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Abstract— In Generalized Processor Sharing (GPS), the
goal of the scheduler is to maximize the processor utiliza-
tion, while maintaining a rate guarantee and fairness in the
bandwidth allocation to each input stream according to the
quality of service (QoS) criteria. While in the single server
case, these requirements can be satisfied simultaneously by
scheduling service rate according to a scale version of the
rate request, the result does not generalize to the case when
multiple processors are used. This paper extends the notion
of max-min and proportional fairness for single node Gen-
eralized Processor Sharing in Network Switches (GPS-SW),
and provides rate augmentation algorithms in achieving the
two performance criteria.

Keywords— Switching and Scheduling, Generalized Pro-
cessor Sharing, Max-Min Fairness, Proportional Fairness

I. Introduction

Generalized Processor Sharing (GPS) [8] involving a
single server has been studied extensively over the past
decade. Given a quality of service (QoS) contract, the
GPS problem computes a fair fluid-based service sched-
ule for a work conserving server. Such a server must be
busy if there are packets waiting in the system. If service
is demanded from a particular traffic input, but that in-
put does not have any packet waiting to be served, GPS
scales the rate allocated to the remaining inputs accord-
ingly so that the server remains work conserving. Once we
understand the idealized fluid-based service schedule, we
can then derive an optimal packetizing algorithm that al-
lows data to be served fairly in a packet-by-packet fashion.
In single server systems, it is well known that Weighted Fair
Queuing (WFQ) [6], otherwise known as Packet-by-Packet
Generalized Processor Sharing (PGPS) [8], can closely ap-
proximate the GPS policy, differing by no more than one
maximum size packet.

There have been many attempts to generalize the single-
server GPS result to multiple server systems. For example,
Chang et al. [5] provide an online algorithm that packe-
tizes any time-invariant rate request for each input-output
pair in an N × N switch. However, their rate augmenta-
tion algorithm does not capture any performance criterion
in the bandwidth gain of each stream. In other attempts
[4], [9], fair scheduling is considered for multiple identical
servers. In particular, packets have no preferrence over the
servers to which they are sent for processing. This is dif-
ferent from the scenario for packet switches, where each
packet is sent from a specific input to a specific output. In
[10], fairness is addressed when a single packet demands
service from multiple different processors simultaneously;
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Fig. 1. Scenario in which a switch cannot achieve work conservation
and satisfy service rate guarantees simultaneously

however, they do not consider any service rate guarantee
in their formulation.

Unlike traditional GPS, in general, it is impossible to
ensure work conservation and service rate guarantees si-
multaneously in multiple-server switches. In this article,
we call the traffic going through each input-output port
pair as a stream. Consider the scenario in Figure 1. Each
stream demands a service rate guarantee of 50%. However,
there is no traffic to be serviced from input port 1 to output
port 1. Nonetheless, if the service rate of any other stream
is increased, it must be done at the cost of reducing the
service rate of another stream. This would violate the rate
guarantee constraints. Hence, in such scenrio, output port
1 can maximally be using only 50% of its capacity if rate
guarantees are to be satisfied.

The contribution of this work is twofold. First, we ex-
tend the definition of two performance criteria, max-min
and proportional fairness, in such a way that it will cap-
ture the rate guarantee constraint of each traffic stream in
the switch. Furthermore, these performance criteria will
allow the resulting service rate to acheive maximal server
utilization. Secondly, we provide two rate augmentation al-
gorithms that satisfy the performance criteria. In Section
II, we formulate the concept of Generalized Processor Shar-
ing for Network Switches (GPS-SW). In Section III and IV,
we extend the notion of max-min and proportional fairness
in GPS-SW respectively. Also, we provide rate augmen-
tation algorithms to satisfy the two criteria. Finally, we
conclude in Section V.

II. Problem Formulation

Let Φ = (φij) be an N ×N substochastic matrix1 with
φij being the rate requested by the traffic from input i
to output j in an N ×N per-stream input-buffered cross-
bar switch. Furthermore, if no packet is available to be

1A matrix M = (mij) is said to be substochastic if, for each matrix

index (p, q), mpq ≥ 0,
∑N

i=1
miq ≤ 1 and

∑N

j=1
mpj ≤ 1.



switched from input port p to output port q, φpq is as-
sumed to be zero.

The goal of GPS-SW is to choose an N ×N service rate
matrix R = (rij) that satisfies three criteria: i) it must
provide at least the rate requested from each stream; ii)
it allocates bandwidth to each stream fairly according to
their rate requests; and iii) it allows the server to be used
maximally by minimizing server idle time. The following
definitions are introduced to formally define R.

Definition 1: A matrix M = (mij) is said to dominate a
matrix P = (pij) if, for each matrix index (i, j), mij ≥ pij .

Definition 2: Consider a substochastic matrix M =
(mij). We say a non-zero matrix element at position (p, q)
is non-augmentable if an arbitrary increase in mpq will
cause another matrix element to decrease in value in or-
der for M to remain substochastic. A row or a column of
M is said to be non-augmentable if all non-zero valued ma-
trix elements in the row or column are non-augmentable. A
matrix is said to be non-augmentable if all non-zero valued
matrix elements in the matrix are non-augmentable.

Using these definitions, our objective is to find a non-
augmentable substochastic service rate matrix R that dom-
inates the rate request matrix Φ while satisfying some per-
formance criterion.

The following lemma characterizes the property of a non-
augmentable matrix.

Lemma 1: A substochastic matrix M = (mij) is non-
augmentable if and only if, for all mpq 6= 0,




N∑

j=1

mpj − 1



(

N∑

i=1

miq − 1

)
= 0. (1)

Proof: Proof is omitted as it is easy to derive from
the definition of augmentability.

III. Max-Min Fairness

We extend the notion of max-min fairness [1] to take
into account the rate request from each traffic stream. In
particular, the modified max-min fair augmentation aims
to obtain a service rate matrix that is closely related to a
scale version of the service request, and it does so by giving
priority to the streams that can be scaled the least.

Definition 3: Given the rate request matrix Φ = (φij),
we say M = (mij) is a feasible matrix if, by letting
rij = mijφij , R = (rij) is non-augmentable and sub-
stochastic, and mij ≥ 1. Furthermore, we say R is the
max-min fair augmentation of Φ if, for each non-zero val-
ued matrix element at position (p, q) in Φ, and for any other

feasible matrix M̂ = (m̂ij) for which mpq < m̂pq, there ex-
its some (p′, q′) with mpq ≥ mp′q′ and mp′q′ > m̂p′q′ .

Note that max-min fairness usually applies to multiple
node networks [1]. However, in this study, the above defini-
tion is a natural verion of max-min fairness for single node
case. The following algorithm achieves max-min fairness.

Algorithm 1:
1. Initialize R = Φ.
2. If R is non-augmentable, stop.
3. Choose a maximum possible k > 1 such that, after

setting rpq ← krpq for each augmentable matrix ele-
ment at position (p, q), R would remain substochastic.
Then, set rpq ← krpq for each augmentable element.

4. Go to Step 2.

We show that Algorithm 1 produces a service rate matrix
that satisfies the max-min fair criterion. At initialization,
there are at most N rows and N columns that can be non-
augmentable. At each iteration, the algorithm scales all
augmentable elements in the matrix in a such way that at
least one new row or column becomes non-augmentable.
Hence, the total number of non-augmentable row and col-
umn is reduced by at least one. The algorithm will termi-
nate in at most 2N steps.

We demonstrate this algorithm by the following example.

Example 1: Let Φ =




1
5 0 0
0 1

2
1
10

2
5 0 2

5


. The algorithm

first set R = Φ. In the first iteration, the algorithm mul-
tiplies each matrix element in R by 5

4 , as this causes the
last row of R to become non-augmentable. In subsequent
steps, the elements on the last row are non-augmentable,
thus they will not get multiplied further. The algorithm
proceeds as follows. Note that the last matrix is non-
augmentable.



1
4 0 0
0 5

8
1
8

1
2 0 1

2


 × 4

3
−→




1
3 0 0
0 5

6
1
6

1
2 0 1

2


 × 3

2
−→




1
2 0 0
0 5

6
1
6

1
2 0 1

2




IV. Proportional Fairness

The traditional proportional fairness as defined by Kelly
et al. [7] does not capture rate guarantee constraints. We
propose a new definition of proportional fairness in the fol-
lowing way.

Definition 4: Let R = (rij) and k be the solution to the
following optimization problem:

min
∑

i,j

|rij − kφij | , (2)

subject to
rpq = 0 if φpq = 0, (3)

rpq ≥ φpq ∀ p, q, (4)

k ≥ 0, (5)

and R is non-augmentable. Then, we say R is a propor-
tional fair solution to Φ = (φij), and k is the proportional
increase of Φ.

This optimization problem is non-linear, as the service
rate matrix must satisfy at most N 2 non-augmentability
constraints in (1). Naively, a solution can be found by con-

sidering 2N
2

linear subproblems and selecting the solution
with minimal objective value, but such solution method
has a forbidding complexity.

The speed of the simplex algorithm [2] is limited primar-
ily by the number of constraint equations. Hence, we pro-
pose an alternative formulation that will reduce the number
of constraints in the optimization problem. The following
definitions are needed for the formulation.

Definition 5: A matrix M = (mij) is said to be a zero-
enforced permutation matrix of matrix B = (bij) if, letting
P = (pij) be a permutation matrix2,

mij = pij1{bij 6=0}, (6)

2An N × N matrix P is said to be a permutation matrix if P ∈
{0, 1}N×N , and each row and column of P sums to one.



where 1{·} is the indicator function.
Definition 6: A zero-enforced permutation matrix M of

B is said to be non-absorbable if it does not have another
zero-enforced permutation matrix M̂ of B, M̂ 6= M , such
that M̂ dominates M . Otheriwse, we say the zero-enforced
matrix is absorbable.

The two following lemmata allow us to transform the
non-augmentability constraints by considering the service
rate matrix R as a convex combination of non-absorbable
zero-enforced permutation matrices of Φ.

Lemma 2: Let R = (Rij) be a matrix such that rij =
0 whenever φij = 0. If a matrix R is non-augmentable,
then it can be decomposed as a convex combination of non-
absorbable zero-enforced permutation matrices of Φ.

Proof: We first show that if R is a non-augmentable
matrix, it can always be decomposed into a convex sum
of zero-enforced permutation matrices. Consider a doubly
stochastic matrix R̂ that is created by augmenting only the
zero-valued elements in R. By Birkoff decomposition [3],

R̂ can be decomposed as a convex combination of permu-
tation matrices. Now, if we set every element at position
(p, q) in each permutation matrix to zero whenever rpq = 0,
R can be decomposed as a convex combination of these
zero-enforced permutation matrices.

We now show that if some of the zero-enforced per-
mutation matrices in the decomposition are absorbable,
then matrix R is augmentable. By definition, every ab-
sorbable zero-enforced matrix can be dominated by a non-
absorbable matrix. Hence, by replacing the absorbale ma-
trices by the corresponding non-absorbable matrices in the
decomposition, the new matrix will dominate R. This im-
plies R is augmentable.

Lemma 3: Let P = {P 1, · · · , P z} be the set of all non-
absorbable zero-enforced permutation matrices of Φ, and
let pnij be the entries of matrix P n for n ∈ {1, · · · z}. Let
λ = (λ1, · · · , λz) be a vector of dimension z = |P |. Suppose
λ and k are the solution to the optimization problem:

min
∑

i,j

∣∣∣∣∣∣
∑

n:pn
ij

=1

λn − kφij

∣∣∣∣∣∣
, (7)

subjected to ∑

n:pn
ij

=1

λn ≥ φij ∀ i, j, (8)

∑

n

λn = 1, (9)

λn ≥ 0 ∀ n, (10)

k ≥ 0, (11)

and the service rate matrix R =
∑z
n=1 λnP

n satisfies the
non-augmentability constraint. Then, we say R is the pro-
portional fair solution to Φ, and k is the proportional in-
crease of Φ.

Proof: It follows by transforming the definition of
proportional fairness.

The fact that λ needs to satisfy the non-augmentability
constraint still causes the optimization problem to be non-
linear. However, this constraint is a disjunction of at most
2N terms, one for each row and column. This allows speed

improvement in obtaining the result. We apply basic algo-
rithms to achieve the solution:

Algorithm 2:
1. Use the simplex algorithm to solve the linear program-

ming problem by ignoring the non-augmentability con-
straints.

2. For each non-augmentability constraint, use the dual
simplex algorithm [2] to obtain a revised optimal λ, or
the problem becomes infeasible.

3. Choose λ that gives the minimum cost among all so-
lutions.

This algorithm is a direct application of optimization tech-
niques, and it can be shown that it will gives the propor-
tional fair solution.

We illustrate the algorithm using the following example.
Example 2: Using Φ from Example 1. We first write

the service rate matrix R as a convex combination of non-
absorbable zero-enforced permutation matrices. That is,

R = λ1

[
1 0 0
0 1 0
0 0 1

]
+ λ2

[
1 0 0
0 0 1
0 0 0

]
+ λ3

[
0 0 0
0 0 1
1 0 0

]
+

λ4

[
0 0 0
0 1 0
1 0 0

]
. The non-augmentability constraint is

λ2λ3 = 0. Solve the two linear optimization problems,
one with λ2 = 0 and one with λ3 = 0, the minimum cost

result from λ2 = 0. The resulting R =
[

0.4 0 0
0 0.85 0.15

0.6 0 0.4

]
.

V. Conclusions

We have defined two performance criteria for single node
Generalized Processor Sharing for Network Switches (GPS-
SW) in the context of N ×N network switches. These per-
formance criteria take into account the service request from
each stream while maximizing server utilization. Further-
more, we have proposed two rate augmentation algorithms
that can achieve the two criteria. As demonstrated in the
examples, the two solutions are not the same in general.
Hence, a network switch designer should choose the appro-
priate criterion that is best suited to their application.
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