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Abstract—We present a nested lattice-code-based strategy that
achieves the random-coding based Compress-and-Forward (CF)
rate for the three node Gaussian relay channel. To do so, we
first outline a lattice-based strategy for the (X + Z1, X + Z2)
Wyner-Ziv lossy source-coding with side-information problem
in Gaussian noise, a re-interpretation of the nested lattice-code-
based Gaussian Wyner-Ziv scheme presented by Zamir, Shamai,
and Erez. We use the notation (X + Z1, X + Z2) Wyner-Ziv
to mean that the source is of the form X + Z1 and the side-
information at the receiver is of the form X+Z2, for independent
Gaussian X,Z1 and Z2. We use this (X + Z1, X + Z2) Wyner-
Ziv scheme to implement a “structured” or lattice-code-based
CF scheme for the Gaussian relay channel which achieves the
same rate as the Cover-El Gamal CF rate achieved by random
Gaussian codebooks.

I. INTRODUCTION

Lattice codes have been shown to perform as well as random
codes for certain Gaussian channels, and to outperform random
codes for specific Gaussian channels. As much is known about
lattice codes and their performance in single path (point-to-
point, multiple access and broadcast where information flows
along one path) source and channel coding scenarios, in this
paper we take the next step towards the goal of demonstrating
that lattices may mimic random codes by considering a sim-
ple multiple path Gaussian network – the simple three user
Gaussian relay channel in which information may flow from
the source to the destination along two paths. In [1] it was
shown that lattice codes may achieve the Gaussian Decode-
and-Forward rate of [2] for the Gaussian relay channel. We
now demonstrate that lattice codes may also be used to achieve
the same rate as that achieved by random Gaussian codebooks
in the Compress-and-Forward (CF) rate of [2], for this channel.

Scenarios in which lattice codes achieve the same
rates as random codes. Lattice codes (and lattice decoding)
have been shown to be capacity achieving in the Additive
White Gaussian Noise (AWGN) point-to-point channel, using
a unique decoding technique [3] exploiting a carefully chosen
Minimum Mean Squared Error (MMSE) scaling coefficient,
and recently, using an alternative list decoding technique
[1]. Lattices codes may also be constructed that achieve the
capacity of the Gaussian Multiple Access Channel (MAC)
[4] and the Gaussian Broadcast Channel (BC) [5]. The latter
exploited the fact that lattice codes may achieve the dirty-paper
coding channel capacity [5] by mimicing random binning
techniques in a structured manner. Recently, using a lattice
list-decoding technique, nested lattice codes were shown to
achieve the Gaussian random coding Decode-and-Forward rate

in the Gaussian relay channel [1]. Though not the focus of this
paper, we note that the structure provided by lattice codes may
also be used to outperform that of random codes in specific
channels, see [6], [4], [1], [7].

Lattice codes for binning. In networks with side-
information, the concept of binning, which effectively allows
the transmitters and receivers to properly exploit this side-
information, is critical. The usage of lattices and structured
codes for binning (as opposed to random binning as previously
proposed) in various types of networks was considered in a
comprehensive fashion in [5]. Of particular interest to the
problem considered here is the nested lattice-coding approach
of [5] to the Gaussian Wyner-Ziv coding problem. The Wyner-
Ziv coding problem is that of lossy source coding with
correlated side-information at the receiver. One example of a
Gaussian Wyner-Ziv problem is one in which the Gaussian
source to be compressed is of the form X + Z, and the
side-information available at the reconstructing node is X ,
for Z independent of X and Gaussian, which we term the
(X+Z,X) Wyner-Ziv problem. A lattice-scheme is provided
in [5] for the (X + Z,X) Wyner-Ziv problem. We consider
a lattice Wyner-Ziv coding scheme for the slightly altered
(X + Z1, X + Z2) channel model in which the source to be
compressed is of the form X + Z1 and the side-information
is of the form X + Z2, for independent, Gaussian X,Z1

and Z2, a re-interpretation of the scheme of [5] for the
(X + Z,X) model (whose generalization was mentioned in
a footnote [5]). We include this lattice-based scheme for the
(X + Z1, X + Z2) model for completeness, and use it to
construct a CF scheme based on nested lattice codes which
recovers the same achievable rate as the achievable CF rate
[2] using random Gaussian codebooks for the Gaussian relay
channel.

A Compress-and-Forward (CF) rate for the Gaussian
relay channel. Cover and El Gamal first proposed a CF
scheme for the three user relay channel in [2]. In it, the relay
does not decode the message (as it would in the Decode-and-
Forward scheme) but instead compresses its received signal
and forwards the compression index. The destination first
recovers the compressed signal, using its direct-link side-
information (the Wyner-Ziv problem), and then proceeds to
decode the message from the recovered compressed signal.
The CF scheme is generalized to arbitrary relay networks in
the recently proposed “noisy network coding” scheme [8].
Armed with a lattice Wyner-Ziv scheme, we mimic every step
of the Cover and El Gamal’s CF scheme using lattice codes



and will show that the same rate as that achieved by random
Gaussian codebooks (which are not known to achieve the CF
bound in general [9]), may be achieved in a structured manner.

Contribution and paper organization. The central con-
tribution of this work is the application of a general lattice-
coding based Wyner-Ziv scheme to the Gaussian three node
relay channel. In particular, in Section II we first outline our
notation and nested lattice coding preliminaries. In Section
III we outline a nested lattice-code based scheme for a
(X + Z1, X + Z2) Wyner-Ziv problem in Theorem 1, which
is used in Section IV’s Theorem 2, to show that the rate
achieved by random Gaussian codes in Cover and El Gamal’s
Compress-and-Forward scheme may be achieved using nested
lattice codes. Finally, we conclude in Section V. Given the
structure of lattice codes, this may constitute a more practical
implementation of Wyner-Ziv coding (as already noted in [5]),
of the CF scheme, and is an important first step towards a
generic “structured” achievability scheme for networks.

II. PRELIMINARIES A NESTED LATTICE CODES

We first outline our notation and definitions for nested lattice
codes for transmission over AWGN channels, following those
of [5], [10]. We note that [11], [5], [3] and in particular [12]
offer more thorough treatments, and defer the interested reader
to those works for more details. An n-dimensional lattice Λ
is a discrete subgroup of Euclidean space Rn (of vectors x,
though we will denote these without the bold font as x) with
Euclidean norm || · || under vector addition. We may define
• The nearest neighbor lattice quantizer of Λ as QΛ(x) =

arg minλ∈Λ ||x− λ||;
• The mod Λ operation as x mod Λ := x−QΛ(x), hence

x = QΛ(x) + (x mod Λ);
• The fundamental region of Λ as the set of all points closer

to the origin than to any other lattice point V(Λ) := {x :
Q(x) = 0} which is of volume V := Vol(V(Λ));
• The second moment per dimension of a uniform distribu-

tion over V as σ2(Λ) := 1
V · 1

n

∫
V
||x||2 dx;

• The Crypto lemma [13] which states that (x+U) mod Λ
(where U is uniformly distributed over V) is an independent
random variable uniformly distributed over V.

Standard definitions of Poltyrev good and Rogers good
lattices are used [3], and by [14] we are guaranteed the
existence of lattices which are both Polytrev and Rogers good.

The proposed schemes will be based on nested lattice codes.
To define these, consider two lattices Λ and Λc such that Λ ⊆
Λc with fundamental regions V,Vc of volumes V, Vc (where
V ≥ Vc) respectively. Here Λ is called the coarse lattice which
is a sublattice of Λc, the fine lattice. We denote the cardinality
of a set A by |A|. The set CΛc,V = {Λc∩V} may be employed
as the codebook for transmission over the AWGN channel,
with coding rate R defined as R = 1

n log |CΛc,V| = 1
n log V

Vc
.

Here ρ = |CΛc,V|
1
n =

(
V
Vc

) 1
n

is the nesting ratio of this nested
(Λ,Λc) lattice code pair. A pair of good nested lattice codes,
where Λ is both Rogers good and Poltyrev good and Λc is
Poltyrev good, were shown to exist and be capacity achieving

(as n → ∞) for the AWGN channel [3]. Lattice code pairs
may be extended to a nested lattice chain, which consists of
nested lattice codes Λ ⊆ Λ1 ⊆ Λ2 which may be Rogers and
Poltyrev good for arbitrary nesting ratios [15].

III. LATTICE CODES FOR THE (X + Z1, X + Z2)
WYNER-ZIV MODEL

Problem statement. We consider the lossy compression
of the Gaussian source Y = X + Z1, with side-information
X+Z2 available at the reconstruction node, where X,Z1 and
Z2 are independent zero mean Gaussian random variables of
variance P,N1, and N2 respectively. We note that, with slight
abuse of notation, X,Z1 and Z2 denote n-dimensional vectors
where n is the blocklength, or number of channel uses. The
rate-distortion function for the source X+Z1 taking on values
in X1 with side-information X+Z2 taking on values in X2 is
defined as the minimum rate required to achieve a distortion D
when X+Z2 is available at the decoder. To be more specific, it
is the infimum of rates R such that there exist maps in : X1 →
{1, 2, · · · , 2nR} and gn : X2×{1, 2, · · · , 2nR} → X1 such that
lim supn→∞E[d(X +Z1, gn(X +Z2, in(X +Z1))] ≤ D for
some distortion measure d(·, ·). If the distortion measure d(·, ·)
is the squared error distortion, d(X, X̂) = 1

nE[||X − X̂||2],
then, by [16], the rate distortion function R(D) for the source
X + Z1 given the side-information X + Z2 is given by

R(D) =
1

2
log

(
σ2
X+Z1|X+Z2

D

)
, 0 ≤ D ≤ σ2

X+Z1|X+Z2

=
1

2
log

(
N1 + PN2

P+N2

D

)
, 0 ≤ D ≤ N1 +

PN2

P +N2
,

and 0 otherwise, where σ2
X+Z1|X+Z2

is the conditional vari-
ance of X + Z1 given X + Z2. We note that the lattice-code
implementation of the Wyner-Ziv scheme of [5] considered the
lossy compression of the source X +Z with side-information
X at the reconstruction node. In footnote 6 on pg. 1260 of [5]
it is stated that this model may WLOG be used to capture
all general jointly Gaussian sources and side-informations
(including the aforementioned source X + Z1 with side-
information X + Z2). The scheme we present next is an
example of this more general scheme, and is provided only for
completeness in order to use it to derive a lattice Compress-
and-Forward scheme in Section IV.

Theorem 1. The following rate-distortion function for the
lossy compression of the source X + Z1 subject to the
reconstruction side-information X + Z2 and squared error
distortion metric may be achieved using lattice codes:

R(D) =
1

2
log

(
N1 + PN2

P+N2

D

)
, 0 ≤ D ≤ N1+

PN2

P +N2
,

and 0 otherwise.

Proof: General lattice Wyner-Ziv. Consider a pair of
nested lattice codes Λ ⊆ Λq , where Λ is Poltyrev-good with
second moment N1 + PN2

P+N2
, and Λq is Rogers-good with
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Fig. 1. Lattice coding for the (X + Z1, X + Z2) Wyner-Ziv problem.

second moment D. We consider the encoding and decoding
schemes of Fig. 1. We let U be a quantization dither signal
which is uniformly distributed over V(Λq), and introduce the
following MMSE coefficients (choices justified later):

α1 =

√
1− D

N1 + PN2

P+N2

, α2 =
P

P +N2
. (1)

Encoding. The encoder quantizes the scaled and dithered
signal α1(X+Z1) +U to the nearest fine lattice point, which
is then modulo-ed back to the coarse lattice Voronoi region as

I = Qq(α1(X + Z1) + U) mod Λ

= (α1(X + Z1) + U − Eq) mod Λ,

where Eq := (α1(X + Z1) + U) mod Λq is independent of
everything else and uniformly distributed over V(Λq) accord-
ing to the Crypto lemma [13]. The encoder sends the index i
of I to the decoder at the source coding rate

R =
1

n
log

(
V (Λ)

V (Λq)

)
=

1

2
log

(
N1 + PN2

P+N2

D

)
.

Decoding. The decoder receives the index i of I and
reconstructs Ŷ as

Ŷ = α1((I − U − α1α2(X + Z2)) mod Λ) + α2(X + Z2)

= α1((α1((1− α2)X − α2Z2 + Z1)− Eq) mod Λ)

+ α2(X + Z2)

≡ α1(α1((1− α2)X − α2Z2 + Z1)− Eq) + α2(X + Z2)

= (α2
1 − α2

1α2 + α2)X + α2(1− α2
1)Z2 + α2

1Z1 − α1Eq,

where the third equivalence is meant to denote asymptotic
equivalence (as n→∞), since, as in [5]

Pr{(α1((1− α2)X − α2Z2 + Z1)− Eq) mod Λ

6= α1((1− α2)X − α2Z2 + Z1)− Eq} → 0 (2)

goes to 0 as n → ∞ for a sequence of a good nested lattice
codes since

1

n
E||α1((1− α2)X − α2Z2 + Z1)− Eq||2 (3)

= α2
1

(
PN2

P +N2
+N1

)
+D =

PN2

P +N2
+N1 = σ2(Λ).

The careful choice of the MMSE coefficients α1 and α2 as in
(1) guarantees the above equation (3). Thus,

Ŷ − Y = (α2
1 − α2

1α2 + α2)X

+ α2(1− α2
1)Z2 + α2

1Z1 − α1Eq − (X + Z1)

= −(1− α2
1)(1− α2)X + α2(1− α2

1)Z2 − (1− α2
1)Z1 − α1Eq

= −(1− α2
1)((1− α2)X − α2Z2 + Z1)− α1Eq,

from which we may bound the squared error distortion as

1

n
E||Ŷ − Y ||2 = (1− α2

1)2

(
PN2

P +N2
+N1

)
+ α2

1D = D,

again through the careful choice of α1 and α2 as in (1).

Remarks on the MMSE coefficients α1 and α2. We first
note that the source X + Z1 may be expressed as

X + Z1 = α2(X + Z2) + (1− α2)X + Z1 − α2Z2,

and that by choosing α2 = P
P+N2

, X +Z2 and (1− α2)X +
Z1 − α2Z2 may be shown to be independent. In this case,
we are able to equate α2 with the a of footnote 6 on pg.
1260 of [5], thereby relating the above scheme to that of
[5]. In this case, we may intuitively think of α1 as a source
coding MMSE coefficient, and of α2 as a channel coding
MMSE coefficient, since it plays a role similar to the MMSE
coefficient used in the lattice channel coding problem [3], i.e.
it minimizes E[(1 − α2)X − α2Z2]2. In particular, we may
see the importance of the correct choice of these coefficients
by considering the alternative choices of α1 and α2, with the
corresponding suboptimal rates:

• If α1 is set to 1, the second moment of the coarse lattice
is changed accordingly, the rate distortion function is

R(D) =
1

2
log

(
1 +

N1 + PN2

P+N2

D

)
>

1

2
log

(
N1 + PN2

P+N2

D

)
.

• If α2 is set to 1, the second moment of the coarse lattice
is changed accordingly, the rate distortion function is

R(D) =
1

2
log

(
N1 +N2

D

)
>

1

2
log

(
N1 + PN2

P+N2

D

)
.

IV. LATTICE CODING FOR COMPRESS-AND-FORWARD
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Fig. 2. Three node Gaussian relay channel

Using the general
lattice-coding based
Wyner-Ziv problem of
the previous Section,
we now implement
a lattice Compress-
and-Forward scheme
for the three node Gaussian relay channel. The model is
shown in Fig.2, where the transmitter (Node 1) and the
relay (Node 2) may transmit X1 ∈ X1 and X2 ∈ X2 subject
to power constraints E[|X1|2] ≤ P1, E[|X2|2] ≤ P2, and
Y2 ∈ Y2 and Y3 ∈ Y3 are the output random variables
which are related to the inputs through the relationships
in Fig. 2, where Z2, Z3 are independent additive white
Gaussian noise of variance N2, N3. Furthermore, let Xi(j)
denote node i’s input at the j-th channel use, and let
Xn

1 := (X1(1), X1(2), · · · , X1(n)). Similar notation is
used for received signals Yi(j). In this channel coding
problem, we use classic definitions for achievable rates, i.e.
a (2nR, n) code for a relay channel consists of a set of
integers W = {1, 2, · · · , 2nR}, an encoding function X1 :
{1, 2, · · · , 2nR} → Xn1 , a set of relay functions {fi}ni=1such
that x2i = fi(Y2(1), Y2(2), · · · , Y2(i − 1)), 1 ≤ i ≤ n,
and a decoding function g : Yn3 → {1, 2, · · · 2nR}. We let
the probability of error of this (2nR, n) code be defined as
P

(n)
e := 1

2nR

∑
w∈W Pr{g(Y n3 ) 6= w|w sent}, for w ∈ W.

The rate R is said to be achievable if there exists a sequence
of (2nR, n) codes such that P (n)

e → 0 as n→∞.
The Compress-and-Forward (CF) scheme originally pro-

posed in [2] utilizes a random coding argument, block Markov
encoding, Wyner-Ziv binning, and simultaneous joint typical-
ity decoding. Our goal is to replace random codes with lattice
codes and change the achievability techniques accordingly.

Theorem 2. For the three user Gaussian relay channel de-
scribed by the input/output equations Y2 = X1 + Z2 and
Y3 = X1 + X2 + Z3, with corresponding input and noise
powers P1, P2, N2, N3, the following rate may be achieved
using lattice codes in a lattice Compress-and-Forward fashion:

R <
1

2
log

(
1 +

P1

N3
+

P1P2

P1N2 + P1N3 + P2N2 +N2N3

)
.

Proof: Lattice codebook construction. We employ three
“good” lattice codebooks, where we drop all subscripts /
superscripts n for ease of exposition and note that all lattices
and lattice points are n-dimensional.
• Channel codebook for Node 1: codewords t1 in codebook
C1 = {Λc1 ∩ V(Λ1)} where Λ1 ⊆ Λc1 is a pair of good
nested lattice codes – Λ1 is both Rogers-good and Poltyrev-
good and Λc1 is Poltyrev-good. We set σ2(Λ1) = P1 to satisfy
the transmitter power constraint. We associate each message
w ∈W with the codeword t1 in one-to-one fashion, w ↔ t1,
and send a dithered version of t1. Note that |C1| = 2nR.
• Channel codebook for Node 2: codewords t2 in codebook
C2 = {Λc2∩V(Λ2)} where Λ2 ⊆ Λc2 is a pair of good nested

lattice codes: – Λ2 is both Rogers-good and Poltyrev-good and
Λc2 is Poltyrev-good. We set σ2(Λ2) = P2 to satisfy the relay
power constraint. We associate each compression index i with
the codeword t2 in one-to-one fashion: i ↔ t2, and send a
dithered version of t2. Note that |C2| = 2nR

′
.

• Quantization/Compression codebook: tq ∈ Cq = {Λq ∩
V(Λ)} where Λ ⊆ Λq is a pair of good nested lattice codes – Λ
is Poltyrev-good and Λq is Rogers-good. We set σ2(Λq) = D,
σ2(Λ) = N2 + P1N3

P1+N3
+ D, such that the source coding rate

is R̂ = 1
2 log

(
1 +

N2+
P1N3

P1+N3

D

)
.

Encoding. We use block Markov encoding as in [2]. In
block j, Node 1 chooses the codeword t1(j) associated with
the message w(j) to be transmitted in block j and transmits

X1(j) = (t1(j) + U1(j)) mod Λ1,

where U1(j) is the dither uniformly distributed over V(Λ1).
Node 2 quantizes the received signal in the last block j −
1, Y2(j − 1) = X1(j − 1) + Z2(j − 1) to I(j − 1) (with
index i(j − 1)) by using the quantization lattice code pair
(Λq,Λ) as described in the encoding part of Section III, where
we set α1 = 1 and we set the second moment of Λ to be
σ2(Λ) = N2 + P1N3

P1+N3
+ D. These settings will be explained

later. Node 2 chooses the codeword t2(j − 1) associated with
the index i(j − 1) of I(i− 1) and sends

X2(j) = (t2(j − 1) + U2(j)) mod Λ

with U2 the dither signal uniformly distributed over V(Λ2).
Decoding. In block j, Node 3 receives

Y3(j) = X1(j) +X2(j) + Z3(j).

It first decodes t2(j−1), and then the associated I(j−1) and
X2(j), using lattice decoding as in [3] subject to the channel
coding rate constraint (recall that t2 is of rate R′)

R′ <
1

2
log

(
1 +

P2

P1 +N3

)
,

which ensures the correct decoding of t2(j− 1). We note that
the source coding rate of I , R̂ must be less than the channel
coding rate R′, which means

1

2
log

(
1 +

N2 + P1N3

P1+N3

D

)
<

1

2
log

(
1 +

P2

P1 +N3

)
. (4)

Node 3 sutracts the decoded X2(j) from Y3(j) and obtains

Y ′3(j) = Y3(j)−X2(j) = X1(j) + Z3(j)

which is used as direct-link side-information in the next block
j+1. In the previous block, Node 3 had also obtained Y ′3(j−
1) = X1(j−1)+Z3(j−1). Combining this with I(j−1), Node
3 uses Y ′3(j−1) as side-information to reconstruct Ŷ2(j−1) as
in the decoding part of Section III, with α1 = 1, and σ2(Λ) =
N2 + P1N3

P1+N3
+D.

Thus, we see that the CF scheme employs the (X +
Z1, X + Z2) Wyner-Ziv coding scheme of Section III where
the source to be compressed at the relay is X1 + Z2 and



the side-information at the receiver (from the previous block)
is X1 + Z3. One small difference from what was described
in Section III is that X1 is not strictly Gaussian distributed
for finite n. However, X1 will approach a Gaussian random
variable as n→∞ since Λ1 is Rogers-good. The step in (2)
in Section III now corresponds to

Pe,n = Pr{(((1− α2)X1 − α2Z3 + Z2)− Eq) mod Λ

6= ((1− α2)X1 − α2Z3 + Z2)− Eq}
since we have chosen α1 = 1, and since

1

n
E||(1− α2)X1 − α2Z3 + Z2 − Eq||2

=
P1N3

P1 +N3
+N2 +D = σ2(Λ). (5)

Thus, the above error probability still goes to 0 as n → ∞
since X1, while not Gaussian in this case, may be treated as
such as n → ∞ as Λ1 is Rogers-good. Essentially, X1 may
be treated just as Eq is treated. We also note that α2 is chosen
so as to guarantee (5).

The compressed Y2(j − 1) may now be expressed as

Ŷ2(j − 1) = (α2
1 − α2

1α2 + α2)X1(j − 1)

+ α2(1− α2
1)Z3(j − 1) + α2

1Z2(j − 1)− α1Eq(j − 1)

= X1(j − 1) + Z2(j − 1)− Eq(j − 1)

where Eq = (Y2 + U) mod Λ (with U the quantization
dither which is uniformly distributed over Λ) is independent
and uniformly distributed over V(Λq) with second moment
D. Now, Node 3 may decode t1(j − 1) (and the associated
w(j − 1)) from Y ′3(j − 1) and Ŷ2(j − 1) by first linearly and
coherently combining them as

√
P1

N3
Y ′3(j − 1) +

√
P1

N2 +D
Ŷ2(j − 1)

=

(√
P1

N3
+

√
P1

N2 +D

)
X1(j − 1) +

√
P1

N3
Z3(j − 1)

+

√
P1

N2 +D
(Z2(j − 1)− Eq(j − 1)) .

Since Eq will approach a Gaussian random vector of variance
D as n→∞, the above equation may be treated as an AWGN
channel. Using modulo lattice decoding [3], we may decode
t1(j − 1) (and the associated message w(j − 1)) as long as

R <
1

2
log

(
1 +

P1

N3
+

P1

N2 +D

)
.

Combining this with the constraint (4), we obtain

R <
1

2
log

(
1 +

P1

N3
+

P1P2

P1N2 + P1N3 + P2N2 +N2N3

)
,

which is the CF rate achieved by Gaussian random codes in
[9, pg.17–48].

Remarks: Notice that there is a slight difference between
the (X+Z1, X+Z2) Wyner-Ziv coding scheme described in
Section III and its application to the Compress-and-Forward
scheme for the three node Gaussian relay channel. The reason

we choose α1 = 1 rather than optimal coefficient α1 =√
1− D

N2+
P1N3

P1+N3

, and σ2(Λ) = N2 + P1N3

P1+N3
+ D rather

than N2 + P1N3

P1+N3
is because we would like the quantiza-

tion/compression error Ŷ2 − Y2 to be independent of all other
terms, so that we may view Ŷ2 = X1 + N2 − Eq as an
equivalent AWGN channel. This convention is generally used
in Gaussian compress-and-forward such as in [9].

V. CONCLUSION

We have demonstrated a lattice Compress-and-Forward
scheme for the three user Gaussian relay channel which
achieves the same rate as that achieved using random Gaussian
codebooks in Cover and El Gamal’s CF rate for the Gaussian
relay channel. Given the structured nature of lattice codes,
this provides an alternative understanding of CF in Gaussian
networks. This lattice CF scheme may pave the path to a
more generic lattice-based achievability scheme for arbitrary
networks, such as for example a structured version of the
recent, general, noisy network coding scheme, or its com-
bination with the recently introduced Compute-and-Forward
framework. This is the subject of ongoing work.
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