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Abstract—Wireless relays extend coverage, improve spectral
efciency, and enhance reliability and rates of wireless cellu-
lar communication systems. In this work, we introduce the
fundamental notion of asymmetric cooperation among cooper-
ating relays in cellular downlinks - different relays are party
to different but overlapping knowledge about the messages
transmitted from the base station. We argue that asymmetric
cooperation arises naturally in most two-phase protocols in
which the base station rst transmits information to multiple
relays that then cooperatively forward the information to the
recipient mobile stations in the cell. For a system in which two
relays are of the decode-and-forward type and cooperate using
linear precoding to communicate with two mobile stations, we
formulate the general, but complicated, throughput optimization
problem and derive several results that considerably simplify
the optimization. We show that under different channel cong-
urations and fairness criteria, asymmetric cooperation is often
the throughput-maximizing option. Under typical congurations,
a 20-30% throughput enhancement is achieved compared to
conventional full-cooperation systems.

Index Terms—Relays, fading channels, cooperation, linear
precoding, asymmetry, SDMA, MIMO.

I. INTRODUCTION AND MOTIVATION

RELAYS, both !xed and mobile, promise great gains in
wireless cellular and ad-hoc networks. Relays promise to

extend cell coverage, boost transmission rates, improve spec-
tral ef!ciency, and achieve all this at much lower costs than
deploying full-"edged base stations (BSs) or nodes [1]–[5].
Consequently, recent literature [6]–[8] and standards such as
IEEE 802.16j [9] have proposed augmenting cellular networks
with !xed or mobile wireless relays. In ad-hoc networks,
relays have traditionally been considered as wireless devices
that receive and subsequently retransmit a signal or message
in a multi-hop scenario. However, recent results have extended
their use to more general multi-terminal cooperative networks
[10]–[13].

In this work, we investigate the gains of cooperation be-
tween relays in a cellular setting. We consider a simple but
fundamental scenario in which a single-antenna BS wishes
to communicate distinct messages to multiple single-antenna
mobile stations (MSs) via multiple single-antenna relays. As
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often considered in the literature and standards, downlink
communication is performed in a canonical two-hop or two-
phase manner [1], [2], [14]–[16].

In the !rst phase, the messages are transmitted by the
BS to the relays in a TDMA fashion, which is throughput-
optimal for a single antenna broadcast channel [17], [18]. In
the second phase, the relays cooperate together in transmitting
the received message(s) to the MSs. In this paper, we introduce
an important and, hitherto ignored, fundamental notion of
asymmetric cooperation that inevitably arises in such scenar-
ios. This asymmetry arises because the relays might receive
unequal (but overlapping) amounts of data from the BS in
the !rst phase. The extent of this asymmetry depends on the
differences in the fading states of the BS to relay channels and
the duration and rate of BS transmission. This is illustrated in
Fig. 1, which considers one BS, two relays, and two MSs. In
Fig. 1(a), the relay cooperation is symmetric as both relays
have the messages for both mobiles. In contrast, in Fig. 1(b),
the cooperation between the relays is asymmetric as relay 1
has messages for both MSs, while relay 2 has a message for
only one MS (MS 2). Intuitively, while the former scenario
in which full transmitter cooperation is possible can achieve a
higher relay-to-MS throughput in phase two than the latter
asymmetric cooperation scenario, enabling full transmitter
cooperation requires a larger phase one transmission time, as
both messages must be conveyed to the relays rather than a
subset of them.

Many recent papers have studied two-hop downlink cellular
systems. Given the large body of literature in this area, we
refer the interested reader to the informative overviews in [2],
[10], [19], [20], and references therein, for more theoretical
and practical perspectives on the problem. However, asymmet-
ric relay cooperation has not been considered to the best of
our knowledge. The most closely related papers are grouped
and discussed below.
• Cellular systems with non-cooperative relays: Down-
link scheduling with non-cooperative relays has been studied
in [20]–[22]. The work in [20] considers an adaptive downlink
system that uses either direct transmission to the MS or
a two-hop transmission with relays, but does not consider
relay cooperation. In [21], the authors propose a centralized
downlink scheduling scheme in a cellular network that controls
transmission over multiple hops of relays, resulting in higher
spatial reuse. But, cooperation between relay nodes is not
considered.
• Cellular systems with symmetric relays: Reference [23]
considers the transmission of multiple messages via relays in
a two-stage protocol. As before, relay cooperation is restricted
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to frequency planning, and no asymmetric cooperation is
considered.
• Ad-hoc networks with cooperating relays: A large num-
ber of papers explore cooperative two-hop relays (see, e.g.,
[12], [16], [22], [24]–[26]). However, they consider only the
transmission of a single message via multiple, cooperating
relays [16], [26] or multiple messages via a single relay [22].
Relaying with one or more multiple-antenna relays was con-
sidered in [22], [27], [28]. While multiple antennas can be
interpreted as multiple (closely) cooperating relays, the co-
location of the antennas precludes any asymmetry in message
knowledge among antennas.

This paper focuses on the communication of multiple mes-
sages via multiple decode-and-forward relays. We provide
a general formulation of the relay cooperation problem as
one of optimizing the total throughput of the system, which
takes into account the time spent in transmitting messages in
both the BS-to-relays and relays-to-MSs transmission phases.
Given its relative simplicity, practical feasibility, and good
performance, we focus on linear precoding for relay cooper-
ation. Each relay sends a linear combination of the messages
it receives from the BS in the !rst phase, and these linear
coef!cients may be jointly designed. We demonstrate, through
analysis and simulation, that the cases where the relays have
asymmetric message knowledge are relevant and often arise
when optimizing throughput. As we shall see, the extent to
which this asymmetry is relevant depends on the throughput
optimization criterion. We therefore optimize throughput for
two diametrically opposed throughput criteria – maximum
throughput, in which the sum throughput to all the MSs
is maximized, and extreme fairness, in which each MS is
required to be served with the same rate.1 We prove results that
analytically simplify the optimization signi!cantly for both
these fairness criteria. For analytical feasibility and simplicity
of presentation, we assume that the number of messages, MSs,
and relays, are all two. As we shall see, even this simple case
is theoretically rich and relevant. Our results demonstrate that
asymmetric cooperation is optimum in 20-30% of all cases and
should thus be considered in future systems. Our contributions
are the following:

• We introduce the notion of asymmetric relay coopera-
tion, and set up a formulation of the optimum system
parameters for cooperative relaying including asymmetry.
This allows us to offer both quantitative and qualitative
explanations why asymmetric cooperation can increase
overall throughput.

• For two diametrically opposite fairness criteria, we sim-
plify the generic formulation, which requires optimization
over six parameters, to an optimization over two param-
eters.

• By numerical evaluation, we demonstrate that asymmetric
cooperation is optimum in 20 to 30% of all cases and thus
should be considered in future systems.

The remainder of the paper is structured as follows: Sec-
tion II formulates the two-phase, linear precoding relay co-

1We use the term extreme since requiring that each user be served at the
same rate each frame, regardless of channel conditions, is quite a stringent
condition.
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Fig. 1. An example of (a) Symmetric cooperation: relays both wish to
transmit the same number of messages to the same MSs, and (b) Asymmetric
cooperation: one relay wishes to transmit to two MSs, the other to one.

operation model and the throughput optimization problem
for two fairness criteria. Section III categorizes the optimal
parameters under the maximum throughput criterion. We see
that both symmetric cooperation and asymmetric cooperation
between the relays is a natural result of the optimization
problem. Section IV does the same for the extreme fairness
criterion. Section V numerically compares the performance of
different cooperation scenarios. We conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink in the cellular system outlined in
Fig. 2 with single BS, two relays, and two mobiles, MS 1 and
MS 2. We assume independent additive white Gaussian noise
with zero mean, unit variance at the two relays and two MSs.
We furthermore assume quasi-static fading channels [29],
whose complex channel gains are all known to the BS, while
other nodes require knowledge of the channels over which
they are receiving. How these channel gains are obtained
is beyond the scope of this work, but may, for example,
be obtained through the use of feedback. The BS, relays,
and MSs each have one transmit antenna. The gains of the
channels between the BS and relay 1 and relay 2 are denoted
as hBR1 and hBR2 ∈ C, respectively. The channels between
the two relays and the mobiles, MS 1 and MS 2 are given
by h1 = [h11, h21] and h2 = [h12, h22] ∈ C2, respectively,
shown in Fig. 2. We now look at our two-phase model, study
various message knowledge scenarios, and pose the overall
optimization problem.

A. Two phase downlink communication

Transmission from the BS to the MSs takes place in two
phases: during phase 1 the BS broadcasts the messages 1 and
2 sequentially in a TDMA fashion, as shown in Fig. 2. This
involves the BS broadcasting message 1, of size n1 bits, at
a rate R(1)

1 for time t1 = n1/R(1)
1 , followed by message 2,

of size n2 bits, at a rate R(1)
2 for a (possibly different) time

t2 = n2/R(1)
2 . Notice that given two of the three variables n1,

t1, and R(1)
1 , the third may be determined (and likewise for n2,

t2, and R(1)
2 ). Messages 1 and 2 are encoded as the symbols2

2In this work, we assume standard information theoretic random Gaussian
codebooks and codewords [30].
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Fig. 2. Transmission takes place in two phases: in phase 1 the BS broadcasts
messages in TDMA fashion: message message 1 for t1 time units, then
message 2 for t2 time units. During phase 2 the relays simultaneously transmit
all received messages to the MSs. Illustrated are the channel gains, power
constraints, rates, and input-output variables.

U1 and U2. The BS’s transmit power is limited to PB and as
we are maximizing throughput, it will always be optimal to
transmit at this full power PB . The relays are assumed to be of
the decode-and-forward type – they either decode a message
fully or not at all [10], [31], [32]. The TDMA structure of
phase 1 exploits the broadcast nature of the wireless channel
as every relay overhears the BS’s transmission and may decode
the transmitted messages if its rate is below the capacity of
its BS-relay link. The link capacity, CBRi , for a relay i, i = 1
or 2, is given by3

CBRi = log2

(
1 + |hBRi |2PB

)
bits/channel use. (1)

The TDMA structure is simple to implement, and is optimal,
in terms of maximizing throughput, in the single-antenna
scenario we consider [17].

The relays decode the messages in phase 1 and re-encode
them for phase 2. Unlike phase 1 in which each message is
transmitted in an interference-avoiding TDMA fashion from
one transmitter, in phase 2, both relays simultaneously transmit
linearly precoded versions of the messages they received in
phase 1. While the simultaneous transmission increases data
rates, it also leads to interference, which has to be mitigated
through careful precoding.

Speci!cally, the phase 2 transmitted signal vector is denoted
by X = [X1 X2]′, where Xi is the symbol transmitted by relay
i. Here A′ denotes the transpose of a matrix A. X is a linear
combination of the two messages, given by

X = BU, where B =
[
b11 b12

b21 b22

]
∈ C2×2.

The matrix B is the linear precoding matrix and U = [U1 U2]′
are the encoded messages 1 and 2, respectively. The signals
Y1 and Y2 received at MS 1 and MS 2, respectively, are given
by

Y = HBU + N =
[
h11 h21

h12 h22

] [
b11 b12

b21 b22

] [
U1

U2

]
+

[
N1

N2

]
,

(2)

3We drop the usual factor of 1/2 seen in the classical Shannon formula
1
2 log2(1+SINR) as it a !xed scaling factor and plays no role in the overall
throughput optimization that follows later on.

where Y = [Y1 Y2]′ and N = [N1 N2]′ is additive,
white circularly symmetric Gaussian noise with covariance
E[NN′] = I2, the 2 × 2 identity matrix. We assume,
without loss of generality (w.l.o.g.), that N is zero-mean
and H is invertible, which is ful!lled with probability 1
when its elements are random. The transmissions by the
relays are subject to a total relay power sum constraint of
PR.4 Assuming, w.l.o.g., that E[UU′] = I2, the sum-power
constraint on the signals transmitted by the two relays becomes
|b11|2 + |b12|2 + |b21|2 + |b22|2 ≤ PR.

In phase 2, we assume that each MS receiver decodes its
respective desired signal by treating the undesired signal(s) as
noise; no interference cancellation is assumed.5 The signal to
interference noise ratios (SINRs) at the two receivers, γ1 and
γ2, and the corresponding information-theoretic phase 2 rates
for the Gaussian noise channels, R(2)

1 and R(2)
2 , are then given

by

γ1 =
|h11b11 + h21b21|2

|h11b12 + h21b22|2 + 1
(3)

⇒ Phase 2 rate for message 1 = R(2)
1 = log2 (1 + γ1)

(4)

γ2 =
|h12b12 + h22b22|2

|h12b11 + h22b21|2 + 1
(5)

⇒ Phase 2 rate for message 2 = R(2)
2 = log2 (1 + γ2) .

(6)

B. Asymmetric cooperation: intuitive explanation

The system setup for phase 2 shown in (2) resembles
standard space division multiple access (SDMA) with linear
precoding schemes. However, there is one critical difference:
depending on the channel gains hBR1 and hBR2 and the phase
1 transmission parameters (ni, ti, R

(1)
i ), the relays may obtain

different subsets of messages. This imposes constraints on
some elements of the linear precoding matrix B because a
relay cannot transmit a message it has not received. Assuming
w.l.o.g. that |hBR1 | > |hBR2 |, we see that if relay 2 can
decode the message from the BS, then relay 1 can as well.
Four possible scenarios in which two messages are sent
during phase 2 are illustrated in Fig. 4. We also illustrate the
corresponding forms of the linear precoding matrices for phase
2; a zero element arises when a relay is unable to obtain a
certain message. The !gure also illustrates the phase 1 rates
(R(1)

1 , R(1)
2 ) that give rise to the four cases, which we outline

next.
The four dual-message cases may be explained as follows.

In Case 1, where one relay has decoded both messages, while
the other has not decoded any, phase 2 corresponds to the
classical broadcast channel [17], [30], [34] and two elements

4A sum-power constraint allows for more "exibility than per-antenna power
constraints as it allows a more opportunistic usage of the links and provides
a more optimistic view of cooperation. However, in scenarios where the
relay transmissions are limited by their power ampli!ers, per-antenna power
constraints may be more practical. For interesting aspects of per-antenna
power constraints in downlink systems, which are beyond the scope of this
paper, see [33].

5While this achieved rates that are pessimistic, it also ensures that they are
practically and easily achievable.
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of B are forced to 0. Case 4 corresponds to the classical
SDMA problem in which the two relays jointly transmit
two messages to the two MSs. In Case 2, relay 1 has both
messages while relay 2 only has message 1. Therefore, the
signal transmitted by relay 2, X2, cannot contain message 2’s
encoding, U2 and consequently b22 is forced to 0. Similarly,
in Case 3, relay 1 has both messages while relay 2 has only
message 2, which forces b21 = 0. We shall therefore refer to
Cases 1 and 4 as symmetric and Cases 2 and 3 as asymmetric.
The constraint that B must be triangular for the asymmetric
cases changes the space of linear precoding matrices over
which SDMA is optimized.

Note that the two phases are coupled. Phase 1, which
determines the time needed to pass the messages from the
BS to the relays, leads to different con!gurations of message
knowledge for phase 2, and thus leads to correspondingly
different transmission times required by the relays to forward
the messages. In other words, complete message knowledge at
the relays leads to the fastest message forwarding, but for some
channel con!gurations the price (in terms of time required in
phase 1 to achieve it) can be too high.

C. System throughput optimization

We now formulate the total throughput optimization prob-
lem. The overall throughput is the ratio of the total number
of bits n1 + n2 to the total time taken to transmit them over
both phases, as shown in (7).

Total
throughput =

n1 + n2

n1

R(1)
1

+ n2

R(1)
2

+ max
(

n1
log2(1+γ1) ,

n2
log2(1+γ2)

) .

(7)
Phase 1 also impacts phase 2 by constraining the form
the linear precoding matrix B can take. The overall sum
throughput optimization problem may then be formulated as
in (8)–(14) and involves determining the optimal rates R(1)

1

and R(1)
2 , linear precoding matrix B and the number of bits

n1 and n2. This is subject to the constraints in equations (11)–
(14), which mandate that a decode-and-forward relay can only
transmit a message that it has successfully decoded.

In order to minimize the time taken to transmit the mes-
sages, R(1)

1 and R(1)
2 must be either CBR1 or CBR2 . Thus,

there are only 22 = 4 possible optimal values for the
rate pairs (R(1)

1 , R(1)
2 ) 6, which correspond to Cases 1–4 of

Fig. 4. Given the unavoidable combinatorial nature of the
constraints, the overall maximum is obtained by optimizing
each of the four cases separately and choosing the one with
the highest throughput. Here we note that determining the
optimal transmit parameters, and, in particular, the optimal
B requires knowledge of all fading coef!cients. We assume
this optimization is performed at the base station and that B is
forwarded to the relays, enabling cooperation. The relays and
MSs need only the channel gain parameters of the channels
over which they are receiving.

6We deal with single message scenarios for which R
(1)
i = 0 separately.

max
B, n1, n2

R(1)
1 , R(1)

2

n1 + n2

n1

R(1)
1

+ n2

R(1)
2

+ max
(

n1
log2(1+γ1)

, n2
log2(1+γ2)

)

(8)
s.t. n1, n2 ≥ 0 (9)

|b11|2 + |b12|2 + |b21|2 + |b22|2 ≤ PR (10)

If R(1)
1 ≥ log2

(
1 + |hBR1 |2PB

)
then b11 = 0 (11)

If R(1)
2 ≥ log2

(
1 + |hBR1 |2PB

)
then b12 = 0 (12)

If R(1)
1 ≥ log2

(
1 + |hBR2 |2PB

)
then b21 = 0 (13)

If R(1)
2 ≥ log2

(
1 + |hBR2 |2PB

)
then b22 = 0. (14)

D. Fairness metrics

The above formulation, which strives to maximize the total
throughput, places no additional constraint on n1 and n2,
and can even lead to one of them being zero in the optimal
solution. This is the well-established maximum throughput
metric. While it is certainly useful in a multi-user setting, it
sacri!ces fairness. For example, a user that consistently has
a worse channel than the other user may be starved of data.
We therefore also consider the diametrically opposite extreme
fairness criterion, which mandates that the same amount of
information (n1 = n2) be transmitted to each MS. The overall
throughput optimization problem for this criterion is identical
to that of the maximum throughput, except that (9) is replaced
by n1 = n2 > 0.

III. MAXIMUM THROUGHPUT OPTIMIZATION

We now proceed to analytically solve the maximum
throughput optimization problem. For this, we !rst prove two
lemmas which apply to maximum throughput optimization in
general. We then prove, for each of four cases, a series of
lemmas/theorems that simplify the problem considerably.

Lemma 1: For a given R(1)
1 and R(1)

2 , the optimal through-
put occurs when the entire relay transmit power budget is
consumed, that is, the inequality |b11|2 + |b12|2 + |b21|2 +
|b22|2 ≤ PR in (10) may be replaced by an equality.

Furthermore, the optimal number of bits n1, n2 in (8) is one
of three cases. We note that since only the ratio of n1 to n2

is important, we can w.l.o.g. take either n1 or n2 to be 1.
Lemma 2: The optimal number of bits of messages 1 and

2, (n1, n2) is either: (i) (n1, n2) = (1, 0), or (ii) (n1, n2) =
(0, 1), or (iii) (n1, n2) =

(
log2(1+γ1)
log2(1+γ2)

, 1
)
.

We !rst consider and optimize the parameters for the
two single-message solutions (i) (n1, n2) = (1, 0), or (ii)
(n1, n2) = (0, 1) before turning to the more involved third
dual-message solution in which n1 and n2 are both non-zero.

A. Single message solutions (n1 = 0 or n2 = 0)

As shown in Lemma 2, under the maximum throughput
optimization criterion, it may be throughput-optimal to send
a single message to only one of the two receivers. There are
two possible optimal paths for message 1 to take, as shown in
Fig. 3(a) and (b), and there are two possible optimal paths for
message 2 to take, as shown in Fig. 3(c) and (d). Which of
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Fig. 3. Four message knowledge scenarios when |hBR1 | ≥ |hBR2 |, and a single message is sent. The corresponding phase 1 and phase 2
rates are illustrated.

these four is best depends on the relative values of the channel
gain amplitudes |hBR1 |, |hBR2 |, |h11|, |h12|, |h21| and |h22|.
When a single message is sent, the throughput is still given
by (7) with the appropriate n1 or n2 set to 0, and R(1)

i , R(2)
i

as in Fig. 3. This yields

Overall throughput, single message =
R(1)

i R(2)
i

R(1)
i + R(2)

i

, (15)

if ni &= 0, i ∈ {1, 2}.

B. Dual-message solutions

As shown in Lemma 2, it may alternatively be optimal for
two messages to be sent, in which case the ratio of rates n1/n2

must equal the !nite, positive value x∗ := log2(1+γ1)
log2(1+γ2) . In this

case, the simpli!ed optimization problem is given by

max
B, R(1)

1 , R(1)
2

log2(1 + γ1) + log2(1 + γ2)
1

R(1)
1

log2(1 + γ1) + 1

R(1)
2

log2(1 + γ2) + 1
(16)

s.t. |b11|2 + |b12|2 + |b21|2 + |b22|2 = PR. (17)

It is also subject to the decode-and-forward conditions of (11)–
(14), which are not repeated.

We now solve the optimization problem in (16)–(17) and
(11)–(14) for the four cases (see Fig. 4) individually since each
case imposes different constraints on B.7 As the novelty of this
problem lies primarily in the consideration of the asymmetric
cases, we devote most of our attention to Cases 2 and 3, with
standard techniques applying to symmetric Cases 1 and 4. Our
main result lies in Theorem 1, whose proof in the appendix
makes use of a series of lemmas. For convenience, we de!ne
the function C(x) as C(x) $= log2(1 + x).

1) Case 1 (Only one active relay): In Case 1, the relay
with the better channel to the BS obtains both messages
during phase 1, which it then transmits during phase 2 to
the MSs. In this case, since |hBR1 | > |hBR2 | as per our
assumption, the phase 1 rates to relay 1 for MS 1 and MS
2 messages are R(1)

1 = R(1)
2 = log2(1 + |hBR1 |2PB). Relay

7In general, if there are R relays and M mobile terminals (and, hence,
M messages), MR different cases need to be considered. Of these, only 2
are symmetric, while the rest are all asymmetric, with different relays having
different, but overlapping, subsets of messages to transmit.

2 is unable to obtain any of the messages; thus, during phase
2, we have b21 = b22 = 0. As the following Lemma shows,
the optimization can now be simpli!ed to a one-dimensional
parameter search problem.

Lemma 3: In case 1 (only one active relay) in which w.l.o.g.
|hBR1 | > |hBR2 |, the optimization problem reduces to the
following single parameter search in t:

max
t∈[0,2π]

C
(

|h11|2 cos2(t)PR

|h11|2 sin2(t)PR+1

)
+ C

(
|h12|2 sin2(t)PR

|h12|2 cos2(t)PR+1

)

C
(

|h11|2 cos2(t)PR
|h11|2 sin2(t)PR+1

)

R
(1)
1

+
C

(
|h12|2 sin2(t)PR

|h12|2 cos2(t)PR+1

)

R
(1)
2

+ 1
,

(18)

where b11 =
√

Pr cos(t) and b12 =
√

Pr sin(t), and

(n1, n2) =




C

(
|h11|2 cos2(t)PR

|h11|2 sin2(t)PR+1

)

C
(

|h12|2 sin2(t)PR
|h12|2 cos2(t)PR+1

) , 1



.

2) Asymmetric Cases 2 and 3: Cases 2 and 3 involve
asymmetric message knowledge as relay 1 has both messages
while relay 2 has only a single message. We solve the
asymmetric Case 3, in which relay 1 has both message 1 and
message 2, while relay 2 has only message 2, below. The
optimization for Case 2 follows from it using an appropriate
permutation of indices.

The linear precoding matrix B is thus of the form B =[
b11 b12

0 b22

]
, which result in SINRs in phase 2 of

γ1 =
|h11b11|2

|h11b12 + h21b22|2 + 1
, γ2 =

|h12b12 + h22b22|2
|h12b11|2 + 1

.

(19)
Consider the following change of variables from b11, b12, b22

to α, β, whose use will be made clear in Theorem 1:
[
α
β

]
= H

[
b12/b11

b22/b11

]
,

[
g11 g12/2

g12/2 g22

]
= (HH†)−1.

(20)
Here A† denotes the conjugate transpose of the matrix A.
With this change of variables, the optimization is over six
parameters: b11, α, β (each is a complex number). In our main
result, in Theorem 1, we derive a parametric representation
for the optimization variables, which reduces the overall
optimization problem from one over six variables to one over
two variables.
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Case 1 Case 2 Case 3 Case 4
(symmetric) (asymmetric) (asymmetric) (symmetric)

Base
station

Relay 
1

Relay 
2

MS 
1

MS 
2

Base
station

Relay 
1

Relay 
2

MS 
1

MS 
2

Base
station

Relay 
1

Relay 
2

MS 
1

MS 
2

Base
station

Relay 
1

Relay 
2

MS 
1

MS 
2

Message 1

Message 2

B =
[

b11 b12

0 0

]
B =

[
b11 b12

b21 0

]
B =

[
b11 b12

0 b22

]
B =

[
b11 b12

b21 b22

]

(R(1)
1 , R(1)

2 ) = (CBR1 , CBR1) (R(1)
1 , R(1)

2 ) = (CBR2 , CBR1) (R(1)
1 , R(1)

2 ) = (CBR1 , CBR2) (R(1)
1 , R(1)

2 ) = (CBR2 , CBR2)

Fig. 4. Four dual-message knowledge scenarios when |hBR1 | ≥ |hBR2 |, and the corresponding linear precoding matrices B.

Theorem 1: The optimal values of |α| and |β| lie on the
ellipse which can be parameterized by the variables t ∈ [0, 2π]
and |b11| as

|α(t, |b11|)| = a′ cos(φ) cos(t) + b′ sin(φ) sin(t) (21)

|β(t, |b11|)| = −a′ sin(φ) cos(t) + b′ cos(φ) sin(t), (22)

where φ = 1
2 cot−1

(
g2−g1
|g12|

)
, and a′ and b′ are

(a′)2 =
2(PR/|b11|2 − 1)(g1g2 − |g12|2

4 )

( |g12|2
4 − g1g2)((g2 − g1)

√
1 + |g12|2

(g1−g2)2
− g2 − g1)

(23)

(b′)2 =
2(PR/|b11|2 − 1)(g1g2 − |g12|2

4 )

( |g12|2
4 − g1g2)((g1 − g2)

√
1 + |g12|2

(g1−g2)2
− g2 − g1)

.

(24)

Consequently, the maximum throughput optimization problem
reduces to the following two-parameter problem:

max
t,|b11|

C
(

|h11|2
|α(t,|b11|)|2+1/|b11|2

)
+ C

(
|β(t,|b11|)|2

|h12|2+1/|b11|2

)

C
(

|h11|2
|α(t,|b11|)|2+1/|b11|2

)

R(1)
1

+
C

(
|β(t,|b11 |)|2

|h12|2+1/|b11|2

)

R(1)
2

+ 1

(25)

s. t. |b11|2 ≤ PR, t ∈ [0, 2π]. (26)

Notice that while the symmetric Case 1 reduces to a single
variable optimization problem, the asymmetric Cases 2 and 3
reduce to a two-variable optimizations.

3) Case 4 (Fully cooperating relays): In this case, both
relays are able to decode both messages. This implies that the
BS transmits at the worst relay’s capacity in phase 1, i.e.,
R(1)

1 = R(1)
2 = log2(1 + |hBR2 |2PB) = C(|hBR2 |2PB).

Phase 2 then reduces to a classical 2 transmit antenna, 2
single receive antenna Gaussian multiple-input multiple-output
broadcast channel under linear precoding constraints. Maxi-
mizing the sum-rate of the MIMO broadcast channel subject
to linear precoding constraints is a non-convex problem whose
closed-form solution remains an open and dif!cult problem
[35], [36]. However, progress can be made along the lines

of [35], [37]. We note that our problem is not equivalent to
the maximum throughput problem, but is related. Since our
focus is on the novel Cases 2 and 3, we simply state the Case
4 !nal optimization problem in (27)–(28), which is solvable
using the results cited above.

max
B

C(γ1) + C(γ2)
1

R
(1)
1

C(γ1) + 1

R
(1)
2

C(γ2) + 1
(27)

s.t. |b11|2 + |b12|2 + |b21|2 + |b22|2 = PR. (28)

4) Summary of Maximum Throughput Optimization: In
summary, the optimal two-phase transmission parameters
n1, n2,B, R(1)

1 , R(1)
2 may be found as shown in the "ow-

graph in Fig. 5. The problem of linear precoding for broadcast
channels is a notoriously dif!cult problem for which no
general closed form solutions exist [35], [36]. We emphasize
that our contributions lie in the introduction of the asymmetric
cooperation scheme and in a signi!cant reduction in the
parameter optimization problem for this scheme.

IV. EXTREME FAIRNESS OPTIMIZATION

As mentioned, the maximum throughput optimization cri-
terion is unfair as it can lead to starvation of certain MSs.
We thus optimize throughput subject to a very different
extreme fairness criterion, which captures an alternate view of
the bene!ts of asymmetric relay cooperation. Under extreme
fairness, we require, at each time frame (or each new set
of channel coef!cients) that the same amount of information
be sent to each MS, i.e., n1 = n2. We henceforth w.l.o.g.
assume that n1 = n2 = 1. The overall throughput optimization
problem is then given as follows:

max
B, R(1)

1 , R(1)
2

2
1

R(1)
1

+ 1

R(1)
2

+ max
(

1
C(γ1) ,

1
C(γ2)

) (29)

s. t. |b11|2 + |b12|2 + |b21|2 + |b22|2 = PR. (30)

As always, this is also subject to the decode-and-forward
constraints of (11)–(14). It can be shown that Lemma 1, which
states that the relays must transmit at the maximum allowed
transmit power to maximize overall throughput, still applies.
It is therefore re"ected in the above formulation.
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Summary: maximum throughput optimization 

We wish to solve the 
optimization in (6)-(12)

Step 1: Calculate single message 
parameters, rates, and throughputs  

using Figure 4 and (13)

Step 2: Calculate dual message 
parameters, rates, and throughputs  
using simplied optimizations (16), 

(23)-(24), (25)-(26)

Step 3: Select the scheme 
and transmission parameters 
with the largest throughput 

Fig. 5. Flowgraph of the maximum throughput optimization which could
lead to asymmetric relay cooperation.

As in the maximum throughput criterion, four possible
cases must again be considered. However, this time single-
message scenarios are irrelevant, since they would lead to
zero throughput as n1 = n2. Each case again corresponds to
different !xed phase 1 rates. The following restatement of the
optimization problem above sheds further light on the optimal
parameter set:

max
R

(1)
1 ,R

(1)
2

2
1

R(1)
1

+ 1

R(1)
2

+ minB max
(

1
C(γ1)

, 1
C(γ2)

) (31)

s. t. |b11|2 + |b12|2 + |b21|2 + |b22|2 = PR. (32)

The linear precoding matrix B only affects the denominator
of (31) and may thus be considered independently. The fol-
lowing Lemma signi!cantly narrows the search space of the
optimal B for all four cases:

Lemma 4: If f1(t), f2(t) are two continuous, differen-
tiable functions over a compact set T , then the argmin of
mint∈T max(1/f1(t), 1/f2(t)) lies either:

1) At the boundary of T ,
2) At point(s) tX where f1(tX) = f2(tX), if such point(s)

exist, or
3) At a local minima of either 1/f1(t) or 1/f2(t).

The four !nal extreme fairness optimizations, are stated in
their simpli!ed form, as in (33)-(35). Cases 1, 2 and 3 are
obtained using the substitutions and steps similar to Lemma 3
and Theorem 1 with n1 = n2 = 1 and the appropriate CBR1

and CBR2 , while no simpli!cations are made for Case 4.

Base
station

MS 
1

MS 
2

 5 units  5 units

Relay 
2

Relay 
140o

40o

40o

Base
station  5 units  5 units

Relay 
140o

40o

40o

MS 
1

MS 
2

Random MS placement Fixed MS placement

Relay 
2

Fig. 6. Simulation setup: Relays are at equal distance from the base
station and are spaced at angles 40◦ on an arc of radius 5 units. Two
different models for mobile placement are simulated: MS positions
are random in the shaded sector for the random MS placement, or at
the !xed points in the xed MS placement.

V. SIMULATION RESULTS

In this section we use the analytical results of Secs. III
and IV and present simulation results for the linear precod-
ing schemes under the maximum throughput as well as the
extreme fairness criteria. The throughput is evaluated over an
ensemble of random channel realizations. We also track how
often each of the four cases of Fig. 4 is responsible for this
optimal throughput.

We assume channel gains hij between transmitter i and re-
ceiver j separated by distance dij , are given by hij = fij/d2

ij ,
where fij models the fast fading of the link between i and j,
which is assumed to be Rayleigh distributed and independently
distributed for each link. The relays are placed along the arc
of radius 5 units, and are separated by 40◦, as shown in Fig.
6. We consider two geometric models for the placement of
the MSs: in random MS placement (Figs. 7–9) the MSs are
randomly placed in the shaded slice covering the distance
between 5 and 10 from the BS. In xed MS placement (Figs.
10–12) , the MSs are !xed on an arc of radius 10 units, and
are equally spaced separated by 40◦. The only randomness in
the xed MS placement model comes from the fading. The
random MS placement will highlight average performance of
the schemes (averaged over both fading and MS position),
while the !xed MS placement averages only over Rayleigh
fading and re"ects the particular alignment of the MSs with the
relays. For each of 2000 sets of geometric positions and fades,
the throughputs for all four message knowledge cases are
obtained by numerically solving the simpli!ed optimization
problem.

A. Comparison of symmetric and asymmetric cases

For the two geometric placements of the MSs and relays
mentioned above, we compare the fraction of time each of the
four message knowledge cases are selected. For the maximum
throughput criterion, we also include the single message case
in this comparison.

1) Random MS placement: Figure 7 demonstrates the frac-
tion of the time each of the four cases of Fig. 4, as well
as the single message case (for maximum throughput only)
are optimal under the max throughput (black) and extreme
fairness (grey) constraints. We can see that under the max
throughput criterion, it is optimal to send a single message
roughly half of the time. The symmetric Case 1 is never
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Simplied Case 1:

2

1
CBR1

+ 1
CBR2

+ mint∈[0,2π] max

(
1

C
(

|h11 |2 cos2(t)PR
|h11|2 sin2(t)PR+1

) , 1

C
(

|h12 |2 sin2(t)PR
|h12|2 cos2(t)PR+1

)

) (33)

Simplied Case 3 (Case 2 analogous):

2

1
CBR1

+ 1
CBR2

+ mint∈[0,2π],|b11|≤PR
max

(
1

C
(

|h11|2
|α(t,|b11 |)|2+1/|b11|2

) , 1

C
(

|β(t,|b11 |)|2
|h12|2+1/|b11|2

)

) (34)

Simplied Case 4:

2

1
CBR2

+ 1
CBR2

+ min|b11|2+|b12|2+|b21|2+|b22|2=PR
max

(
1

C
(

|h11b11+h21b21|2
|h11b12+h21b22|2+1

) , 1

C
(

|h12b12+h22b22|2
|h12b11+h22b21|2+1

)

) (35)

selected, while the asymmetric Cases 2 and 3 are each optimal
roughly 20% of the time, and the fully symmetric Case 4 is
optimal roughly 5% of the time. Thus, when it is optimal
to transmit 2 messages, the asymmetric scenarios are almost
always optimal. The grey bars in Fig. 7 correspond to the
extreme fairness criterion. There, Case 1 is optimal 35% of
the time, Cases 2 and 3 are each optimal for about 7%, and
Case 4 is optimal for about 50% of the time. This indicates that
full cooperation is desirable when two equal length messages
must be transmitted. Thus, the selection of the best relay
cooperation case is highly dependent on the criterion being
optimized.

2) Fixed MS placement: Figure 10 demonstrates the frac-
tion of time the 4 cases and the single message case are
optimal when the MSs are placed at the !xed positions shown
in Fig. 6. Note again that the single message case is possible
only under the maximum throughput optimization criterion.
Because of the geometry of the layout, where relay 1 is
aligned with mobile 1 and relay 2 is aligned with mobile 2,
the asymmetric Case 3 is optimal roughly 50% of the time
under the max throughput criterion, in contrast to the 20%
for Case 2. The single-message case is optimal about 30%
of the time, while Case 4 is optimal about 3% of the time.
Under the extreme fairness criterion, Case 1, 3 and 4 are
optimal 25%, 5% and 70% of the time, respectively. Thus,
the asymmetric case is particularly relevant for the maximum
throughput optimization criterion.

We next compare the gains from relay cooperation with
two conventional non-cooperative schemes. For this purpose,
we show the cumulative distribution functions (CDFs) of the
overall throughput. Plotting the CDF allows the visual and
numerical comparison of the performance of different schemes
which depend on random quantities (the MS placement and/or
fading), and illustrates the spread the performance of a partic-
ular scheme is around its average. The !rst baseline scheme
is the round-robin with relay scheme, in which the BS
transmits to each MS in a round robin fashion, transmitting
each message via the relay that has the best channel to the
MS for which the message is intended. The second relevant
baseline scheme that we consider is the best two-hop scheme
in which the two-hop BS–relay j–MS i path, which takes the

minimal time to transmit one unit of data, is chosen. For the
extreme fairness criterion, one message is sent to each MS
along the best 2 hop path to that MS, while for the maximum
throughput criterion, only one message is sent along the best
two-hop path of the best MS. The results are shown in Figs. 8,
9, 11, and 12. In both non-cooperative baselines, each MS
performs maximum ratio combine (MRC) [29]) of the signals
received from the BS and relay.8

We can see that relay cooperation, even after taking all the
transmission phases into account, does result in higher sum-
throughputs than the non-cooperative baselines. Despite not
using any form of MRC, the relay cooperation schemes still
perform better due to the spatial diversity offered by both
symmetric as well as asymmetric forms of cooperation. The
throughputs of the cooperative schemes are typically 20-30%
higher than those of the baselines.

VI. CONCLUSION

We considered a two-hop downlink cellular system with
cooperating relays. We introduced and motivated the study
of asymmetric cooperation as a possible optimal transmission
strategy in this downlink system. We set up an analytic
framework for which the optimal transmission parameters are
the solution of a notoriously dif!cult non-linear optimization
problem. Through a series of algebraic manipulations and
insights we reduced the optimization problem for the novel
asymmetric cooperation case from one over 6 variables to
one over 2 variables. Using our simpli!ed expressions, we
demonstrated through numerical simulation that the asym-
metric cases are often optimal. The percentage of time that
asymmetric cooperation outperforms symmetric cooperation
depends highly on the fairness criteria used and the mobile
placements. Thus, asymmetry should be considered when
designing anything from standards to analytic frameworks
involving cooperation. It is of interest to compare the rates
obtained here with outer bounds, ideally the capacity, of this
channel. Phase 2 itself may be a point-to-point MISO channel,

8Note that Cases 1-4 do not employ MRC combining, which will only
improve the overall achieved throughputs. MRC was not considered so as
to strictly compare the proposed cooperative schemes with other baselines
without any other improvements.
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Fig. 7. Percentage of time the single message
case and the 4 dual-message cases are chosen
under random MS placement. PR = PB =
1000, radius=10 units.
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Fig. 8. CDF of sum throughput under the max
throughput criterion, random MS placement.
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Fig. 9. CDF of sum throughput under the ex-
treme fairness criterion, random MS placement.
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Fig. 10. Percentage of time the single message
case and the 4 dual-message cases are chosen
under xed MS placement. PR = PB = 1000,
radius=10 units.
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Fig. 11. CDF of sum throughput under the
max throughput criterion, xed MS placement.
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Fig. 12. CDF of sum throughput under the
extreme fairness criterion, xed MS placement.

an interference channel, or a MIMO broadcast channel, while
phase 1 and 2 form a variant of the classical relay channel. As
the capacity regions for the relay and interference channels are
still in general unknown, and as our problem is more complex
(and contains) these channels, we suspect that the capacity
region is not trivial to obtain. Deriving tight outer bounds will
thus be an interesting topic for future work.

APPENDIX

Proof of Lemma 1: Suppose for some η > 1 there exists
an optimal solution for b11, b12, b21, b22 such that η(|b11|2 +
|b12|2 + |b21|2 + |b22|2) = PR (where, depending on the case,
some bij may be 0). We now show that this is impossible
since we can improve upon it as follows. Consider the solution√
ηb11,

√
ηb12,

√
ηb21,

√
ηb22, which still satis!es the equality

constraint. Both the SINRs γ1, γ2 now increase, for a constant
K , ηx

ηy+K > x
y+K for η > 1. !.

Proof of Lemma 2: Fix all variables in (8) except for n1

and n2. From (8)–(14), it follows that only the ratio of
n1 and n2 is of importance. Let x = n1/n2, where it is
understood that n2 = 0 corresponds to x → ∞. Let x∗ be
the point that equates the arguments of the max(·, ·), i.e.,
x∗ = C(γ1)/C(γ2). The reduced objective function may be
expressed as:

max
x≥0

x + 1
x

R(1)
1

+ 1

R(1)
2

+ max
(

x
C(γ1)

, 1
C(γ2)

)

=






x+1
x

R
(1)
1

+ 1

R
(1)
2

+ 1
C(γ2)

for x ∈ [0, x∗]

x+1
x

R
(1)
1

+ 1

R
(1)
2

+ x
C(γ1)

for x ∈ [x∗,∞) .

In each interval, the objective function is of the form
f(x) $= ax+b

cx+d for real constants a, b, c, d, for real x and non-
negative. This function is either monotonically increasing or
decreasing, since df(x)

dx = ad−bc
(cx+d)2 . The three optimal points

are x = {0, x∗,∞}, as captured by (ii), (iii) and (i). !

Proof of Lemma 3: In case 1 (only one active relay), (16)–(17)
may be reduced to

max
b11,b12

C
(

|h11b11|2
|h11b12|2+1

)
+ C

(
|h12b12|2

|h12b11|2+1

)

1

R(1)
1

C
(

|h11b11|2
|h11b12|2+1

)
+ 1

R(1)
2

C
(

|h12b12|2
|h12b11|2+1

)
+ 1

(36)

s.t. |b11|2 + |b12|2 = PR. (37)

From the form of (36) and (37), it is clear that the phases
of b11 and b12 are irrelevant. Equation (37) is an ellipse,
parameterized by, for t ∈ [0, 2π], b11 =

√
PR cos(t), b12 =√

PR sin(t). !
Proof of Theorem 1: We prove Theorem 1 by making use of
a series of lemmas.

Lemma 5: In Case 3, the maximum throughput optimiza-
tion problem reduces to

max
b11,α,β

C( |h11|2
|α|2+1/|b11|2 ) + C( |β|2

|h12|2+1/|b11|2 )

C(
|h11|2

|α|2+1/|b11|2 )

R
(1)
1

+
C( |β|2

|h12|2+1/|b11|2 )

R
(1)
2

+ 1
(38)

s.t. g1|α|2 + 2|g12||α||β| cos(θG + θ) + g2|β|2 =
PR

|b11|2
− 1,

(39)
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where θG = ∠g12 and θ = ∠αβ∗, and the variables g1, g12,
g2, α, and β are explained below.

Proof: Setting b21 = 0 for Case 3 in the optimization
problem (16)–(17) leads to SINRs as given by (19). It can be
shown that the ellipsoid constraint |b11|2+|b12|2+|b22|2 = PR

transforms to (39). Substituting the change of variables (20)
into (19) we obtain the lemma.

We now have an optimization problem over six parameters
b11, α, β (each is a complex number). The following lemmas
further reduce the number of optimization variables.

Lemma 6: The optimal solution is independent of the angle
of b11 and the angle of α. Thus, we may w.l.o.g. assume b11

to be a real number in the range [0,
√

PR], and ∠α = 0.
Proof: From the form of (38)–(39), the angle θ = ∠αβ∗

between α and β is the only relevant variable and the angles
of b11 and α are irrelevant and can be set to 0.

Lemma 7: The optimal θ∗ satis!es θG + θ∗ = 0 or π.
Proof: In the optimization (38)–(39) is non-convex, and

thus the classical KKT-conditions are necessary but need not
be suf!cient for optimality. The Lagrangian is given by L =

C(
|h11|2

|α|2+1/|b11|2 )+C( |β|2

|h12|2+1/|b11|2 )

1

R
(1)
1

C(
|h11|2

|α|2+1/|b11|2 )+ 1

R
(1)
2

C( |β|2
|h12|2+1/|b11|2 )+1

−λ(g1|α|2+2|g12||α||β| cos(θG+θ)+g2|β|2−PR/|b11|2+1).
Setting the derivative of the Lagrangian L with respect to the
variable θ to zero yields ∂L

∂θ = λ sin(θG + θ) = 0. Since λ is
not in general 0, we must have θG + θ = kπ, k ∈ Z.

We now derive a parametric representation for each ellipse
for a given |b11|, which we use to reduce the overall optimiza-
tion problem to one of two variables, to complete the proof of
Theorem 1. Equation (39), for !xed |b11| and θ is clearly the
equation of an ellipse in |α| and |β|. A general form for an
ellipse in the x-y plane is ax2+2bxy+cy2+2dx+2fy+g = 0,
where a, b, c, d, f , and g are constants [38]. The center,
(x0, y0), of this ellipse lies at (x0, y0) =

(
cd−bf
b2−ac , af−bd

b2−ac

)
.

When b &= 0, the major axis of the ellipse is oriented at
an angle φ (in counterclockwise direction) that is given by
φ = 1

2 cot−1
(

c−a
2b

)
. The lengths of its semi-major and semi-

minor axes are then:

(a′)2 =
2(af2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)((c − a)
√

1 + 4b2

(a−c)2 − (c + a))
,

(b′)2 =
2(af2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)((a − c)
√

1 + 4b2

(a−c)2 − (c + a))
.

Equating coef!cients, we see the ellipse in (39) has major
and minor axes given by (23)–(24). From Lemma 4, its major
axis is at an angle φ = ± 1

2 cot−1
(

g2−g1
|g12|

)
. The ± sign does

not affect the angle, but only the relative orientation about the
x-axis. We may thus use only the positive orientation. The
ellipse may then be parameterized in terms of t ∈ [0, 2π] as
in (21) and (22). !
Proof of Lemma 4: Let t∗ minimize max(1/f1(t), 1/f2(t)).
W.l.o.g., we may assume 1/f1(t∗) ≥ 1/f2(t∗). Thus, the
optimal objective value is 1/f1(t∗). If t∗ is at the boundary,
or is a local minimum of 1/f1(t∗) we are done. Thus suppose
t∗ lies strictly within the region and is not a local minimum of
1/f1(t). Suppose 1/f1(t∗) &= 1/f2(t∗). Clearly (1/f(t))′ &= 0
else it would be a local minimum. Thus, there exists a direction

of descent, which may w.l.o.g. be assumed to be in the
positive t direction. Since 1/f1(t∗) &= 1/f2(t∗), let ∆t be the
distance from t∗ to the closest point where 1/f1(t∗ + ∆t) =
1/f2(t∗ + ∆t). Then for δt < ∆t, by continuity, we can !nd
a smaller objective value, a contradiction. !
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