time varying gain directly.
Instead, we consider the Complex Exponential-Basis Ex-

pansion Model (CE-BEM) [17], [18] for hs(i), which allows
us to represent the channel variation by: a) small number
(Q+1) of random coefficients that remain invariant per packet
transmission, but may change with each transmission s; and
b) finite Fourier basis that captures the time variation, but is
common to all transmissions / packets. That is, we model

hs(i) =
Q∑

q=0

cq(s)e
jwqi (2)

where wq := 2π(q − Q/2)/T , Q := 2#fNDT $ and fND is
the Doppler spread normalized by the sampling frequency 3.
We assume that the CE-BEM coefficients cq(s) are zero-mean,
complex Gaussian random variables [19] (Rayleigh fading).

B. Channel estimation
The Tt(s) training symbols are used by user 2 to estimate

cq(s) for q = 0, 1, · · ·Q which in turn yield estimates for
hs(i) for all i in the data transmission phase. In the sequel, we
evaluate the minimum channel estimation error of the channel
vector hs := [hs(0), . . . , hs(T )]T , as a function of Tt(s),
which is needed to subsequently derive the throughput. The
vector counterpart of (2) is

hs = TcBEM
s , (3)

where cBEM
s := [c0(s), c1(s), . . . , cQ(s)]T is the channel

BEM coefficient vector, and the matrix

T :=





1 . . . 1
ejw0 . . . ejwQ(T−1)

...
...

ejw0(T−1) . . . ejwQ(T−1)




.

Let x̃ = x − x̂ denote the mismatch between x and its
estimate x̂. Based on Equation (3), we derive the minimum
mean squared estimation error of the channel vector hs as

σ2
h̃s

= tr
(
Tσ2

c̃BEM
s

TT
)
,

where σ2
c̃BEM is minimum mean squared estimation error of

the channel coefficient vector csBEM .
Now let us derive σ2

c̃BEM using the training input-output
relationship. The i-th received pilot symbol of the s-th trans-
mission can be written as

ys(ti) =
Q∑

q=0

cq(s)e
jwqtips(i) + ws(ti), (4)

3Typical values for practical systems range from fND = 10−3(very slow
fading) to fND = 10−1 (very fast fading).
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where ps(i) is pilot symbol send at time slot ti. Given
the Gaussian channel model, the linear MMSE (LMMSE)
estimator of CE-BEM coefficients attains the minimum square
error [20] given by

[
σ2
c̃BEM
s

]

q
:=

[(
R−1

cBEM
s

+
1

σ2
n

ΦH
s Φs

)
−1
]

qq

, (5)

where [x]q denotes the q-th element of the vector x,
[X]kn denotes the [k, n] element of the matrix X, the
Tt(s) × (Q + 1) matrix Φs := [D(w0)ps, . . . ,D(wQ)ps],
ps := [ps(1), . . . , ps(Tt(s))]T is the pilot vector, D(wq) :=
diag[ejwq(t1), . . . , ejwq(tTt(s))], and

RcBEM
s

= (TTT)−1TTE[hsh
H
s ]T(TTT)−1.

The k, n-th element of the matrix Rhs = E[hsh
H
s ] is

[Rhs ]kn = J0(2πfND(k − n)), for J0 the Bessel function of
the first kind. For static, or quasi-static channels we assume the
CE-BEM coefficients remain invariant over m transmissions,
and use the training symbols transmitted over m packets to
estimate the channel. Consequently,

y = ΦcBEM
s +w, (6)

where y := [yT
1 , . . . ,y

T
m]T , w := [wT

1 , . . . ,w
T
m]T ,

Φ := [D1(w0)p1 . . .D1(wQ)p1 . . . . . . . . .
Dm(w0)pm . . .Dm(wQ)pm] ,

and Di(wq) := diag[ejwq((t1+(i−1)T ), . . . , ejwq((tTt(i)+(i−1)T )].
We then rely on the Wiener solution of (6) to derive the
LMMSE estimator of hs and the minimum square error
(similar to the previous methodology).

IV. THROUGHPUT ANALYSIS

In this section, we focus on our main goal: the derivation of
a general throughput expression for this two-way system. Our
analysis is valid under the following idealized assumptions:
identical packet sizes, capacity achieving IR/CC codes, negli-
gible signaling overhead and fixed rate target R in bits/Hz/s.
Due to symmetry, the analysis of the forward and reverse link
are identical, and we focus on the forward link.

A. Notations and Preliminaries
To obtain the throughput we first need an expression for

average rate per transmission. This depends on the the prob-
ability of outage, or that the target rate we are transmitting
at, R, is above what the channel may support, modeled as its
mutual information. We define the event Am := {Im > R},
where Im is the mutual information (MI) after the m-th
transmission/packet. Under Gaussian inputs and noise, the MIs
are functions of the Signal to Interference plus Noise Ratio
(SINR) βm as

ALO: Im = α(m) log(1 + βm),

CC-HARQ: Im = α(m) log(1 +
∑m

s=1 βs), (7)
IR-HARQ: Im =

∑m
s=1 α(s) log(1 + βs),

where

βs =
|ĥs|2P

No + |h̃s|2P
, and α(s) =

T − Tt(s)− TfARQ(s)

T
. (8)

The mismatch h̃s = hs − ĥs between the true channel hs

and its estimate ĥs, is unknown at the destination, and hence
considered unresolvable. Note that the distribution of ĥs and
h̃s vary with the resources allocated to training Tt(s). ALO
takes into account only the most recently received signal burst.
In CC-HARQ, the SNR after combining m received bursts
equals

∑m
s=1 βk,s. In IR-HARQ, the mutual information is the

sum of all previous received mutual information (MI) terms
corresponding to a given message [21], [22].
We state the probability p(m) that the random sequence

I1, I2, . . . , Im of mutual information at the user decoder
did not cross the level R at the m-th step, p(m) =
Pr{A1, A2, . . . , Am}. We also define the probability q(m) that
the the random sequence I1, I2, . . . , Im of mutual information
at the user decoder crosses the level R at the m-th step (and
not before), q(m) = Pr{A1, . . . , Am−1, Am}. Note that, for
p(m) = 1−

∑m
l=1 q(l), that

q(m) = Pr{A1, . . . , Am−1, Am}

= Pr{A1, A2, . . . , Am−1}− Pr{A1, A2, . . . , Am}

= p(m− 1)− p(m).

We also take into account the number of additional slots
due to redundant retransmissions (from feedback errors) of a
packet. Error is incorporated as follows: an unreliable feedback
message (not decoded) is always assumed to be a NAK, i.e.
a NAK is never incorrectly received as an ACK. On the other
hand, an ACK incorrectly received as a NAK will cause a
redundant retransmission of a correctly received packet. By
setting the feedback rate to 1 bit, we define the probability of
error of feedback as pf (m) = 1

2Pr{TfARQ(s) log2(1 + βm) <
1}. Note that to increase the feedback reliability, the feedback
ACK/NAK data may be coded over a larger block length
(increase TfARQ(s)).

B. Derivation of outage probabilities p(m) and pf (m)

For a normalized Rayleigh fading channel (|hs|2 = 1),
the random variables |h̃s|2 and |ĥs|2 have an exponential
distribution with variance σ2

h̃s
and σ2

h̃s
+ 1, respectively. We

now derive p(m) for each protocol (p(0) = 1) as

ALO: p(m) =
∏m

s=1 Pr (α(s) log(1 + βs) < R) ,

CC-HARQ: p(m) = Pr (α(m) log(1 +
∑m

s=1 βs) < R) ,

IR-HARQ: p(m) = Pr (
∑m

s=1 α(s) log(1 + βs) < R) .

ALO: The p(m) is derived as follows:

p(m) =
m∏

s=1

Pr (α(s) log(1 + βs) < R) ,

=
m∏

s=1

Pr (βs < γ(s)) ,

=
m∏

s=1

Pr
(
|ĥs|

2 <
N0γ(s)

P
+ γ(s)|h̃s|

2

)
,
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=
m∏

s=1

(

1−
1 + σ2

h̃s

1 + σ2
h̃s

+ γ(s)σ2
h̃s

exp

(

−
N0γ(s)

P + Pσ2
h̃s

))

,

where γ(s) = exp
(

R
α(s)

)
− 1.

CC-HARQ: The p(m) is derived as follows:

p(m) = Pr

(

α(m) log(1 +
m∑

s=1

βs) < R

)

= Pr

(
m∑

s=1

βs < γ(m)

)

=

∫ γ(m)

0
f1(x) ∗ · · · ∗ fm(x)dx

where

fs(x)=

(
σ2
h̃s
(1 + σ2

h̃s
)

(1 + σ2
h̃s

+ xσ2
h̃s
)2

+
N0

P (1 + σ2
h̃s

+ xσ2
h̃s
)

)

× exp

(

−
N0x

P (1 + σ2
h̃s
)

)

, (9)

and ∗ denotes convolution.
IR-HARQ: The p(m) is derived as follows:

p(m) = Pr

(
m∑

s=1

α(s) log(1 + βs) < R

)

=

∫ R

0
g1(x) ∗ · · · ∗ gm(x)dx

where

gs(x) =
exp(x/α(s))

α(s)
fs(exp(x/α(s)) − 1).

Feedback: The pf (m) is derived as follows:

pf (m) =
1

2
Pr
(
TfARQ(s) log2(1 + βs) < 1

)
,

=
1

2
Pr (βs < γf (s)) ,

=
1

2

(

1−
1 + σ2

h̃s

1 + σ2
h̃s

+ γf (s)σ2
h̃s

exp

(

−
N0γf (s)

P + Pσ2
h̃s

))

,

where γf (s) = 2
1

TfARQ
(s)

− 1.

C. Throughput Expressions
Finally, we define the throughput as

ν =
R

T
, (10)

where, assuming maximum M transmissions4, the expected
rate R in bits/Hz/s is

R = R(1− p(M)),

and the expected number of transmission per packet T is

T =
M−1∑

m=0

p(m) +
M−1∑

m=1

q(m)

[
M−1∑

l=m

l∏

n=m

pf (n)

]

. (11)

4We stop transmitting the same packet after M attempts.

Note that if we assume perfect feedback the expected number
of transmission per packet becomes T =

∑M−1
m=0 p(m). Our

definition of throughput assumes all nodes always have packets
to send [22], [23]; extensions to bursty traffic remains for
future work.
Remark 1: We wish to note the importance of a two-

way throughput formulation in understanding the value of
feedback in practical systems. To see this, consider a point-
to-point communication system in which we account for the
training symbols used in estimation, and wish to determine
the optimal number of pilot symbols. When no re-transmission
are assumed, prior work has shown that one would select the
number of pilot symbols to be as small as possible [19], [24]–
[26], i.e., (L + 1)(Q + 1). This small number can be justified
thus: the resources allocated to training directly reduce the
amount of data in the forward channel, reducing the rates in
the pre-log factor outside the log(1 + SNR), (SNR is Signal to
Noise Ratio), of capacity expressions for Gaussian channels.
However, SNR-gain due to training improves rates inside the
log. With our proposed two-way throughput formulation, the
SNR-gain due to training not only improves rates inside the
log but also reduces the number of re-transmissions, which
leads to more realistic tradeoffs.

V. PERFORMANCE COMPARISON AND TRADEOFFS

In this section, we numerically evaluate the throughput
obtained in the previous section for the case of two nodes
which wish to exchange data over a frequency division duplex,
time-varying Rayleigh fading channel. We assume that the
nodes stop transmitting the same packet afterM = 3 attempts.
We also assume that the pilot symbol are inserted equi-spaced
[19]. We first compare the throughput of the three feedback
protocols ALO, CC-HARQ, and IR-HARQ for different SNR
regimes and channel conditions (quasi-static fND = 10−4 and
very fast fading fND = 0.01). We set the noise to N0 = 1,
TfARQ(s) = 1, the target rate R = 2 bits/Hz/s and vary the
transmit power P = 1(0dB), 2(3dB), 3(4.8dB), 5(7dB).
Fig. 2(a) shows how one may optimize the bits allocated

to training during the first transmission as a function of SNR
for a quasi-static channel. We show the performance of the
quasi-static channel after the first transmission only because
the resources allocated for training are minimal after that.
Notice that, interestingly, the optimum resource allocations
vary with channel conditions and SNR regimes. In the low
SNR regime, adding extra bits to the training only slightly
reduces the channel estimation error while reducing the data
transmission phase, which results in a loss in performance. But
in the high SNR regime, the extra training bits considerably
improve the channel estimate and are worth the loss in data.
Fig. 2(b) shows the throughput versus the allocated training

bits over the three (possible) retransmissions for a fast fading
channel. Note that we optimize the throughput over the total
allocated resources for three retransmissions. The simulations
show that the performance of IR-HARQ outperforms CC-
HARQ, which in turn outperforms ALO, as expected. In
addition, allocating much resources to training does not appear
to be helpful, which may be explained by the fact that under
fast fading, it is challenging to learn the channel.
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S/IR S/CC S/ALO F/IR F/CC F/ALO
Tt(1) 6 12 8 3 3 3
Tt(2) 2 0 0 3 3 3
Tt(3) 0 0 0 3 3 3

TABLE I
OPTIMUM ALLOCATION OF TRAINING BITS.

Next, we examined the optimum allocation of training
phases for each transmission in Table I. The “S” and “F”
indicate slow or fast fading. For the quasi-static channel,
allocating more training symbols for channel estimation to the
first transmission, and less afterwards is intuitive. On the other
hand, for fast fading channels the optimum training bits are
more homogeneous over the three transmissions.
We have also analyzed the expression of the throughput

for some specific channels5, by examining the derivative of
equation (11). For a static channel, it may be shown that the
optimum Tt(M) is a decreasing function of the sum of all bits
dedicated to training

∑M−1
i=1 Tt(i) and is not a function of the

Tt(i) individually. In the case of very fast fading channel, it
may be shown that the optimum Tt(M) is independent of the
number of bits dedicated to training in previous transmissions.
In addition, if the feedback is very reliable (i.e. pf (m) ≈ 0),
under very fast fading, the optimum allocation of training Tt(i)
at each transmission i minimizes the outage probability p(i),
and may be optimized in a greedy fashion, i.e. for each time
slot individually.
Finally, we have also examined the optimum allocation of

TfARQ(s) feedback bits. Due to lack of space we omit the
plot but for the fast fading channel, P = 5, and IR-HARQ
the optimum number of TfARQ(s) is 2 bits (rather than 1),
which renders the feedback more reliable, and hence improves
performance.
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Fig. 2. Throughput vs training phase lengths.

VI. CONCLUSION
A framework for the study of two-way communications

with ARQ in fading channels was developed, and throughput
expressions which characterize the tradeoff between resources
allocated to training (learning channel gains), feedback (ARQ)
and data transmission were derived and numerically evaluated.
5The complete analysis will be addressed in future work
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