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Abstract—We make use of the deterministic high-SNR
approximation of the Gaussian cognitive radio channel to
gain insights in deriving inner and outer bounds for any
SNR. We show that the derived bounds are at most 1.87 bits
apart for any SNR.

I. I NTRODUCTION

Advancements in wireless technology have en-
abled the cooperation among devices, ensuring faster
and more reliable communication. With smart and
well-interconnected wireless transmitters, collaboration
among entities is a relevant topic for modern commu-
nication systems. A well known and studied channel
model inspired by the newfound abilities of cognitive
radio technology and its potential impact on spectral
efficiency in wireless networks is thecognitive radio
channel [2]. Here the “primary” and the “secondary”
transmitters each have a message destined to the primary
and secondary receivers, respectively. Over the shared
communication channel each transmitted message inter-
feres with the other at the destination. The secondary
transmitter has full a-priori knowledge of the primary
message: this assumption is referred to ascognition. The
capacity region of the cognitive radio channel, both for
discrete memoryless as well as Gaussian noise channel
remains unknown in general. For the Gaussian case,
capacity is known in the weak interference [15], [3] and
the very strong interference [4] regimes.

In the last couple of years an alternative to the
difficult task of determining the capacity region of a
multi user communication network has been suggested.
Rather than proving an equality between inner and
outer bounds, the authors [6] advocate a powerful new
method for obtaining achievable rate regions that lie
within a constant number of bits from capacity region
outer bounds, thereby determining the capacity region
to “within a constant number of bits”. In a series of
papers, and inspired by [7], Avestimehr, Diggavi and

Tse introduced the linear deterministic approximation of
wireless networks [8], [9], [12]. The deterministic model
is often easier to analyze than the original Gaussian
channel in that its capacity can be determined exactly.
The insights gained from the analysis of the deterministic
model are then used to guide the design of coding
schemes for inner bounds and the choice of receiver
side-information for outer bounds for the practically mo-
tivated Gaussian noise channel. Ideally, the bounds are
then shown to lie within a constant gap from each other.
Finite bit gaps between inner and outer bounds have
been shown for channels whose capacity regions have
been long standing open problems, such as Gaussian
interference channels [10], [11], [17] and Gaussian relay
channels [12].

In this work we use the same apprach. In our recent
work [13] we introduced the high-SNR approximation
model of the Gaussian cognitive channel and deter-
mined its capacity. In this paper we use the insights
derived from [13] to determine a finite gap result for
the Gaussian cognitive interference channel. The rest
of the paper is organized as follows. Section II in-
troduces the Gaussian cognitive channel and its high-
SNR approximation. In Section III we re-derive the
different known outer bounds for the Gaussian cognitive
channel in a unified framework inspired by the high-
SNR approximation model. In Section IV we develop
simple achievable strategies and we show that they are
within 1.87 bits from the outer bound for any channel
parameters. Section V concludes the paper.

II. CHANNEL MODEL

We consider the two-user Gaussian Cognitive Inter-
Ference Channel (G-CIFC) in standard form [14] de-



picted in Fig. 1 whose outputs are

Y1 = X1 + aX2 + Z1

Y2 = bX1 + X2 + Z2,

whereZi ∼ N(0, 1) and the inputXi is subject to the
power constraintE[|Xi|2] ≤ Pi, i = 1, 2. Encoderi
wishes to communicate a messageWi uniformly dis-
tributed on{1, . . . , 2NRi} to decoderi in N channel
uses. The two messages are independent. Encoder 1 (i.e.,
the cognitive user) in addition to its messageW1, also
knows W2. A rate pair(R1, R2) is achievable if there
exists a sequence of encoding functions

XN
1 = fN

1 (W1, W2), XN
2 = fN

2 (W2), N = 1, 2, ...,

and a sequence of decoding functions

Ŵi = gN
i (Y N

i ), i = 1, 2, N = 1, 2, ...,

such that

max
i=1,2

Pr
[

Ŵi 6= Wi

]

→ 0, N → ∞.

In [13] we introduced the deterministic high-SNR ap-
proximation of the G-CIFC and determined its capacity.
We restate the main result here for completeness. Let

nij =

⌊

1

2
log
(

1 + |hij |2Pj

)

⌋

, m
∆
= max

i,j
{nij},

for h11 = h22 = 1, h12 = a, h21 = b. The high-SNR
approximation of a G-CIFC is a deterministic channel
whose outputs are

Yi =
2
∑

j=1

S
m−nij Xj , i = 1, 2,

whereXj is a binary vector of dimensionm, S is a shift
matrix of dimensionm×m and the summation is taken
in GF(2) [6]. The capacity of the deterministic cognitive
channel is

R1 ≤ n11 (1a)

R2 ≤ max{n21, n22} (1b)

R1 + R2 ≤ max{n21, n22} + [n11 − n21]
+, (1c)

where [x]+
∆
= max{0, x}. The sum-rate bound in (1c)

is obtained by giving receiver 1, the cognitive receiver,
the signalS1 = S

n21X1 as side information. In the next
section we re-derive the different known outer bounds
for the Gaussian cognitive channel as summarized in [14]
in a unified framework inspired by the derivation of (1)
in [13].

Fig. 1. A G-CIFC in canonical form.

III. O UTER BOUND

The following summarizes the results of [3], [15],
[16]:

Theorem III.1. The capacity region of a G-CIFC is
within the convex-hull of

R1 ≤ 1

2
log
(

1 + (1 − ρ2)P1

)

(2a)

R2 ≤ 1

2
log
(

1 + |b|2P1 + P2 + 2ρ
√

|b|2P1P2

)

(2b)

R1 + R2 ≤ 1

2
log
(

1 + |b|2P1 + P2 + 2ρ
√

|b|2P1P2

)

+
1

2
log

(

1 + (1 − ρ2)max{1, |b|2}P1

1 + (1 − ρ2)|b|2P1

)

(2c)

for all ρ ∈ [0, 1].

Proof: For any joint distribution on(X1, X2) let
(X1G, X2G) be a jointly Gaussian input with the same
covariance matrix as(X1, X2). If R1 is achievable,
then H(W1|Y N

1 , W2) ≤ H(W1|Y N
1 ) ≤ NǫN , with

ǫN → 0 as N → ∞. Similarly, if R2 is achievable,
thenH(W2|Y N

2 ) ≤ NǫN .

Let ρ
√

P1P2
∆
= E[X1X2]. The rate of the cognitive

user (user 1) is bounded by (2a) since:

NR1 ≤ H(W1) = H(W1|W2)

≤ I(W1; Y
N
1 |W2, X

N
2 (W2)) + NǫN

= −h(Y N
1 |W2, X

N
2 (W2), W1, X

N
1 (W1, W2))+

+ h(Y N
1 |W2, X

N
2 (W2)) + NǫN

≤ h(Y N
1 |XN

2 ) − h(Y N
1 |XN

2 , XN
1 ) + NǫN

= I(Y N
1 ; XN

1 |XN
2 ) + NǫN

≤ N
(

I(Y1; X1G|X2G) + ǫN

)

.
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The rate of the primary user (user 2) is bounded by (2b)
since:

NR2 ≤ H(W2)

≤ I(W2; Y
N
2 ) + NǫN

= h(Y N
2 ) − h(Y N

2 |W2, X
N
2 (W2)) + NǫN

≤ h(Y N
2 ) − h(Y N

2 |XN
2 , XN

1 ) + NǫN

= I(Y N
2 ; XN

1 , XN
2 ) + NǫN

≤ N
(

I(Y2; X1G, X2G) + ǫN

)

.

For the sum-rate we use steps similar to those of [17],
[13]. Let Si

∆
= bX1i + Z ′

2i, where(Z1i, Z
′

2i) is a jointly
Gaussian random vector whose entries have zero mean
and unit power, andE[Z1iZ

′

2i] = ρZ . The correlation
coefficient ρZ ∈ [−1, 1] can be chosen to tighten the
upper bound. We have:

N(R1 + R2) ≤ H(W1|W2) + H(W2)

≤ I(W1; Y
N
1 |W2) + I(W2; Y

N
2 ) + N2ǫN

≤ I(W1; Y
N
1 , SN

1 |W2) + I(W2; Y
N
2 ) + N2ǫN

= h(Y N
1 |W2, S

N
1 , XN

2 (W2)) + h(SN
1 |W2)

− h(Y N
1 , SN

1 |W1, W2, X
N
2 (W2), X

N
1 (W1, W2))

+ h(Y N
2 ) − h(Y N

2 |W2) + N2ǫN

≤ h(Y N
1 |SN

1 , XN
2 ) + h(Y N

2 ) − h(ZN
1 , Z

′N
2 ) + N2ǫN

= I(Y N
1 ; XN

1 |SN
1 , XN

2 ) + I(Y N
2 ; XN

1 , XN
2 ) + N2ǫN

≤ N
(

I(Y1; X1G|bX1G + Z ′

2i, X2G)

+ I(Y2; X1G, X2G) + 2ǫN

)

,

where we have used the fact that

h(SN
1 |W2, X

N
2 (W2)) = h(Y N

2 |W2, X
N
2 (W2)).

Since the above bound is valid for anyρz we conclude
that

R1 + R2 ≤ 1

2
log(1 + P2 + |b|2P1 + 2|ρ|

√

|b|2P1 P2)

+ min
ρz∈[0,1]

1

2
log

(

1 − ρ2
Z + (1 − ρ2)P1(|b|2 + 1 − 2|b|ρZ)

[1 − ρ2
Z ][1 + |b|2(1 − ρ2)P1]

)

.

After substituting the optimal value ofρz given by

argmin
ρz

|b|2 + 1 − 2|b|ρZ

1 − ρ2
Z

= min

{

|b|, 1

|b|

}

we obtain that the sum-rate is bounded by (2c).

Remark III.2 . In strong interference (|b| > 1) the region
in (2) reduces to [14, Th.5 ] because the bound (2b) is

redundant due to (2c). The outer bound in (2) is known to
be achievable invery strong interference, that is, if |b| >

1 andα a ≥
(

√

α2 + |b|2 − 1 + 2ραb + ρ2 − ρ
)

where

α =
√

P1/P2 , holds for every|ρ| ≤ 1. In this case the
capacity is achieved using a scheme where both receivers
decode both messages. Notice that, in strong interference
receiver 2 can decode both messages without imposing
any rate penalty on the rate of receiver 1. Indeed, after
decodingW2, receiver 2 can reconstructXN

2 (W2) and
compute the following estimate of the receiver 1 output

Y N
2 − XN

2

b
+ aXN

2 +

√

1 − 1

|b|2 ZN ∼ Y N
1

whereZN ∼ N(0, I) and independent of everything else.
A similar statement with the role of the users reversed
and for |a| ≥ 1 is not possible since the knowledge of
W1 does not allow the reconstruction ofXN

1 (W1, W2).

Remark III.3 . In weak interference (|b| ≤ 1) the region
in (2) reduces to [3, Th. 3.2], [15, Th. 4.1] as the
closure of the region is determined by the rates pairs
for which (2a) and (2c) are met with equality [18, Ex.
4.3]. In this case the capacity is achieved using a scheme
where the primary receiver treats the cognitive message
as interference.

In the next section we develop simple achievable
strategies that are are within 1.87 bits from the outer
bound in (2) for any channel parameters(a, b, P1, P2).

IV. A CHIEVABLE SCHEMES

A. Weak interference (|b| < 1)

The outer bound (2) was shown to be achievable
in [3], [15] in weak interference. In this case the achiev-
able scheme employs dirty paper coding (DPC) at the
cognitive transmitter to “cancel” the known interference
generated by the primary user, and collaboration in the
transmission of the primary message in a MISO fashion.
At the primary decoder the message of the cognitive
user is treated as noise. The interference due the primary
user at the receiver of the cognitive user is completely
canceled by the use of DPC.

While capacity is known in this regime, here we
consider a very simple broadcast strategy that is an
alternative strategy to the capacity achieving one of [3],
[15] and show that it is optimal to within1 bit for the
case of weak interference (|b|2P1 < P1) and weak signal
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(|b|2P1 ≥ P2). In weak interference, the region in (2) can
be re-written as [3], [15]

R1 ≤ 1

2
log
(

1 + (1 − ρ2)P1

)

(3a)

R2 ≤ 1

2
log

(

1 + |b|2P1 + P2 + 2ρ
√

|b|2P1P2

1 + |b|2(1 − ρ2)P1

)

(3b)

for ρ ∈ [0, 1]. Consider now a strategy in which
transmitter 1 sends information to both receivers and
transmitter 2 is silent. This strategy is inspired by the
achievability of (1) in [13]. WithX2 = 0 and |b| < 1
we have a degraded broadcast channelX1 → Y1 → Y2,
whose capacity region is

R1 ≤ 1

2
log(1 + (1 − ρ2)P1) (4a)

R2 ≤ 1

2
log

(

1 + |b|2P1

1 + (1 − ρ2)|b|2P1

)

(4b)

for ρ ∈ [0, 1]. Then, since (3a) and (4a) are the same for
everyρ there is zero gap for the cognitive user (user 1).
By considering the difference between (3b) and (4b), the
gap for primary user (user 2) is bounded as

(3b) − (4b) ≤ 1

2
log

(

1 +
P2 + 2

√

|b|2P1P2

1 + |b|2P1

)

≤ 1

2
log

(

1 +
3|b|2P1

1 + |b|2P1

)

≤ 1

2
log(4) = 1.

This shows that for weak interference (|b|2P1 < P1) and
weak signal (|b|2P1 ≥ P2) a superposition coding looses
at most1 bit with respect capacity achieving DPC.

B. Strong interference (|b| ≥ 1)

The corner points of the outer bound region in (2), i.e.,
the points for which the rate of one user is the maximum
possible, are obtained forρ = 1 andρ = 0. For ρ = 1,
the rate pair

A =

(

0,
1

2
log
(

1 + (
√

|b|2P1 +
√

P2)
2
)

)

is achievable if transmitter 1 uses all its power to transmit
W2 in cooperation with transmitter 2 in a MISO fashion.
For ρ = 0 we have

B =

(

1

2
log (1 + P1) ,

1

2
log

(

1 + |b|2P1 + P2

1 + P1

))

.

Remark IV.1. In strong interference the capacity outer
bound in (2) can be further outer bounded by

R1 ≤ 1

2
log (1 + P1) (5a)

R1 + R2 ≤ 1

2
log
(

1 + (
√

|b|2P1 +
√

P2)
2
)

(5b)

In the following we will use the fact that the pointB
is at most1/2 bit away from (5) since

1

2
log

(

1 + (
√

|b|2P1 +
√

P2)
2

1 + |b|2P1 + P2

)

≤ 1

2
log(2) =

1

2
.

In the following we show achievable schemes that are
within a finite gap from the rate pairB. We divide the
analysis into two cases.

a) Strong interference (|b|2P1 ≥ P1) and weak
signal (|b|2P1 ≥ P2): We consider again a simple
broadcast strategy from transmitter 1 to both receivers
(with transmitter 2 being silent) and we show that it
is optimal to within 1/2 bit per user. This strategy is
again inspired by the achievability of (1). WithX2 = 0
and |b| ≥ 1 we have a degraded broadcast channel
X1 → Y2 → Y1, whose capacity is

R
(C)
1 ≤ 1

2
log

(

1 + P1

1 + αP1

)

(6a)

R
(C)
2 ≤ 1

2
log
(

1 + α|b|2P1

)

(6b)

for α ∈ [0, 1]. If we setα = min{1, 1/P1} in (6), then
the gap for user 1 is

R
(B)
1 − R

(C)
1 =

1

2
(1 + min{1, P1}) ≤

1

2
log 2 =

1

2
,

while for user 2 (usingP2 ≤ |b|2P1 and |b|2 ≥ 1) is

R
(B)
2 − R

(C)
2 ≤ 1

2
log

(

1 + 2|b|2P1

(1 + P1)(1 + |b|2 min{1, P1})

)

≤ max

{

1

2
log

(

2|b|2
1 + |b|2

)

,
1

2
log

(

2

1 + P1

)}

≤ 1

2
log 2 =

1

2
.

As shown in Fig. 2, the achievable pointC in (6) is at
most at1/2+1 = 1.5 bits from the outer bound. By time
sharing between pointsA andC, we have an achievable
region that is at most atmax{0.5, 1.5} = 1.5 bits from
the outer bound in (2).
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Fig. 2. G-CIFC with strong interference: solid line: outer bound in (2);
dashed line: achievable region by time sharing among pointsA and C;
dotted line: outer bound in (5).

b) Strong interference (|b|2P1 ≥ P1) and strong
signal (|b|2P1 ≤ P2): The details of the proof for this
case can be found in [19] and are not reported here
for sake of space. The proving strategy is as for the
previous case. We show an achievable scheme for point
C that is within 1.37 (combining the maximum gap
for R1 and the maximum gap forR2) from point B.
Then by time sharing betweenA and C we have an
achievable region that is at most 1.37 +1/2 =1.87 bits
from outer bound in (5). The achievable scheme is from
[5] and employs DPC at the cognitive receiver and
joint decoding at the primary receiver only. Although
this achievable scheme does not reduce to superposition
coding, which is capacity achieving in the very strong
interference as shown in [16], it is within a finite gap
from the capacity for any channel parameter.

V. CONCLUSIONS

Inspired by the recent results on the high-SNR deter-
ministic approximation of the Gaussian cognitive radio
channel, we presented simple achievable schemes pro-
ducing an achievable rate region that lies within 1.87 of
a new generalized capacity outer bound.
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