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Abstract—In this paper, we first present an outer bound for a
general interference channel with a cognitive relay, i.e.,a relay
that has non-causal knowledge of both independent messages
transmitted in the interference channel. This outer bound reduces
to the capacity region of the deterministic broadcast channel and
of the deterministic cognitive interference channel the through
nulling of certain channel inputs. It does not, however, reduce
to that of certain deterministic interference channels for which
capacity is known. As such, we subsequently tighten the bound for
channels whose outputs satisfy an “invertibility” condition. This
second outer bound now reduces to the capacity of the special
class of deterministic interference channels for which capacity
is known. The second outer bound is further tightened for the
high-SNR deterministic approximation of the Gaussian channel
by exploiting the special structure of the interference. Weprovide
an example that suggests that this third bound is tight in at
least some parameter regimes for the high-SNR deterministic
approximation of the Gaussian channel. Another example shows
that the third bound is capacity in the special case where there
are no direct links between the non-cognitive transmitters.

Index Terms—cognitive channel, interference channel, broad-
cast channel, relay channel, deterministic channel, high-SNR
deterministic approximation of Gaussian channels.

I. I NTRODUCTION

The interference channel with a cognitive relay (IFC-CR) is
a channel model of contemporary interest as it encompasses
several multi-user and cognitive channel models. The IFC-
CR consists of a classical two-user interference channel in
which the two independent messages, each known at the
corresponding source node, are alsonon-causally known at
a third transmitter node, which we term thecognitive relay
and that serves only to aid the two source nodes in their
transmissions. This five-node channel generalizes a numberof
known channels including the broadcast (BC), the interference
(IFC), and the cognitive interference channel (C-IFC).
Past work. The IFC with a relay was first introduced in [1]
and [2], where the message knowledge at the relay was
obtained causally and non-causally, respectively. In thiswork
we focus on thenon-causal version of the problem [2],
sometimes also referred to as the “broadcast channel with
cognitive relays” [3], and thus we will not review the large
body of work related to the causal (i.e., non-cognitive) relay
model.
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In [2], an achievable rate region that combines dirty-paper
coding, beamforming and interference reduction techniques is
derived for the Gaussian SISO IFC-CR. In [4], the achievable
region of [2] is further improved upon and a sum-rate outer
bound is proposed; it is shown that it is possible to achieve
the degrees of freedom of a two-user interference-free channel
for a large range of channel parameters. In [3], an achievable
rate region that contains all previously known achievable rate
regions is proposed. To the best of the authors’ knowledge,
outer bounds for the general (i.e., not Gaussian as in [4]) IFC-
CR have not yet been considered.
Contributions. In this paper, we:
1) derive an outer bound for a general IFC-CR;
2) note that the derived outer bound reduces to the capacity
region of deterministic BCs [5], of deterministic C-IFCs [6],
but not to that of the class of deterministic IFCs studied in [7];
3) tighten it for deterministic IFC-CRs whose outputs satisfy
an “invertibility” condition as in [7];
4) tighten it even further for the high-SNR linear deterministic
approximation of the Gaussian IFC-CR (just referred to as
high-SNR channel for short in the following), by generalizing
the approach of [7] to exploit the special interference structure;
5) illustrate the achievability of this last outer bound forsome
parameters of the high-SNR channel.
Organization. The rest of the paper is organized as follows:
Section II formally defines the channel model; Section III
presents our outer bound, and shows how it may be tight-
ened for certain deterministic IFC-CRs and for the high-SNR
channel; Section IV shows achievability of the tightened outer
bound for certain parameters of the high-SNR channel; and
Section V concludes the paper.

II. CHANNEL MODEL , NOTATION AND DEFINITIONS

We consider the two-user IFC-CR depicted in Fig. 1, in
which the transmission of the two independent messages
Wi ∈ {1, 2, ..., 2NRi}, i ∈ {1, 2}, is aided by a single
cognitive relay, whose input to the channel has subscriptc. The
relay isnon-causally cognizant of both messages. We assume
classical definitions for achievable rates, and capacity inner
and outer bound regions [8]. The notationPN

Y1,Y2|X1,X2,Xc

represents theN -fold memoryless extension of the channel
PY1,Y2|X1,X2,Xc

, which describes the relationship between the
channel inputsX1, X2, Xc and the channel outputsY1, Y2.



Fig. 1. The interference channel with a cognitive relay (IFC-CR).

The IFC-CR contains three well-studied multi-user channels
as special cases:
a) Interference channel (IFC): ifXc = ∅;
b) Broadcast channel (BC): ifX1 = X2 = ∅; and
c) Cognitive channel (C-IFC): ifX1 = ∅ or X2 = ∅.

The largest known achievable rate region for the IFC-CR
presented in [3] combines ideas from the achievable rate
regions of these three special channel models it subsumes.
Outer bounds only exist for the sum-rate of the Gaussian SISO
IFC-CR [4]. In the next section we derive an outer bound for
the whole capacity region of a general IFC-CR.

III. O UTER BOUNDS FOR THEIFC-CR

We first derive an outer bound valid for all memoryless
IFC-CRs. We then tighten this bound by developing further
inequalities for a class of deterministic channels and for the
high-SNR channel in the spirit of [7]. Finally, we evaluate our
tightened bound for the high-SNR channel.

A. General IFC-CR outer bounds
Theorem III.1. If (R1, R2) lies in the capacity region of
the IFC-CR, then the following must hold for any Ỹ1 and
Ỹ2 having the same marginal distributions as Y1 and Y2,
respectively, but otherwise arbitrarily correlated:

R1 ≤ I(Y1; X1, Xc|Q,X2), (1a)

R2 ≤ I(Y2; X2, Xc|Q,X1), (1b)

R1 + R2 ≤ I(Y2; X1, X2, Xc|Q) + I(Y1; X1, Xc|Q, fY2, X2), (1c)

R1 + R2 ≤ I(Y1; X1, X2, Xc|Q) + I(Y2; X2, Xc|Q, fY1, X1), (1d)

for some input distribution

PQ,X1,X2,Xc
= PQPX1|QPX2|QPXc|X1,X2,Q.

Proof: We only outline the proof here for sake of space.
The complete proof of this and all the other theorems in the
paper may be found in [9]. The outer bound may be thought
of as the intersection of two C-IFC outer bounds [6] obtained
by non-causally providing one of the transmitters with the
message of the other transmitter. For the sum-rates, since the
receivers cannot cooperate, the capacity cannot depend on the
correlation among the output signals, as first observed in [10]
for BCs. By giving a receiver as side-information a signal that
has the same marginal distribution as the other user’s output,
but that is otherwise arbitrarily correlated with its own output,
we obtain the two sum-rate bounds. The same idea was used
in [6] for the C-IFC and in [11] for cooperative IFCs.

Remark 1: Th. III.1 reduces to the capacity region of a
deterministic BC whenX1 = X2 = ∅ and to the capacity
of a deterministic C-IFC when eitherX2 = ∅ or X1 = ∅.
However, Th. III.1 does not reduce to the capacity region of
the class of deterministic IFCs studied in [7] whenXc = ∅. In
the following we thus develop additional rate bounds to cover
this latter case. 2

B. Further bounds for a class of IFC-CRs
Consider, in the spirit of [7], IFC-CRs whose outputs satisfy:

Y1 = f1(X1, Xc, V12), V12 = g2(X2, Z1) :

H(Y1|X1, Xc) = H(V12|X1, Xc) = H(V12|Xc), (2a)

Y2 = f1(X2, Xc, V21), V21 = g1(X1, Z2) :

H(Y2|X2, Xc) = H(V21|X2, Xc) = H(V21|Xc), (2b)

where the functionsf1, f2, g1 andg2 are deterministic, andZ1

andZ2 are “noise” random variables (RVs) independent of the
inputs. Notice the invertibility conditions in (2a) and (2b) (and
recall thatX1 = X1(W1) is independent ofX2 = X2(W2)).
We tighten the outer bound of Th.III.1 as follows:

Theorem III.2. If (R1, R2) lies in the capacity region of the
IFC-CR, then the following must hold:

R1 ≤ (1a), R2 ≤ (1b), R1 + R2 ≤ min{(1c), (1d)}, (3a)

N(R1 + R2) ≤ I(V N
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where (3a) holds under the hypothesis of Th.III.1, and where
Ṽ21, Ṽ12 are conditionally independent copies of V12 and
V21, that is, distributed jointly with (Q, X1, X2, Xc) with
PeV21,eV12|Q,X1,X2,Xc

= PeV21|Q,X1
PeV12|Q,X2

.

Proof: The proof may be found in [9].
Remark 2: The single-letterization of the outer bound in
Theorem III.2 is not straightforward: the termI(V N

ij =
gi(X

N
j , Zi); X

N
c ) cannot be single-letterized using standard

arguments sinceXj and Xc can have any joint distribution.
For discrete alphabets, this term can be upper bounded as
I(V N

ij ; XN
c ) ≤ N min{H(Vij), H(Xc)}. 2

Remark 3: WhenXc = ∅, the outer bound in Th. III.2 reduces
to that of the deterministic IFCs considered in [7]. 2

C. Outer bound for the high-SNR IFC-CR

The outer bound of Th. III.2 may be further tightened for the
high-SNR IFC-CR. This channel, as developed in [7], models
a Gaussian noise channel as the receive SNRs grow to infinity.
The high-SNR channel is a deterministic binary linear channel
with outputs:

Yu = S
m−nu1X1 ⊕ S

m−nucXc ⊕ S
m−nu2X2, (4)



for u ∈ {1, 2}, where the inputs are binary vectors of length
m , max{n11, n12, n21, n22, n1c, n2c}, S is a shift matrix of
dimensionsm×m, and⊕ denotes the binary XOR operation.
The high-SNR channel belongs to the class of deterministic
IFC-CRs whose outputs are described by:

Y1 = f1(X1, ℓ1(V1c, V12)), V12 = g2(X2), V1c = h1(Xc),

Y2 = f2(X2, ℓ2(V2c, V21)), V21 = g1(X1), V2c = h2(Xc),

for some deterministic functionsf1, f2, ℓ1, ℓ2, g1, g2, h1, h2

and subject to the invertibility conditions in (2a) and (2b).
The capacity achieving strategy for the high-SNR channel

has provided insights on capacity approaching strategies for
the corresponding Gaussian channel, and has allowed the
determination of capacity to within a constant gap for the
IFC [12] and C-IFC [13]. We hope that a similar result may
be derived for the Gaussian IFC-CR using achievable schemes
inspired by the high-SNR approximation. For the high-SNR
channel, we tighten the rate bounds in (3) by replacing
the term I(V N

21 ; XN
c ) (resp. I(V N

12 ; XN
c )) with I(V N

21 ; V N
2c )

(resp.I(V N
12 ; V N

1c )). This “substitution” ofXc by its functions
V1c = h1(Xc) and V2c = h2(Xc) is not possible in general
since it is not generally known how the inputXc affects the
channel outputs.
Remark 3: This step of tightening the bound highlights the
stumbling block in deriving outer bounds for general IFC
and BCs: in general we do not know theexact form of the
interfering signal(s) at a given receiver for any possible input
distribution. Assuming that the channel is deterministic and in
a certain way “invertible”, allows one to exactly determine
the interference. Notice also that in the tightened bound,
“conditioning” on the interference generated byXj at the
output Yi, given by Vij (rather than onXj itself), implies
that the interference has been removed without necessarily
decoding the message corresponding toXj . 2

Evaluation of the tightened bound yields:

Theorem III.3. If (R1, R2) lies in the capacity region of the
high-SNR IFC-CR, then

R1 ≤ max{n11, n1c} (5a)

R2 ≤ max{n22, n2c} (5b)

R1 + R2 ≤ 1{n11−n1c 6=n21−n2c}

`
[n11 − max{n12, n1c}]

+

+max{n22 + n1c, n2c + n12})

+ 1{n11−n1c=n21−n2c} (max{n22, n21, n2c}

+[n11 − n21]+
´

(5c)

R1 + R2 ≤ 1{n22−n2c 6=n12−n1c}

`
[n22 − max{n21, n2c}]

+

+max{n11 + n2c, n1c + n21})

+ 1{n22−n2c=n12−n1c} (max{n11, n12, n1c}

+[n22 − n12]+
´

(5d)

R1 + R2 ≤ max{n11 − n21, n12, n1c} + min{n1c, n12}

+ max{n22 − n12, n21, n2c} + min{n2c, n21} (5e)

2R1 + R2 ≤ max{n11, n12, n1c}

+ max{n11 − n21, n12, n1c} + min{n1c, n12}

+ max{n22 − n12, n21, n2c} + min{n2c, n21} (5f)

R1 + 2R2 ≤ max{n22, n21, n2c}

+ max{n11 − n21, n12, n1c} + min{n1c, n12}

+ max{n22 − n12, n21, n2c} + min{n2c, n21}. (5g)

Proof: The rate-bounds in the tightened version of
Th. III.2 can be upper bounded by using the fact that the
uniform distribution maximizes the entropy of a discrete
RV [9] to obtain the rate region in (5). The multi-letter mutual
information terms can be single-letterized as described in
Remark 2.

IV. A CHIEVING THE OUTER BOUND INTH. III.3

While it remains to be shown that the outer bound of
Th.III.3 is tight for the general high-SNR channel, in this
section we demonstrate by example that it is achievable for
certain channel parameters. We consider two examples: Exam-
ple I: thestrong signal, mixed cognition and weak interference
regime at both decoders given by n11 > n1c > n12 and
n22 > n2c > n21; and Example II: theno-interference regime
for both decoders given byn12 = n21 = 0.

A. Example I

Corollary IV.1. In the case of strong signal, mixed cognition
and weak interference at both decoders, the capacity is

R1 ≤ n11, R2 ≤ n22.

Proof: It can be shown that the outer bound of Th.III.3
reduces to the region in Corollary IV.1 whenn11 > n1c > n12

and n22 > n2c > n21 [9]. The formal proof of the achiev-
ability of the point (R1, R2) = (n11, n22) is provided in
[9]. We provide a sketch of the proof aided by the graphical
representation of the achievable scheme in Fig. 2. Our aim is
to highlight the innovative cooperation strategy implemented
by the cognitive relay compared to the capacity achieving
strategies of the high-SNR IFC [12] and of the high-SNR C-
IFC [14].

Extensions of the IFC and C-IFC. In Fig. 2, the left section
represents the three channel inputsX1, Xc, X2 and the right
section represents the channel outputsY1 andY2. Each output
is the modulo-2 sum of the three (down-shifted) inputs. The
(blue,45◦ hatched) blocks in the upper-left section are the bits
sent by user 1; the (red,−45◦ hatched) blocks in the lower-
left section are the bits sent by user 2. The down-shifted
version of blue and red blocks appear on the right section.
When the cognitive relay is absent, our channel model reduces
to the high-SNR IFC of [12]. In this channel cooperation is
not possible and the transmission of one encoder produces
interference at the non intended receiver. Receiver 1 observes
n11−n12 of the (blue,45◦ hatched) bits from encoder 1 above
the n12 (red,−45 ◦ hatched) bits from encoder 2. Decoder 1
has no knowledge of the interference produced by encoder 2
and thus is able to decode only the most significantn11−n12

(blue,45◦ hatched) bits. Similarly, receiver 2 only decodes the
most significantn22 − n21 (red,−45◦ hatched) bits received
above the interference. Without cognitive relay is possible to
achieve only(R1, R2) = (n11 − n12, n22 − n21).

When the cognitive relay is present, it can pre-cancel the
interference experienced by one decoder, as in the high-SNR
C-IFC [14]. Let the input of the cognitive relay (mid-section
on the left side) be non-zero only in the blue shaded block.



Fig. 2. Capacity achieving scheme for Example I.

By placing in the blue-shaded block the samen21 (blue,
45◦ hatched) bits that interfere at decoder 2, the relay pre-
cancels the interference at this user’s receiver. The achievable
rates in this case are(R1, R2) = (n11−n12, n22). In a similar
manner, the cognitive relay can pre-cancel the interference
generated by user 2 at receiver 1 by using the red-shaded block
(mid-section on the left side in Fig. 2). With this strategy,
we pre-cancel the interference at a single decoder only and
we improve the rates with respect to the case where the
cognitive relay is absent; however, we are unable to achieve
(R1, R2) = (n11, n22).

A unique scheme for the IFC-CR. To achieve the outer
bound (R1, R2) = (n11, n22), we must be able to pre-
cancel the interference at both decoders simultaneously. To
do so, let the cognitive transmitter send the sum of the inputs
that grant the pre-cancelation of the interference at a single
decoder, i.e., the XOR of the (blue,45◦ hatched) and of the
(red,−45◦ hatched) blocks in Fig. 2. With this input at the
cognitive relay,Y1 is the XOR of the signal from transmitter 1
and a shifted version of the interference at decoder 2 (purple,
cross hatched block). Decoder 1 is able to decode this set of
bits sincen11 > n1c and remove it fromY1. Transmitter 2
operates in a similar manner by decoding a shifted version of
the interference at receiver 1 and adding it toY2 to obtain the
message transmitted by encoder 2. This shows that the rate
(R1, R2) = (n11, n22) is achievable.

The cognitive relay effectively trades an unknown inter-
ference term with a known one that each receiver is able
to decode. This strategy generalizes to the case when the
pre-coding by the cognitive relay against the interferenceat
one decoder may be decoded by the other. We are currently
investigating the applicability of this idea in a more general
setting.

B. Example II

In this example we show that the outer bound of Th.III.3 is
tight in the absence of interfering links:n12 = n21 = 0.

Corollary IV.2. The capacity of the high-SNR channel without
interfering links is

R1 ≤ max{n11, n1c} R2 ≤ max{n22, n2c}

R1 + R2 ≤ max{n22, n2c} + max{n11, n1c − n2c}

R1 + R2 ≤ max{n11, n1c} + max{n22, n2c − n1c}.

Remark 4: The region in Corollary IV.2 is a case where
Th.III.1 and Th.III.2 coincide. In this case, if in additioneither
n11 = 0 or n22 = 0, the region reduces to the capacity region
of the high-SNR C-IFC determined in [6]. 2

Proof: It can be easily seen that the outer bound of
Th.III.3 reduces to the region in Corollary IV.2 whenn11 >

n1c > n12 andn22 > n2c > n21.
We divide the achievability proof into three subcases. The

achievability proofs of the first two cases below are available
in [9]. The remaining achievability proof is presented graph-
ically using the block representation introduced in Section
IV-A. We note that all achievability proofs operate over a
single channel use. All proofs are by inspection rather than
through the systematic and judicious choice of RVs in a
general achievable rate region such as that of [3]–a topic left
for future work.
• Capacity for weak cognition at both decoders:when

n11 ≥ n1c and n22 ≥ n2c the cognitive linksn1c and n2c

convey fewer clean bits than both direct linksn11 and n22

respectively, and the outer bound reduces toR1 ≤ n11, R2 ≤
n22, achieved by keeping the cognitive relay silent.
• Capacity for strong cognition at both decoders:when

n11 < n1c, n22 < n2c the cognitive linksn1c andn2c convey
more clean bits than both direct linksn11 andn22 respectively,
and the outer bound simplifies to

R1 ≤ n1c, R2 ≤ n2c

R1 + R2 ≤ min{max{n2c + n11, n1c}, max{n22 + n1c, n2c}}.

In [9] the corner points are achieved by having the two
primary users send all the available clean bits along the
respective direct links, and the cognitive relay utilizes its most
significant bits to send bits for one user above the its direct
link, attaining the single rate bound, and may use (parts of)
its least significant bits to convey clean bits to the other user
without creating interference with the direct transmissions.
• Capacity for strong cognition for one decoder and

weak cognition at the other: when n11 ≥ n1c, n22 < n2c

the cognitive linkn1c conveys less clean bits to decoder 1 than
the direct linkn11; the reverse is true forn2c and n22. The
conditionn11 < n1c, n22 ≥ n2c is obtained by switching the
role of the users. In this case, the outer bound becomes:

R1 ≤ n11, R2 ≤ n2c

R1 + R2 ≤ n11 + max{n22, n2c − n1c}.

We again try to achieve the two corner points, but in this case
each requires a different achievability scheme. We denote the
binary vector ofRiP bits for useri asb

RiP

i . Similarly (bi)
j
k

indicates the bits between positionk and j of bi. We use0j

to indicate a vector of lengthj of all zeros.
Corner point 1: To achieve the corner point where the rate

bound forR1 meets the sum rate outer bound:
i) Transmitter 1 sendsn11 bits to receiver 1 as

X1 = [bn11

1 0
m−n11 ],



Fig. 3. The case of strong cognition for one decoder and weak cognition at
the other, achievability scheme for corner point 1.

ii) The cognitive relay sends[n2c − n1c]
+ bits in the least

significant bits from the cognitive relay to receiver 2 without
creating interference at receiver 1 as

Xc = [b
[n2c−n1c]

+

2 0
m−[n2c−n1c]

+

],

iii) Transmitter 2 sends[n22 − [n2c − n1c]
+]+ bits to be

received above the bits broadcasted from the cognitive relay
at receiver 2 as

X2 = [(b2)
[n2c−n1c]

++[n22−[n2c−n1c]+]+

[n2c−n1c]+
0

m−[n22−[n2c−n1c]+]+ ].

Fig. 3 graphically illustrates the scheme.
Corner point 2: To achieve the corner point where the

rate bound forR2 meets the sum rate outer bound, we use
a similar strategy as for the previous corner point, but this
time transmitter 1 sends additional bits above the interference
coming from the cognitive relay, as:
i) Transmitter 2 sendsn22 bits for receiver 2 through the direct
link

X2 = [bn22

2 0
m−n22 ],

ii) The cognitive relay sendsn2c − n22 bits in the most
significant bits for receiver 2 achieving the full rateR2 = n2c

Xc = [bn2c−n22

2 0
m−n2c+n22 ],

iii) Transmitter 1 sends[n1c − n2c + n22]
+ bits below the

interference from the cognitive relay at receiver 1. It also
transmits n11 − n1c bits that will be received above the
interference level from the cognitive relay as

X1 = [bn11−n1c

1 0
min{n1c,n2c−n22}

(b1)
n11−n1c+[n1c−n2c+n22]

+

n11−n1c
0

m−n11 ].

Fig. 4 graphically illustrates the scheme.

V. CONCLUSIONS

In this work we derived the first general outer bounds for
the interference channel with a cognitive relay and showed
the achievability of the proposed outer bound for the high-
SNR deterministic approximation of the Gaussian interference
channel with a cognitive relay for certain parameter regimes.
The proposed outer bound is also tight for the deterministic

Fig. 4. The case of strong cognition for one decoder and weak cognition at
the other, achievability scheme for corner point 2.

channel models it encompasses: the deterministic broadcast
channel, certain deterministic interference channels, and the
deterministic cognitive interference channel. Our results leave
multiple interesting open questions. We are currently investi-
gating whether the presented high-SNR outer bound is tight
in all parameter regimes. Outcomes and insights obtained for
the general high-SNR capacity region will be then used to
possibly determine a constant gap between an inner and our
outer bound for the Gaussian channel–a result that would
generalize numerous “constant gap” results including thatof
the interference and cognitive interference channels.
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