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Abstract—We consider the transmission of independent mes-
sages over a Gaussian relay network with interfering links.
Using the compute-and-forward framework, relays can efficiently
decode equations of the transmitted messages. The relays can
then send their collected equations to the destination, which
solves for its desired messages. Here, we study a special case
of the inverse compute-and-forward problem: transmitting the
equations to a single destination over a multiple-access channel.
We observe that if the underlying messages have unequal rates,
the set of possible values of an equation is constrained by the
value of the other equations. We use this fact to improve the
rate region for downloading equations. Interestingly, the rate
region achieved over relay networks with interfering links using
a combination of compute-and-forward and inverse compute-
and-forward is larger than the best rate region achievable in the
absence of interfering links. This verifies that interference may
be used to beneficially “mix” messages over a wireless network.

I. INTRODUCTION

Motivation. Of central importance in understanding how
to communicate over wireless multi-hop relay networks is the
question of how to deal with interference. A canonical example
of such a network is shown in Fig. 1. There, two transmitters
communicate with a single destination over an additive white
Gaussian noise (AWGN) network with the help of two relays.
We focus on the case where the messages have unequal rates
and the relays have unequal powers. The goal is to exploit the
cross-channel gains so that the higher rate message can benefit
from the relay with more power.

To be more specific, in the compute-and-forward (CF)
framework for Gaussian multi-hop wireless relay networks,
intermediate relay nodes decode a linear combination, or
equation, of the transmitted codewords by exploiting the noisy
linear combinations provided by the channel. Through the use
of nested lattice codes, it was shown that decoding linear
combinations may be done at higher rates than decoding
the individual codewords – one of the key benefits of using
structured rather than random i.i.d. codewords [1]. While the
decoding of message equations has been tackled, ultimately
destination nodes may wish to decode individual messages.
Thus, in the final hop of wireless Gaussian networks, one
may either transmit and decode the message equations directly,
after which the destination inverts the equations to obtain
the original messages, or one may attempt to decode the
original messages directly from the simultaneously transmitted
combinations. We demonstrate the latter – an inverse compute-
and-forward (ICF) strategy that outperforms the forwarding of
message equations for unequal rates.
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Fig. 1. Canonical example of CF and ICF.

Related Work. Nested lattice codes [2]–[5] play a central
role in compute-and-forward framework, where their particular
structural and group properties allow for linear combinations
of lattice codewords to be decoded at higher rates than
decoding the individual codewords. This property has been
exploited in several other multi-user scenarios, including two-
way relay channels [6]–[9], interference channels [10], [11],
Gaussian relay networks [1], [12], [13], distributed dirty paper
coding [14], distributed Gaussian source coding [15], and for
canceling known interference in multi-hop channels [16].1

Several groups have studied the broadcast phase of the two-
way relay channel [17]–[20], which can be viewed as a special
case of our considerations.

Contributions. We study the inverse-compute-and-forward
problem and present a binning strategy for extracting the
messages w1,w2 over a multiple access channel (MAC) from
the equations a11w1 ⊕ a12w2 and a21w1 ⊕ a22w2. This
problem can also be recast as MAC with a common message
for which the capacity is known [21]. We then combine this
rate region with that of compute-and-forward for the canonical
network example of Fig. 1 to show that the presence of the
two interfering dotted links can be beneficially exploited to
handle the asymmetry in the message rates and relay powers.

II. PROBLEM STATEMENT

We present definitions for the inverse-compute-and-forward
framework for a network with two transmitters, two relays, and
a single destination. Later, we will briefly delve into extensions
to larger networks.

Each transmitter (indexed by ` = 1, 2) has an independent
message w` that is uniformly distributed over {1, 2, · · · , 2nR`}

1In this work, our achievability scheme does not rely on nested lattice codes
but lattices are implicitly used to send equations of messages to the relays.



where n is the number of channel uses and R` ≥ 0 is the
message rate. To use the compute-and-forward framework, we
need to map these messages onto a finite field. Let w` ∈ Fk`q
be the resulting message vectors where q is a prime and
k` = nR`

log2 q
. We zero-pad the shorter of the two message

vectors to the length of the longer one, kMAX = max (k1, k2),
to ensure that sums of these vectors are well-defined. Similarly,
let RMAX = max (R1, R2) and RMIN = min (R1, R2).

Each relay is assumed to have successfully decoded a linear
equation of the message vectors, u` = a`1w1⊕a`2w2, where
the coefficients are also elements of the finite field, a`1, a`2 ∈
Fq , and ⊕ denotes finite field addition. The messages can be
recovered from the equations if and only if the equations are
linearly independent or, equivalently, the matrix of coefficients
A = {a`m} is full rank over Fq . We assume this is the case
throughout the paper.

The relays encode their equations into channel inputs that
are sent towards the destination over a memoryless Gaussian
multiple-access channel. The encoder, E` : FkMAX

q → Rn,
at each relay maps the equation u` into a sequence of n
channel inputs, Xn

` = (X`[1], X`[2], · · · , X`[n]), that obey
an expected2 power constraint, E

[
|X`

∣∣2] ≤ S`. The channel
output observed at the destination is a sum of the channel
inputs plus i.i.d. Gaussian noise, Y [i] = X1[i] +X2[i] +Z[i],
where Z[i] is i.i.d. according to N(0, 1).

At the destination, the decoder, D : Rn → Fk1q ×Fk2q makes
estimates ŵ1 and ŵ2 of the original messages w1 and w2 from
then channel output Y n. We say that a rate pair (R1, R2) is
achievable if, for any ε > 0 and n large enough, there exist
encoders, E1,E2, and a decoder, D, such that

Pr((ŵ1, ŵ2) 6= (w1,w2)) < ε . (1)

Finally, we define C(x) := 1
2 log2(1 + x).

Fig. 2. Channel model for two message inverse-compute-and-forward.

III. APPROACH I: ALLOWABLE EQUATIONS

In this section, we develop a simple binning scheme for
sending the equations to the receiver. Note that this method
produces independent channel inputs across transmitters. In
Section IV, we demonstrate that the transmitters in fact share
a common message which can be used to generate dependent
inputs.

2We can easily accommodate a block power constraint at the expense of
an extra step in the proof.

A. Cardinality Bound

We now relate the number of messages to the number of
possible equations, which will be useful in union bounding the
error events in the achievability proof. Recall that the matrix
A is assumed to be full rank, which means that (w1,w2)
can be uniquely determined from (u1,u2). To simplify the
description of the rate region, we consider the case where all
coefficients are non-zero, a`m 6= 0. Since each equation u` is
a modulo-sum of two messages, it can take on exactly 2nRMAX

values. This seems to imply that the relays each need to send
RMAX bits per channel user to the destination. If R1 6= R2,
then this is wasteful as we are using more rate than the sum
rate of the original messages, 2RMAX > R1 +R2. Our scheme
circumvents this problem by taking advantage of the fact that
if one equation is fixed, the number of possible values for the
other equation decreases.

Let MA(U1, U2) denote the set of all possible equation
values under the coefficient matrix A,

MA(U1, U2) =
{

(u1,u2) : u1 = a11w1 + a12w2,

u2 = a21w1 + a22w2,

for some w1,w2

}
. (2)

Additionally, let MA(U1|u2) denote the set of possible equa-
tions at relay 1 given that the equation at relay 2 is equal to
u2,

MA(U1|u2) =
{
u1 : u1 = a11w1 + a12w2 for some w1,w2

satisfying u2 = a21w1 + a22w2

}
,

and similarly define MA(U2|u1). In deriving an achievable
rate region for inverse-compute-and-forward, we will work
with a union bound over the sets defined above. We now derive
their cardinality.

Lemma 1: Cardinality lemma. The set of allowable equa-
tions MA(U1, U2) and the set of conditionally allowable
equations MA(U`|um) have the following cardinalities:

|MA(U1, U2)| = 2n(R1+R2)

|MA(U1|u2)| = 2nRMIN

|MA(U2|u1)| = 2nRMIN .

Proof: First, we consider the cardinality of MA(U1, U2).
The pair of equations for u1 and u2 can be written in matrix
form as [u1 u2]T = A[w1 w2]T . Since A is full rank,
each possible input [w1 w2]T is mapped to a unique output
[u1 u2]T . From the problem statement, w1 takes on 2nR1

possible values and w2 takes on 2nR2 possible values, so the
input space contains 2n(R1+R2) elements.

Next. we consider |MA(U1|u2)|. Without loss of generality,
assume that R1 > R2. Then, for each of the 2nR2 possible w2,
there is exactly one w1 satisfying a21w1+a22w2 = u2. Thus,
there can only be 2nR2 pairs (w1,w2) and, since the equation
for u1 is linearly independent from that of u2, plugging these
in yields exactly 2nR2 solutions, which corresponds to 2nRMIN .
The proof for |MA(U2|u1)| follows in a similar fashion.



B. Achievable Rate Region

We now state the achievable rates for the cardinality-based
approach.

Theorem 2: Two message inverse compute-and-forward.
The messages w1 and w2 can be recovered from equations
u1 = a11w1 ⊕ a12w2 and u2 = a21w1 ⊕ a22w2 sent over a
Gaussian MAC if

min(R1, R2) < min(C(S1), C(S2)) (3)
R1 +R2 < C(S1 + S2). (4)

Proof: The result can be shown using a combination of
the Cardinality Lemma and a binning argument. We give a
full proof below for completeness.

Codebook generation and encoding: Generate 2nRMAX code-
words of length n, Xn

1 i.i.d ∼ N(0, S1). Similarly, generate
2nRMAX independent codewords Xn

2 i.i.d. ∼ N(0, S2). Note
that both codebooks meet the expected power constraint and
the codewords are independent across transmitters. The relays
are assumed to have successfully decoded u1 and u2, which
both lie in alphabets of size 2nRMAX . These equation values
are used as indices for the transmitted codewords Xn

1 (u1) and
Xn

2 (u2).
Decoding: The destination receives Y n = Xn

1 (u1) +
Xn

2 (u2) + Zn and decodes the pair (û1, û2) such that
(Xn

1 (û1), Xn
2 (û2), Y n) is jointly typical if such a pair exists

and is unique; otherwise, an error is declared. Knowing
(u1,u2), the destination can uniquely determine the messages
(w1,w2) as A is full rank.

Analysis of the probability of error: By symmetry, the
probability of error does not depend on the transmitted pair
(u1,u2). So, without loss of generality, we assume that
(u1,u2) = (0,0) was transmitted. An error occurs if the xn1
and xn2 corresponding to the correct (u1,u2) are not typical
with the received sequence or if for some (u1,u2) 6= (0,0)
(that is admissible under A), the associated xn1 (u1), xn2 (u2)
are jointly typical with the received sequence. Define the
events

Ev1,v2 = {(Xn
1 (v1), Xn

2 (v2), Y n) ∈ A(n)
ε }, (5)

where A(n)
ε is the set of all jointly typical sequences. Using

the union bound, we can upper bound the probability of error,

Pe = Pr

Ec0,0 ∪ ⋃
(v1,v2) 6=(0,0)

Ev1,v2


≤ Pr(Ec0,0) +

∑
v1∈MA(U1|0)\{0}

Pr(Ev1,0)

+
∑

v2∈MA(U2|0)\{0}

Pr(E0,v2)

+
∑

(v1,v2)∈MA(U1,U2),v1 6=0,v2 6=0

Pr(Ev1,v2).

By the asymptotic equipartition property, P (Ec0,0) → 0 as
n→∞. Now, for v1 ∈MA(U1|0) \ {0}:

Pr(Ev1,0) = P ((Xn
1 (v1), Xn

2 (0), Y n) ∈ A(n)
ε )

=
∑

(xn1 ,x
n
2 ,y

n)∈A(n)
ε

p(xn1 )p(xn2 , y
n)

≤ 2−n(H(X1)+H(X2,Y )−H(X1,X2,Y )−ε)

= 2−n(I(X1;Y |X2)−ε)

Similarly for v2 ∈MA(U2|0) \ {0}:
Pr(E0,v2) ≤ 2−n(I(X2;Y |X1)−ε),

and for (v1,v2) ∈MA(u1,u2),v1 6= 0,v2 6= 0,

P (Ev1,v2) ≤ 2−n(I(X1,X2,Y )−ε).

Finally, by the Cardinality Lemma,

Pe ≤ ε + |MA(U1|0)|2−n(I(X1;Y |X2)−ε)

+ |MA(U2|0)|2−n(I(X2;Y |X1)−ε)

+ |MA(U1, U2)|2−n(I(X1,X2;Y )−ε)

= ε+ 2nRMIN2−n(I(X1;Y |X2)−ε)

+ 2nRMIN2−n(I(X2;Y |X1)−ε)

+ 2n(R1+R2)2−n(I(X1,X2;Y )−ε).

Thus, to ensure Pe → 0 as n→∞, it is sufficient if

RMIN < I(X1;Y |X2) = C(S1)
RMIN < I(X2;Y |X1) = C(S2)

R1 +R2 < I(X1, X2;Y ) = C(S1 + S2),

where we have evaluated the mutual information terms over
the i.i.d. Gaussian input distributions.
Remark: Note that the special case with one zero coefficient
results in a slightly different region. Specifically, the size of
the sets in the Cardinality Lemma will change, thereby altering
the left-hand sides of the achievable rate region of Theorem
2. In particular, if Relay 1 decodes an equation with non-
zero coefficients and Relay 2 decodes an equation with a22

mod Fp = 0 then the region will become

R2 < I(X1;Y |X2) = C(S1) (6)
Rmin < I(X2;Y |X1) = C(S2) (7)

R1 +R2 < I(X1, X2;Y ) = C(S1 + S2). (8)

IV. APPROACH II: MULTIPLE ACCESS WITH A COMMON
MESSAGE

An alternative approach to this problem is to view the
two equations u1 and u2 as two private messages and a
common message. Assume, without loss of generality, that
R1 > R2. Let wP

1 denote the first k2 symbols of w1 and
wC

1 the remaining k1 − k2 symbols. Recall that w2 is zero-
padded to length k1 so that the summations are well-defined.3

3This zero-padding can also be viewed as the nesting of the lattice used at
transmitter 2 in that used at transmitter 1.



Therefore, each relay can determine the length k2 equation
uP` = a`1wP

1 ⊕a`2w2 and the length k1−k2 common message
wC

1 from its equation u` = a`1w1⊕a`2w2. Furthermore, since
the equations are assumed to be linearly independent, uP1 and
uP2 are independent and uniform over Fk2p .

The scenario above is exactly equivalent to a multiple-
access channel with a common message. The capacity region
of this channel was derived by Slepian and Wolf [21] and we
reproduce it below for completeness.

Theorem 3 (Slepian-Wolf): Consider a discrete memoryless
MAC pY |X1X2 . Let w0 be a common message of rate R0

available at both transmitters and let w1, w2 denote private
messages of rates R1 and R2 that are available at transmit-
ter 1 and 2, respectively. The capacity region for sending
(w0, w1, w2) to the receiver is the convex closure of all rate
tuples (R0, R1, R2) satisfying

R1 < I(X1;Y |X2, V ) (9)
R2 < I(X2;Y |X1, V ) (10)

R1 +R2 < I(X1, X2;Y |V ) (11)
R0 +R1 +R2 < I(X1, X2;Y ) (12)

for some pV (v)pX1|V (x1|v)pX2|V (x2|v).
This result can be extended to Gaussian multiple-access chan-
nels using the usual quantization arguments.

It follows that we can cast the two-user inverse compute-
and-forward problem as a multiple-access channel with com-
mon messages, for which the capacity is known. Note that
this approach improves upon the performance of Theorem 2
as it allows for dependent inputs. However, the cardinality-
based approach may prove useful in networks with several
destinations, each of which only want a subset of the messages.
This is the subject of ongoing work.

V. BEYOND TWO USERS

For the inverse-compute-and-forward problem with more
than two users, a number of concepts generalize in a straight-
forward manner, but one new concept arises, that of “equation
alignment”. Assume that there are three relays, each with an
equation u` = a`1w1 ⊕ a`2w2 ⊕ a`3w3 of the messages
w1,w2,w3. Furthermore, assume that the matrix of coeffi-
cients A and all of its submatrices are also full rank. For the
sake of succinctness, assume all coefficients are non-zero. In
this special case, both the cardinality-based approach and the
common message approach generalize naturally.

Let RMAX and RMIN denote the largest and smallest of the
message rates R1, R2, R3 and let RMID denote the remaining
rate. For the cardinality-based approach, the key issue is
determining the cardinality of the sets of allowable equations.
Clearly, |MA(U1, U2, U3)| = 2n(R1+R2+R3) since A is full
rank. Given one equation, say u3, we can completely elimi-
nate the highest rate message, say w1, from both remaining
equations u1,u2 to get two new equations that only depend on
w2 and w3. Thus, |MA(U1, U2|u3)| = |MA(U1, U3|u2)| =
|MA(U2, U3|u1)| = 2n(RMID+RMIN). Similarly, given two equa-
tions, we can eliminate all but the lowest rate message from the

remaining equation, which implies that |MA(U1|u2,u3)| =
|MA(U2|u1,u3)| = |MA(U3|u1,u2)| = 2nRMIN . Combining
these bounds with a binning argument will yield an achievable
rate region.

Just as in the two-user case, each relay can cast its equation
as a collection of independent private messages and common
messages shared by a subset of the transmitters. In the three
user case, all relays will share a common message of rate
RMAX − RMID. Two will share another common message of
rate RMID−RMIN and the other will have a private message of
the same rate. Finally, all relays will have a private message of
rate RMIN. This is a special case of a multiple access channel
where each transmitter has a subset of a set of independent
messages. The capacity region of this channel was derived by
Han [22].

Remark: message and equation alignment. Alignment in
the transmitted equations makes the cardinality more difficult
to evaluate. Here, alignment means that all the submatrices
are not full rank. As a result, different transmitted equations
may contain the same sub-equations. For example, consider
a 3-user multiple-access channel with equations u1 = w1 ⊕
w2⊕w3, u2 = w1⊕w2⊕ 3w3, and u3 = w1⊕ 2w2⊕ 3w3.
Note that u1 and u2 contain the same sub-equation w1⊕w2.
This means that |MA(U3|u1,u2)| = 2nmin(R1,R2) instead of
2nRMIN . Thus, alignment makes it more difficult to recover
the full set of messages from the equations. More generally,
if there are multiple receivers with differing demands, it is
possible that alignment could improve the achievable rates.

VI. CASE STUDY

We now consider the model of Fig. 1 and derive an
achievable rate region through the combination of the CF and
ICF schemes. We compare this example to a channel model
in which the interference terms have been removed. We will
use the achievable rate region of the cardinality-based scheme
to emphasize that the gains are not due the use of dependent
inputs distributions on the MAC.

The two-hop relay network in Fig. 1 with has two sources
(Nodes 1 and 2), two relays (Nodes 3 and 4) and one
destination (Node 5) with respective inputs/outputs Xi and
Yi described by

Y3 = X1 +X2 + Z3,

Y4 = X1 −X2 + Z4,

Y5 = X3 +X4 + Z5,

where E[|Xi|2] ≤ Si (i = 1, 2, 3, 4), and Z3, Z4 and Z5 are
i.i.d. ∼ N(0, 1). To simplify the description of the CF rates,
we assume S1 = S2 = S.

Using the compute-and-forward scheme of [1], relay node
3 is able to decode w1 ⊕w2, and relay node 4 may decode
w1 	 w2 with constraints (13) – (14). On the last link, by
Theorem 2, destination node 5 may decode the individual
messages ŵ1, ŵ2 as long as (15) and (16) hold. Thus, using
time-sharing, the combined CF, ICF region that we achieve is



the convex hull of the intersection of (13) – (16).

R1 <
1
2

log
(

1
2

+ S

)
, (13)

R2 <
1
2

log
(

1
2

+ S

)
, (14)

min(R1, R2) < min
(

1
2

log(1 + S3),
1
2

log(1 + S4)
)

(15)

R1 +R2 <
1
2

log(1 + S3 + S4). (16)

The CF and ICF rate regions, their intersection, and the convex
hull of their intersection are illustrated in Fig. 3.

R1

R2 Time sharing

CF rate region

ICF rate region

Intersection of CF and ICF regions

Fig. 3. Convex hull of intersection of CF and ICF rate regions.

When the interfering links between the sources and relays
are removed, the capacity of the channel between sources and
relays is that of two parallel channels. The second hop from
the relays to the destination is a multiple-access channel whose
capacity is also known. It can be shown that the capacity
region of this network is

R1 < min
{

1
2

log(1 + S),
1
2

log(1 + S3)
}

(17)

R2 < min
{

1
2

log(1 + S),
1
2

log(1 + S4)
}

(18)

R1 +R2 <
1
2

log(1 + S3 + S4). (19)

At high SNR, the region (14) – (16) strictly contains (17)
– (19), emphasizing that we not only mitigate the effect of
interference but also exploit it. For example, if R1 > R2 but
S3 < S4, the network with interfering links can make use of
the higher power at Relay 2 to send w1. If the interfering links
are removed, S3 is a bottleneck on R1.

VII. CONCLUSION

In this work, we have studied the inverse compute-and-
forward problem, where a receiver wants to recover messages
from equations at the relays. The key aspect of this scheme
is that the relays do not need to send the equations in their
entirety to the receiver. This is due to the fact that knowing one
equation restricts the possible values of the other equation if
the rates are asymmetric. This problem can also be viewed as

a multiple-access channel with a common message. Through
a case study, we demonstrated that this strategy, coupled with
compute-and-forward, can achieve rate pairs that are outside
the rate region of the same network without interference.
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