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Abstract—This paper considers the problem of passive local-
ization of a RF emitter by exploiting the multipath interaction of
the signal with the environment, as occurs in urban settings. The
feasibility of localizing using times-of-arrival (TOA) of multipath
components is examined. The primary contribution is a method
to correctly associate measured TOA with scatterering surfaces.
Simulations are used to test the effects of scene geometry,
clutter, and surface roughness on localization performance. Index
Terms—source localization, multipath exploitation, urban sensing

I. INTRODUCTION

Passive RF emitter localization is important in intelligence,
surveillance and reconnaissance (ISR), as well as public safety
operations. In urban or indoor settings, RF emissions are ob-
served after interactions with the complex reflecting environ-
ment. Typically, multipath is considered an adverse condition;
however, , exploiting the effects of multipath interaction can
enable a new capability: RF emitter localization using only a
single sensor.

The concept used to exploit multipath propagation effects
in this paper requires some knowledge of the scattering
environment. The waveform received at the single physical
receiver is processed to obtain a number of virtual time-
of-arrival (TOA) measurements at a constellation of virtual
receivers. The positions of these virtual receivers are related
to that of the single physical receiver through simple princi-
ples of ray optics. Localization is then performed as in the
Global Positioning System (GPS), with multipath providing
the needed spatial diversity.

A single-platform, single-antenna localization system has
several advantages compared with a multi-platform system, or
systems utilizing a single platform equipped with an antenna
array. Multi-platform localization systems based on TOA-
measurements require precise synchronization. Methods that
measure frequency differences between receivers (differential
Doppler) also require extremely accurate and stable local
oscillators at the physically distributed receivers, as has been
noted by [8], [1]. In contrast, a single sensor system like the
one studied in this paper does not require any synchronization
procedures, because all signals used for localization are ob-
tained through the same antenna and A/D conversion chain.
A second difficulty in a multi-platform system is the need
for raw received waveform data to be transmitted between
platforms. Eliminating the need for communication between
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multiple sensor platforms is particularly beneficial for systems
that must operate covertly. Compared with a multi-antenna
system, solving the localization problem using a single antenna
system allows for a simpler, cost-effective, and physically
smaller hardware implementation. These benefits make multi-
path exploitation an attractive localization approach for small
UAVs operating in complex urban environments.

On the other hand, the difficulties involved in a single-
sensor localization scheme are manifold. These difficulties
are considered and addressed in this paper, and the scope of
applicability of the proposed approach is described. First, as
in multipath exploitation radar [17], [19], [25], the scattering
environment must be known with some precision. A sufficient
number of multipath components that correspond to known
scattering surfaces must be detected, . Second, the measured
TOAs must each be associated with a propagation path. In
addition, any TOA that results from unmodeled scatterers must
be identified as clutter and excluded from the localization
algorithm.

A. Literature Review

There is an extensive literature on localizing RF emitters
based on measurements collected at spatially distributed sen-
sors. In some cases, these measure times-of-arrival (TOA)
or time-differences-of-arrival (TDOA) [20], [33], frequency-
differences-of-arrival (FDOA) also known as differential
Doppler [1], [33], or angle-of-arrival (AOA) [11]. Other works
have considered more complicated sensors that can make
multiple measurement types. Specifically, TOA+FOA mea-
surements were combined in [8], [15], [29], TOA+AOA in
[23], and FOA+AOA in [5]. As a final example, in [4], a single
mobile receiver measured TOA and FOA at multiple points of
a trajectory to obtain the necessary spatial diversity to localize
an emitter. The approach in this paper is most similar to the
TOA systems; the novelty is to replace the spatial diversity
from multiple sensors by using multipath exploitation.

Several past works have considered localization of emitters
embedded in a multipath environment. In most of these works
the focus is to mitigate the adverse effects of unmodeled non-
line-of-sight (NLOS) propagation when one of the localization
techniques described previously are adapted to a multipath
environment. In particular, [7] developed a weighting scheme
to mitigate effects of NLOS in TDOA localization, and [6]
gave an algorithm to identify those receivers that had gotten
the emitted signal along an NLOS path in order to exclude
those TOA measurements from the localization algorithm.
More recently, attention has turned to exploiting multipath
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scattering to obtain a kind of virtual spatial diversity with a
reduced number of physical sensors.

In [13], a model to predict multipath TOAs was developed;
the local stability of the TOAs with respect to receiver motion
could be used to maintain the performance of a localization
system based on multiple RF sources when occlusions blocked
LOS propagation paths. Seow and Tan [23] developed a spe-
cialized localization method for sensors capable of measuring
both time- and angle-of-arrival in a scattering environment
where all surfaces are horizontal or vertical planes.

The method of virtual receivers, which we use, has been
previously used to understand and model the effect of multi-
path propagation of signals both in the context of RF emitter
localization [20], [21], [27] and multipath-exploitation radar
[12], [19], [25]. The paper [27] considered multipath in the
context of multiple mobile stations cooperating to determine
their absolute positions using signals emitted by a single
base-station. The primary contribution was to determine the
variance bounds on the position accuracy in the presence of
multipath. Exploiting multipath as is done here was never their
objective.

The paper [20] considered how single-bounce multipath
time-of-arrival information could be used to enhance the
accuracy with which an RF emitter could be localized by a
system of spatially separated receivers. They assumed specular
multipath from a single linear scattering surface in 2D space.
Extending the method in [20] to a more complex environ-
ment including multiple scattering surfaces and clutter greatly
increases the difficulty of the problem. In particular, neither
[27] nor [20] addressed the problem of associating measured
multipath TOAs to scatterers, which is a primary focus of the
present contribution.

Finally, this new method is robust to missed detections,
whereas the approach in [25] required all TOAs to be detected.

In [21], experimental results were presented to demonstrate
the feasibility of localizing a mobile receiver using multipath.
The experiment tested localization using ultrawideband signals
in an indoor environment. The results included successful
association of multipath components to scatterers using a
tracking filter initialized to the true receiver position, as
well as successful localization of the receiver. However, the
experimental setup consisted of frequency-domain channel
measurements that effectively sychronized the emitter and
receiver. It is not obvious how to extend either the association
or localization algorithms in [21] to the more realistic situation
where emitter and receiver are not perfectly synchronized.
Other past works, including [20] and [27], have also implicitly
assumed that the time of emission is known, which is possible
only if the emitter and receiver were synchronized. Our
method does not require synchronization or even a cooperative
emitter. Instead, we frame multipath RF emitter localization as
a pseudoranging problem and estimate the time of emission
along with the emitter position.

B. Plan of the paper

First in Section II, we give the assumptions and notation
used throughout the paper. The analogy between multipath

exploitation and GPS localization is introduced. In Section
III, we describe the main technical contribution: a method
for determining the correct association of measured TOAs to
scattering surfaces. In Section IV, the analogy of localization
based on multipath to the GPS problem is extended to study
the dependence of the positioning accuracy on the relative
positions and orientations of the receiver and the scattering
surfaces. Section V describes simulations testing the perfor-
mance of the proposed algorithm when subjected to a number
of error sources including noise, clutter, and surface roughness.

II. EMITTER LOCALIZATION USING MULTIPATH TOA

A. Relative positions of emitter, scatterers, and receiver

Let e stand for the unknown position of the emitter in a
three-dimensional volume B. A single receiver is located at
r0. Planar scattering surfaces Si, i ∈ 1 . . . N , are present at
known positions. The position of the receiver r0 is assumed to
be known accurately. The information about scatter positions
is assumed to have been obtained previously or to be derived
from other sensor measurements [3]. Additional scattering oc-
curs from clutter objects that are not known to the localization
program.

The simulations in Section V refer to the urban canyon
scattering geometry shown in Figure 1(a), but the method is
more generally applicable.

B. Signal and propagation model

Suppose an RF emitter broadcasts a pulse, s(t) at baseband,
at time b. We do not assume, as in [20], that the time of
emission b can be known with arbitrary precision, even if the
emitter is cooperative. We assume that only one emitter is
broadcasting at a time, or that signals from multiple emitters
can be disambiguated prior to performing localization.

The receiver consists of a single, omnidirectional antenna
and thus provides no angle-of-arrival information. The only
measurement available to the localization system is the super-
position of M signals: the emitted signal that propagates along
the line-of-sight path plus M multipath components.

w(t) =

M∑
i=1

Γis
(
t− (ti − b)

)
+ ω(t) (1)

where s(t) is the emitted waveform at baseband, ti is the
time-of-arrival of the ith multipath component, b is the time
of emission (so (ti − b) is the propagation delay along the
ith path from emitter to receiver), Γi is a complex factor
that captures path-loss, the phase factor from the carrier, and
reflection coefficients, as applicable. ω(t) is a noise process.

We assume that the emitted pulse s(t) has a shape known to
the receiver, either because the emitter is a bug intentionally
placed on the tracked target, or the emission is produced in the
operation of a standardized communication system, or we are
otherwise cooperating with the emitter. As a result, a matched
filter can be used to determine the TOAs of the different
multipath components.

After matched-filtering, the receiver identifies a number of
peaks in the response. Ideally, these peaks, {ti, i = 1 . . .M},
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Fig. 1: In (a) is shown a rendering of the urban canyon geometry tested in the simulation experiments. The emitter position
is labeled ‘e’, and is located just above street-level, with buildings on either side of the street. The single receiver is at ‘r0’.
Multipath scattering occurs from the known ground and wall surfaces, as well as from clutter objects, whose positions may
be unknown to the localization program. Diagrams (b,c) show the urban canyon geometry from the top and side, respectively.
(b-c) show two single-bounce paths in blue; those signals scatter from points marked a and b. An double-bounce path with
bounces at points c and d is indicated in red. The unit vectors {n0,n2,n3,n2,3} play a role in the computation of GDOP,
which is discussed in Section IV.

correspond to the TOAs of signals that propagated either
along the line-of-sight or along one of the reflected paths.
However, the localization algorithm in this paper is able to
handle missing peaks, as well as components that arrive too
close in time to be resolved.

C. Number of measurements and unknowns

If the objective is to locate a stationary target in three-
dimensional space, then we must estimate the (x, y, z) position
of the emitter, as well as the time of emission, b. To solve for
these four unknowns requires at least four TOA measurements.
As will be seen in Section III, determining the correct asso-
ciation of measured TOAs to scattering surfaces requires at
least one additional constraint. Thus, at a minimum, we must
detect five TOAs: the arrival along the direct path as well
as arrivals from at least four non-line-of-sight (NLOS) paths.
Consider the geometry shown in Figure 1(a). This geometry
typically produces scattering from only three surfaces: the
ground and the walls of buildings at either side of the street.
Thus, considering only multipaths with a single bounce will
not yield a sufficient number of measurements for performing
association and localization. This motivates us to consider
double-bounce paths in addition to single-bounce multipaths.
M will denote the number of TOAs actually observed.

D. Describing multipath propagation using virtual receivers

The method of images has been used extensively to un-
derstand multipath in both passive and active radar systems,
analyzing for example multipath from ground bounce, or
multipath from ionospheric interactions in over-the-horizon
radar [12]. In the case of paths that reach the receiver from
the emitter after a single specular reflection (i.e. single-bounce
multipath at a known, planar scattering surface), the method of
images can be used to compute a virtual receiver that would
measure the same TOA in the absence of scattering. With
repeated application of the same concept, the virtual receivers

corresponding to multipath with larger number of bounces are
readily obtained.

Consider Figure 2. Let the reflecting surface Si, i = 1, 2
be described by the planar equation in the Cartesian coor-
dinate system as ai

Tx = 0, where x := [x, y, z, 1]T , and
ai = [ai, bi, ci, di]

T . The normal to surface Si is denoted
si = āi/||āi||, āi = [ai, bi, ci]

T . The receiver position is
denoted by r0 = [x0, y0, z0]T . The position of a virtual
receiver corresponding to a single-bounce multipath involving
scattering surface Si will be denoted ri, i = 1 . . . N . Using
elementary algebra, it may be shown that:

r1 = P1r0 − 2
d1
||ā1||

s1 (2)

P1 = I− 2s1s1
T (3)

where P1 is the Householder transformation matrix w.r.t.
surface S1. Similarly, the coordinates of the virtual receiver
corresponding to a double-bounce path, r1,2, are

r1,2 = P2r1 − 2
d2
||ā2||

s2 (4)

= P2

(
P1r0 − 2

d1
||a1||

s1

)
− 2

d2
||ā2||

s2 (5)

where P2 is the Householder matrix w.r.t. surface S2. Relevant
properties of the Householder matrix are discussed in [30].

The notation ri,j with two subscripts i, j ∈ 1 . . . N, i 6= j
will be used to denote the position of second-order virtual
receiver, when the order of scattering matters. In particular,
ri,j is the position of a virtual receiver corresponding to a
multipath component scattering from surfaces Sj followed by
Si. It is noted r1,2 is a function of r1, this is, because the
‘latest’ reflection comprising the double-bounce multipath is
at surface S1 succeeding the reflection at S2. When the order
of reflections are interchanged, then (4) will in general be
different. In the special case of a pair of mutually-orthogonal
surfaces, the second-order virtual receiver positions are iden-
tical after interchanging the order of scattering,
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Fig. 2: The figure depicts two reflecting surfaces, the second surface is oblique w.r.t the first. One single bounce (blue) multipath
and one candidate double bounce (red) multipath are shown. In the figure, the emitter (♦), physical receiver (©), the virtual
receiver from single bounce (�), the virtual receiver from double bounce multipath (5) are seen. The dashed lines indicate
the imaginary line of sight from the emitter to the virtual receivers.

As an example, in Figure 1(c) the path marked with a dashed
red line leaves the emitter at e, is reflected by the surface S3
at the point labeled ‘c’, and then from surface S2 at the point
labeled ‘d’, and finally reaches the receiver located at point
r0. This path has the same length as the straight path from e
to r2,3, where r2,3 is computed by reflecting r0 about wall S2
and then about wall S3. Furthermore, the angles of this path
with respect to the scattering surfaces satisfy the constraints
given by Fermat’s principle.

By taking the image of the true receiver r0 and applying
the Householder technique using each scattering surface, the
constellation of virtual receivers associated with single-bounce
paths is obtained. By repeating this reflection procedure,
starting with the virtual receivers and reflecting these each
about a second surface, we can obtain the virtual receivers
corresponding to double-bounce paths.

E. Bancroft algorithm applied to multipath exploitation

The basic form of the localization problem in the Global
Positioning System (GPS) involves the calculation of the
position and clock-offset of a mobile station based on known
positions of a number of satellites. In GPS, the reference
clocks onboard the satellite are highly precise. However, the
clocks typically available on a mobile station are of insufficient
accuracy to determine absolute ranges based on propagation
time of the GPS signals, thus it is essential to estimate the
offset of the mobile station clock with respect to the satellite
clocks. The time-of-arrival of the signal from a particular
satellite is equal to the time of emission (which is encoded
in the transmission), plus the range from satellite to receiver
divided by the propagation speed, plus the unknown offset of
the mobile station clock. The difference between the measured
time-of-arrival and the time-stamp, multiplied by the propaga-
tion speed, is called a pseudorange in the GPS literature. The
Bancroft algorithm [2] is a classical method for processing a
set of measured pseudoranges into an estimate of the mobile
station position and clock offset.

In our proposed multipath exploitation localization system,
it is the mobile station that emits an RF signal. As described
in the previous section, propagation paths can be associated
with equivalent virtual receiver positions; in our system, these

virtual receivers take the place of GPS satellites. The complex
waveform is received at the point r0. This waveform is
processed using a matched filter and the peaks in the filter
output are detected. Ideally, these peaks correspond to the
TOAs of the various multipath components. The first TOA is
that of the signal component that propagated along the direct,
line-of-sight path. It is given by:

t0 = b+ d(e, r0)/c, (6)

where d(e, r0) is the distance from the emitter position e to the
receiver position and b is the time shown on the receiver clock
at the unknown instant of the emission. Because b is unknown,
ct0 is a pseudorange measurement. By the construction given
in the previous section, the subsequent TOAs are equal to

ti = b+ d(e, ri)/c, i = 1, . . . ,M, (7)

where ri is the position of the virtual receiver associated with
the .

Unlike localization methods that rely on several spatially-
distributed sensor nodes such as [1], [11], [13], [20], [23], [33],
in this paper, we can assume that all the receiver clocks are
perfectly synchronized. In GPS, synchronization is achieved
through the use of atomic clocks onboard the satellites; in our
system the virtual receivers clocks are synchronized because
they are in fact co-located at the single real receiver. Thus,
there is only one clock offset b to be estimated instead of
a different clock offset for each receiver, . The localization
problem inherent in single-sensor multipath exploitation is
therefore exactly analogous to the GPS problem, so we are able
to use the Bancroft estimator as the core of our localization
algorithm.

F. Localization algorithm

There are four sub-parts of the multipath-exploitation local-
ization algorithm:

1) Given the measured signal at the single real receiver (Eq.
1), estimate the TOA of each multipath component.

2) Compute the positions of the virtual receivers using the
Householder transformation described in the previous
section.
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3) Associate the arrival times to known scatterers/virtual
receivers. Some multipath components may be produced
by unknown clutter in the environment; those TOAs must
be identified and discarded. Once the association step
is complete, there are TOAs associated with a set of
spatially-distributed virtual receivers.

4) Use the Bancroft algorithm to process the TOAs at the set
of spatially-distributed virtual receivers into an estimate
of the target position and time of emission.

The specifics of Step 1 are beyond the scope of this paper. If
the emitted signal is of sufficient bandwidth, detecting peaks in
the output of a matched filter may give acceptable estimates for
the TOA values [9]. In lower bandwidth settings, specialized
methods developed to estimate multipath channel parameters,
for example [10], [16], [18], may be appropriate. Step 2 was
described in the previous section. The primary focus of the
remainder of the paper is on Steps 3-4.

III. THE ASSOCIATION PROBLEM

After the set of virtual receivers have been defined using the
method described in Section II-D, the important remaining
difference between the single-sensor multipath exploitation
problem and a localization problem based on TOAs at multiple
receivers is that, a priori, it is not known which measured
TOA corresponds to which virtual receiver. In more compli-
cated scattering geometries, the subset of paths that actually
permit propagation from the emitter to the receiver is also
unknown. Similar problems occur when multipath information
is exploited in active radar systems, as described in [25].
However, the approach used to solve the association problem
in [25] is not applicable here, because that approach relied on
relationships between the lengths of direct, first, and second-
order multipaths, which are true for the case of a radar system,
but not for a passive system for locating RF emitters.

In this paper, we consider the possibility that two or more
multipath components may arrive too close in time to be
resolved by the receiver matched filter. In this case, it is
necessary to allow association of a single measured TOA value
to more than one virtual receiver. Even more significantly, the
proposed association method is robust in the face of some
missed detections and can ignore TOA values produced by
clutter.

A. A residual test

The solution to the association problem is based on using
the Bancroft algorithm to determine position estimates for
candidate associations. The candidate associations and corre-
sponding position estimates are then ranked on the basis of a
residual test, and the solution producing the smallest residual
is selected. A residual test was used by [6] in a localization
problem using multiple TOA values to locate a mobile station
in an unknown scattering environment. Specifically, this test
was used to determine which subset of TOA values measured
at a constellation of receivers corresponded to propagation
along a line-of-sight (LOS) path from the emitter. TOA values
from non-LOS paths were then discarded to improve the
accuracy of localization. Our residual test is different from the

one in [6] because it operates in the TOA domain rather than in
spatial coordinates, and it has a different object: to discriminate
between the correct and incorrect associations rather than to
determine the subset of LOS measurements.

Let the measurement equation for the times-of-arrival at the
virtual receivers ri, i = 1 . . .M , be:

ti = τi + εi (8)

=
(
b+

1

c

√
(ex−ri,x)2 + (ey−ri,y)2 + (ez−ri,z)2

)
+ εi,

Here, εi is a TOA measurement error caused by noise in the
received signal. We will assume εi is Gaussian with mean
zero and variance σ2

i . The variance is determined by the
performance of the matched filter estimator for TOA values
and depends on the underlying signal characteristics.

Let G be a particular candidate association of TOA values
to virtual receivers. Using this association, we can apply the
Bancroft algorithm to obtain a candidate estimate for the
position and time of emission: (eG , bG) := (eGx , e

G
y , e
G
z , b
G).

Now, define the residual εGi to be the difference between the
ith measured TOA, ti, and the TOA value τGi predicted by
the scattering model using the candidate emitter position and
clock offset:

εGi = ti − τGi (9)

= ti −
(
bG +

1

c

√
(eGx−ri,x)2 + (eGy−ri,y)2 + (eGz −ri,z)2

)
.

The Bancroft method finds the emitter position and clock
offset that minimizes

∑
i(ε

2
i /σ

2
i ) [2]. In the case that G is the

correct association, then the only errors are due to the TOA
measurement noises εi. In that case, the sum of the normalized
squared residuals

χ2
G =

∑
i

(εGi )2

σ2
i

(10)

follows a chi-squared distribution with K − 4 degrees of
freedom, where K ≤M is the number of TOA measurements
actually incorporated in the position estimate, and 4 is the
number of free parameters of the localization solution in 3D
space. If G is not the correct association of TOA values
to virtual receivers, there will be additional errors in the
residual, and χ2

G will deviate from the expected chi-square
distribution. Under suitable conditions, this deviation can be
used to identify the correct association among a large number
of candidate associations.

B. Solution to the association problem

In this section, we present the details of a two-stage algo-
rithm to solve the association problem. The first stage reduces
the number of candidate associations by discretizing the phys-
ical search space and finding a subset of emitter positions
and times of emission that yield plausible associations with
the measured data. In the second stage, the position estimates
from the first stage (whose precision is limited by the fineness
of the discretization) are refined to obtain the residual error
statistic described in the previous section. This residual is used
to determine which of the plausible associations selected by
the first stage is most likely correct.
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Fig. 3: At left is a bipartite graph Hx,b
δ representing plausible associations of TOAs to paths. The values {τx,b1 , . . . , τx,bN } are

predicted TOAs, sorted in increasing order. The values {t1, . . . , tM} are measured TOAs, also in increasing order. Edges of
Hx,b
δ are tentative associations made by testing if |ti − τx,bj | < δ. In this scenario, there is no measured TOA that associates

with the predicted TOA τx,b3 . Two TOAs are tentatively associated with τx,b4 ; at least one of these must be erroneous, so both
possibilities must be tested. The last measured TOA has been associated with both the last two virtual receivers; this is a case
of multiple assignment, which is permitted to account for situations where two multipath components are not resolvable in
time. At right is one subgraph G ⊆ Hx,b

δ satisfying the conditions given in the text.

A direct, brute-force search through all associations of
K out of the M measured TOAs would require testing(
N
K

)
×
(
M
K

)
candidate associations, where N is the number

of known virtual receivers positions and M is the number
of measured TOAs. The brute-force approach is prohibitive
for all but the simplest, clutter-free cases. The solution we
propose greatly reduces the number of candidate associations
that must be checked at the price of a small probability that
the correct association will be discarded by the first stage of
the algorithm. As we will show, this probability of missing the
correct association can be computed and controlled through an
appropriate choice of the plausibility threshold used to pre-
screen candidate associations. This approach is also helpful
for distinguishing clutter returns and discarding them without
a combinatorial increase in computational cost.

The first step is to discretize the search space in which the
emitter is to be found. We assume that the search volume B
can be bounded using The edge length of the discretization
cells, D, should be selected to obtain a reasonable computation
time.

Let x be the center of a discretization cell. For a fixed x,
only certain virtual receivers will be active in the sense that
they correspond to valid propagation paths from x to the true
receiver position r0.

The next step is to determine candidate values for the time
of emission using a gridding and cross-correlation procedure.
This step may be unnecessary if the direct path TOA, t0,
is present and can be distinguished from the other TOAs
based on signal power. If this is the case, this knowledge
can be used to make a preliminary estimate of the time of
emission: b̂ = t0−d(x, r0)/c. If this is not the case, a gridding
procedure can be used to identify candidate times of emission
that yield predicted TOAs with sufficient overlap with the set
of measured TOAs. Compute predicted TOA values using an

arbitrary b:

τx,bi = b+ d(x, ri)/c, i = 0 . . . N, (11)

Then construct a vector p whose jth entry counts the number
of predicted TOAs in the range [(j−1)T, (j+1)T ], where T is
the temporal discretization step. Similarly, construct a vector
m corresponding to the measured TOAs. For the measured
TOA discretization vector, the jth entry should be one or zero,
depending on if there is at least one measured TOA in the
range [(j−1)T, (j+1)T ]. Finally, compute the cross-correlation
of p and m, and identify those offsets b̂ where the cross-
correlation function is greater than or equal to K. For each
offset, recompute τx,bi using Eq. 11. This procedure allows the
assignment of one measured TOA to multiple virtual receivers,
but does not double-count virtual receivers that could plausibly
associate with multiple measured TOAs.

Next, we construct a bipartite graph Hx,b
δ that indicates the

set of plausible associations for an emitter at x, and time of
emission b. The first set of graph nodes are measured TOA
values; the second node set includes predicted TOA values.
Hx,b
δ has an edge between a node ti in the first node set

and τx,bj in the second node set if |ti − τx,bj | is less than a
predetermined threshold δ. An example plausible association
graph is shown at left in Figure 3.

The association threshold δ determines the number of
plausible association graphs that will have to be tested and
hence is a major factor in determining the processing time
of the localization algorithm. A reasonable value of δ should
take into account the size of the discretization cell, as well as
the size of the systematic errors and noise affecting the TOA
measurements. The probability that the correct association will
be missed because the errors exceed the threshold δ for all
discretization cells is shown in Figure 4. The probabilities were
computed using Monte Carlo integration under the assumption
that the distance from the emitter to the virtual receivers is
much greater than D. This figure can be used to select the
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smallest value of δ that will deliver an acceptable probability
of missing the correct association.

Finally, we want to find a subgraph G ⊆ Hx
δ such that:

1) nodes in the set of predicted TOAs have degree 0 or 1,
2) the number of edges in G is K or greater.

Nodes in the set of measured TOAs may have arbitrary degree.
It is then necessary to solve the localization using the Bancroft
algorithm for each association subgraph G ⊆ Hx

δ satisfying the
conditions (1-2), and for each cell of the discretization grid.
For each solution, the sum of squared residuals χ2

G should
be computed and stored. At the end, the estimated position
that gave the smallest χ2

G is selected. The search through
subgraphs G with more than K edges was conducted by
greedily discarding the predicted TOA node that contributed
most to the residual of the best association found so far.
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Fig. 4: The plot shows the probability that the correct associa-
tion of measured TOAs to virtual receivers will not be deemed
plausible, and thus will never be checked. The curves give this
probability for plausibility thresholds δ = {0.35D, . . . , 2D}.
Both σ and δ are normalized with respect to D, the edge-
length of the discretization cell. Picking the smallest δ that
achieves the desired performance reduces computation time.

IV. PRECISION OF LOCALIZATION

In this section, we state the Cramér-Rao lower bound
(CRLB) on the positioning accuracy that can be obtained
using the multipath exploitation algorithm in the presence of
TOA measurement errors. Because of the analogy between
multipath exploitation and the localization problem faced in
satellite navigation systems, the same CRLB given in [2]
applies here.

Geometric dilution of precision (GDOP) is a concept used
in the GPS community to characterize the loss in positioning
accuracy caused by unfavorable configurations of the satellites
with respect to the mobile station. We given an example of how
the GDOP varies with the receiver position in the urban canyon
geometry, and suggest how this could be used to maximize
localization performance.

A. Cramér-Rao lower bound on precision of localization

Suppose the times-of-arrival ti at a number of (real or
virtual) receivers ri are measured according to Eq. 7, but

with an error ε produced by the effect of noise in the cross-
correlation receiver. This error is assumed to be Gaussian .

ti = b+ d(e, ri) + εi, ∀i = 1 . . .M, (12)

E(εi) = 0, E(εiεj) = δijσ
2
i , (13)

where E(X) denotes the expectation of random variable X .
Let ŷ = (êT ,−b̂)T be the concatenation of the estimated
emitter position and the estimated time of emission. If the
Bancroft algorithm is applied to multipath TOA measurements
{t1, . . . , tM} affected by independent Gaussian errors as in
Eq. 13, then the variance of the estimated position and time
of emission, Σ, are bounded below by the CRLB [2]:

Σ = var(ŷ) �
(
HTWH

)−1
, (14)

where H is the matrix

H =

nT1 −1
...

...
nTN −1

 (15)

obtained by computing a first-order variation in the pseudo-
ranges measurements with respect to changes in the emitter
position. That is, ni = ∂ti/∂e, which gives a vector pointing
from the emitter e to the virtual receiver position ri. Finally,
W = diag

(
1
σ2
0
· · · 1

σ2
M

)
is the diagonal matrix of the inverses

of the TOA measurement variances.
A different CRLB for wideband TDOA-based localization

was derived in [28] and applied to multipath localization in
[27]; the difference comes about because in those papers, the
time of emission of the RF signal was implicitly assumed to
be known.

B. Example: optimal receiver position in an urban canyon

The geometric dilution of precision (GDOP) is defined
to be the trace of the matrix (HTH)−1 [2]. Whereas the
CRLB depends on the characteristics of the RF signal through
the TOA measurement uncertainty matrix W, GDOP is a
signal-independent measure of the magnification of errors
that occur when TOA measurements are processed into a
position estimate. Because in an adverserial situation the signal
characteristics are out of the control of the receiver, in this
section, we consider how the receiver should position itself to
minimize GDOP. By doing so, it achieves good localization
performance regardless of the emitted signal.

Let the emitter be located at ground level at e = (0, 0, 0).
Two walls at y = ±10 meters together with the ground plane
at z = 0 form an urban canyon extending in the x-direction.
Figure 5 shows the GDOP for localization based on the direct
path and two single-bounce paths, using the constraint that
the emitter is at ground level. The GDOP is shown for a
fixed receiver elevation of z = 5 m and a range of (x, y)
coordinates. The position of the receiver that minimizes GDOP
is near r0 = (6.5, 0, 5). Not shown is an identical minimum
when r0 = (−6.5, 0, 5). The GDOP becomes very large as
the receiver position approaches the plane x = 0, where the
emitter and all virtual receivers are coplanar. This result has
interesting implications for an optimal search strategy in the
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TABLE I: Association algorithm

• Select parameters D > 0, T > 0, δ > 0 and K ≥ 5, which control the spatial discretization, the temporal discretization, the initial
error in TOA measurement considered plausible and the minimum number of TOAs to use in positioning.

• Compute the constellation of virtual receiver positions {ri, ri,j}, ∀i, j ∈ 1 . . . N , using the Householder transformations.
• Construct a vector m whose jth entry is one if there is at least one measured TOA in the range [(j−1)T, (j+1)T ], and zero

otherwise.
• Discretize the search space B into cells of side-length D.
• For each discretization point x ∈ B:

1) Compute the subset of virtual receivers visible from x.
2) For each visible virtual receiver, compute predicted values for TOAs using Eq. 11, with the discretization point x and arbitrary

value for the time of emission, b̂x0 . Construct a vector p whose jth entry counts the number of predicted TOAs in the range
[(j−1)T, (j+1)T ].

3) Compute the cross-correlation between the measurement time vector m and the discretized predicted time vector p.
4) For every time-offset b that produces at least K correspondences between m and p,

a) Recompute τx,bi using Eq. 11 with the estimated time-offset b.
b) Form an initial association graph Hx,b

δ by connecting nodes τx,bi and tj if |ti − τx,bj | < δ.
c) Any measured TOAs tj whose node in Hx

δ has degree 0 can be provisionally labelled as clutter. Any predicted TOAs τxi
whose node has degree 0 can be provisionally labelled as missed detections.

d) Let V x
>0 be the subset of predicted TOA nodes in Hx

δ with degree > 0. While there are at least K nodes in V x
>0,

i) If any nodes of V x
K has degree greater than 1, iterate over all selections of a single edge for those nodes. This gives

an association graph G ⊆ Hx
δ satisfying the conditions given in the text.

A) Use Bancroft method to compute a predicted position eG and clock offset bG using the association given by G.
B) Recompute predicted TOAs using Eq. 11.
C) Compute the residual χ2

G using Eq. 10.
D) Store the association graph G, the estimates eG and bG , and the residual χ2

G .
ii) Pick the association G that produced the smallest total residual. If number of edges G exceeds K, discard the node in

V x
>0 that contributes most to the residual χ2

G .
• Pick the association and estimated target position that produced the smallest residual.

minimum GDOP

receiver x0

re
ce
iv
er

y 0

G
D
O
P

e

1

Fig. 5: The contour plot shows the GDOP computed for various positions of the real receiver r0 = (x0, y0, z = 5). The emitter
is located at e = (0, 0, 0). The geometry is similar to the urban canyon in Figure 1: two walls are located at y = ±10 and
have their extent along the x direction. The minimum GDOP occurs near r0 = (6.5, 0, 5).

case that some prior information about the emitter position
is available. The receiver should not directly approach the
predicted emitter position, as that will produce a constellation
of virtual receivers giving the worst localization performance.

V. SIMULATIONS

This section describes three simulations that incorporate
varying levels of realism. The first shows the performance of
the localization algorithm in an idealized scenario with TOA
measurement errors, but without clutter or wall roughness. The
second experiment incorporates a model for wall roughness
and shows the effect that this has on determining the correct
association solution as well as the positioning accuracy. The
final experiment includes returns from clutter and shows the
ability of the algorithm to reject TOA measurements corre-

sponding to unmodeled scatterers, while retaining those that
do allow localization of the emitter using known scattering
surfaces.

A. Effect of TOA Measurement Errors

This simulation tests the ability of the proposed method for
distinguishing the correct association of measured TOAs to
virtual receivers from incorrect associations. It also compares
the RMS positioning error (RMSE) to the lower bound given
by the CRLB. This simulation was conducted using several
emitter and receiver positions in the urban canyon geometry,
as shown in Figure 6(a,b).

Single- and double-bounce paths were considered. Depend-
ing on the particular emitter and receiver position, between
five and seven propagation paths were available. Times-of-
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1

Fig. 6: At left, (a,b) show the positions of the emitter e and receiver r0 in four scenarios with varying number (M = 5, 6, 7)
of active propagation paths. The scene has dimensions of 40× 40 meters; the grid indicates divisions of 5 meters. In (c,d) are
shown the fraction of 100 trials in which the correct association was selected, for a range of values of the TOA measurement
noise. In (e,f) are plotted the RMS position error for all trials, as well as for the subset of trials where the correct association
was determined. The lower bounds on RMSE predicted by the CRLB are plotted with dashed lines.

arrival were computed using the ; then measurement noise
was added to the ideal TOA values. The measurement noise
was zero-mean Gaussian with a standard deviations spanning
the range σ ∈ [3.3× 10−12, 6.7× 10−10] seconds. Although
this simulation directly synthesized measured TOAs, in a
real system, the uncertainty of measured TOAs σ would be
determined by the characteristics of the transmitted RF signal.
If the TOA estimator operates near the Cramér-Rao lower
bound, then σ is related to the effective signal bandwidth β
and signal-to-noise ratio χ according to [9]:

σ2 ≥ 1

8π2β2χ
. (16)

For example, the σ values tested in this simulation would
correspond to RF signal bandwidths in the range 30 MHz
< β < 6 GHz if the SNR is 15 dB, or the range 17 MHz
< β < 3.4 GHz if the SNR is 20 dB. This overlaps and
extends to smaller bandwidths the range tested in the indoor
experiments of [21].

In the canyon scenarios shown in Figure 6(a), the constel-
lation of active virtual receivers, that is the set of virtual re-
ceivers corresponding to propagation paths actually observed,
is restricted to a plane with x-coordinate equal to that of the
real receiver. Because of this degenerate receiver configuration,
the Bancroft method reported estimated positions to the right

and to the left of the real receiver with equal probability.
For the purpose of computing RMSE, estimated positions to
the right of the real receiver were reflected back to the left
side. In practice, it would be necessary to maintain two track
hypotheses for the emitter position.

The search volumes was The discretization of the search
space used cubes D = 0.2 m on a side. Using the results of
Figure 4, the plausibility threshold δ was set for each value
of σ to limit the probability of rejecting the correct assocition
to P < 0.1. In all trials, K = M , so only association graphs
that assigned all measured TOAs were considered.

The plots in Figure 6(c,d) shows the fraction of trials for
which the minimum residual gave the correct association.
In the canyon scenario, for the case where M = 6, the
constellation of virtual receivers is nearly symmetric and thus
there are occasionally incorrect associations that result in small
residuals. From Figure 6(e,f), it can be seen that when the
correct association was selected, the RMSE was close to the
CRLB.

The empirical distribution of measured residuals, χ2
G under

correct and the nearest incorrect associations are shown in
Figure 7. The distribution of residuals under correct associ-
ation are in good agreement with a chi-square distribution
with three degrees of freedom, as expected for a situation
with seven measurements and four solution variables. The
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Fig. 7: The plot shows the χ2
G values obtained in 100 trials of

the canyon scenario with 7 TOA values, with σ = 0.01/c ≈
33.3 ps. The light gray striped bars give the histogram of the
minimum value of χ2

G found over all associations. The pdf
of a chi-squared distribution with three degrees of freedom
is overlaid in black, and the two are seen to be in excellent
agreement. In dark gray bars is shown the histogram of the
second smallest values of χ2

G , which come from erroneous
associations. The correct association was found in all trials.

Fig. 8: Wall roughness of 1% of the operating wavelength for
a carrier frequency of 10 GHz. The wall lies in the (x,z) plane
with a baseline depth of y = 5. This plot uses P = Q = 200
and spatial correlation η = 0.3

result of the simulation shows that there is a wide range
of threshold values that can be used to distinguish the true
association, while accepting only a small number of incorrect
associations. If multiple associations are accepted, it may be
necessary to maintain multiple track hypotheses for the emitter.
Except in degenerate geometries, the incorrect hypotheses will
eventually be rejected.

B. Sensitivity of localization to wall roughness

Thus far, we have not considered the effect of wall rough-
ness on localization. For large wavelengths, on the order of
a few cm, the effect of wall roughness on the multipath is
expected to be insignificant. However for shorter wavelengths
in the mm range, reflections from rough walls consist of both
specular and diffuse components and therefore the impact of

wall roughness must be investigated. To completely address
the impact of wall roughness, a full investigation using elec-
tromagnetic theory would be needed, see for example [31],
[32] and references therein. Here, we take a high-level but
numerically tractable signal processing approach along the
lines of [22], [19]. Our wall roughness model is based on
using random perturbations to model roughness, as pioneered
by Rice [22], and used in [32], [31] and references therein. We
first consider the effect of roughness on a multipath component
involving a bouce from a single wall, and then generalize to
paths involving interactions with multiple rough walls.

Consider a P ×Q grid of sub-reflectors on each wall. Each
sub-reflector is placed at a random depth from the baseline
smooth wall. These depths are sampled from a Gaussian
distribution with zero mean and a standard deviation expressed
as a percentage of the system operating wavelength [19]. To
simulate texture, the depths of sub-reflectors may be spatially-
correlated [19], [22].

The multipath returns from the P ×Q grid of sub-reflectors
are superposed, with each sub-reflector contributing diffuse
multipath. Rather than developing a detailed model for the
electromagnetic properties of the sub-reflectors, we propose a
simple but flexible model for weighting the magnitude of the
signals contributed by each sub-reflector. The signal scattered
by the sub-reflector indexed by (p, q), which is located at the
point xpq , is weighted by

W(p, q) = exp(−γ||xpq − xs||), (17)

where xs is the specular reflection point on the baseline
smooth wall. This weighting function is circularly-symmetric
and centered at xs. No specular multipath is explicitly in-
corporated into our model; however, for large values of the
weighting parameter γ, only sub-reflectors near the specular
point contribute significantly to the scattered signal, and the
resulting signal approaches the signal that would be scattered
by a smooth wall. The phase of the contribution from each
sub-reflector is proportional to the propagation time.

To model texture, the depths of the sub-reflectors (p1, q1)
and (p2, q2), have a correlation coefficient given by:

R(p1, p2, q1, q2) = (18){
exp(−η|p1−p2|) exp(−η|q1−q2|) p1 =p2 or q1 =q2

0 otherwise.

Equation (18) implies that for a given sub-reflector, the depths
of sub-reflectors on its left, right, top, and bottom are corre-
lated, whereas other sub-reflectors are uncorrelated, even if
they are in close proximity to the considered sub-reflector.
Other correlation models could be used, but the model in
(18) is sufficient for the investigation performed here. A wall
realized according to the model is shown in Figure 8.

Modeling double-bounce diffuse multipath is similar in
spirit to modeling the single-bounce diffuse multipath. Con-
sider two rough walls, S1 and S2, comprising P × Q sub-
reflectors each. The signal from the emitter is first reflected
from a sub-reflector on S1 indexed by (pi, qj) and is then
reflected from the sub-reflector on S2 indexed by (pk, ql). The
amplitude weighting of the resulting diffuse multipath is taken
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to be W(pi, qj)W(pk, ql), where the individual W(·, ·) are as
in (17) with the specular points computed on their respective
walls. If s(t− b) exp(j2πfc(t− b)) is the emitted signal, then
the composite double-bounce diffuse multipath scattered from
rough surfaces S1 and S2 is given by

M∑
i=1

N∑
j=1

M∑
k=1

N∑
l=1

W(pi,qj)W(pk,ql)s(t−(τ
(1)
ij +τ

(kl)
ij +τ

(2)
kl )−b)

· exp(−2fc(τ
(1)
ij + τ

(kl)
ij + τ

(2)
kl )− b)/c). (19)

Further details are given in Table II.
Finally, the double-bounce composite multipath components

scattered from all pairs of walls should be added to the
composite single-bounce multipath components as well as the
direct path signal. This combined signal is then match-filtered
and peaks are selected from the resulting profile to obtain the
rough-wall-affected TOA estimates.

Figure 9 shows the bias and standard deviation of the
estimates of the emitter location and the time of emission,
assuming correct association, for a range of wall-roughnesses.
The parameters η = 0.3 and γ = 0.6 were used. The estimates
suffer from a bias, albeit a small one. The estimator biases are
on the order of 10 cm, compared with a typical search-volume
dimension of tens of meters. The standard deviations for all
cases are quite small, implying that the biases are persistent.
Neither the bias nor the standard deviation of the estimates
show a significant dependence on the wall-roughness standard
deviation. In Table III(a,b), the bias and standard deviation
of the emitter location estimates and the bias and standard
deviation of the time of emission are shown for varying
weighting parameter γ and varying correlation parameter η,
respectively. It is seen that the estimator bias is sensitive to
the weighting parameter γ; specifically, the bias decreases with
increasing γ as a greater proportion of the diffuse scattering
occurs nearer the specular point. At smaller values of γ, the
diffuse scattering results in increased sidelobe levels in the
output of the matched filter and more significant perturbations
of the estimated times-of-arrival. Finally, the bias in the emitter
position estimate is found to be insensitive to changes in the
spatial correlation parameter η.

C. Clutter rejection

In this simulation we tested the ability of the association
algorithm to reject TOA measurements that are produced by
scattering from unknown clutter in the scene. Because the
positions of the clutter objects are unknown, the corresponding
TOA values cannot be used in the localization algorithm, but
must be identified and discarded. We tested this problem in the
three-dimensional urban canyon geometry depicted in Figure
10(a). In all trials, the receiver was located at (12,−4, 5).
The emitter position was varied over the entire area shown,
and 10 trials were performed at each emitter position. De-
pending on the emitter position, there were between 4 and
12 propagation paths, counting a direct path and paths with
up to two reflections on modeled scattering surfaces. The
number of propagation paths for each point is shown in Figure
10(a). In addition, three point scatterers whose positions were

unknown to the localization algorithm were added. These
clutter scatterers produced three additional TOAs that had to be
distinguished from TOAs corresponding to modeled scatterers.
Multi-bounce interaction between the clutter scatterers and
surfaces was not considered. Ideal TOAs were computed using
, and then measurement noise was added to the ideal TOAs.
The association algorithm described in Table I was applied.
The algorithm did not know which TOA values were clutter,
nor which TOA values were produced by which scattering
surface.

For the results shown in Figure 10(b-c), the TOA measure-
ment noise was set to 33.3 picoseconds, corresponding to a
single-measurement pseudoranging uncertainty of 0.01 m. The
search space was restricted to a 10× 10 meter box about the
true emitter position. The fineness of the discretization of the
search space was 0.2 meters. The plausibility threshold was
set as in the first experiment. The parameter specifying the
minimum number of TOAs to be associated was K = 6. The
effect of varying K is described later.

A solution was deemed to be the correct association if all
clutter TOAs were rejected and all TOAs used in the solution
were associated to the correct virtual receiver. The fraction of
trials in which the correct association was determined is shown
in Figure 10(b). For some emitter positions, two propagation
paths were of very nearly equal length, so it was difficult to
correctly assign the two corresponding TOAs that were nearly
indistinguishable. For example, this occurs when the emitter
position is at y = −4 or y = −1. In both these cases, the
two paths involving bounces off of both walls of the canyon
are equal in length. As a result, the fraction of trials in which
the correct association is found falls below half. Nevertheless,
the effect of switching the association of these two TOAs is
minimal, and the RMSE positioning error for these emitter
locations is no worse than nearby positions that do not suffer
from this ambiguity.

The square in Figure 10(b) indicates an emitter position
(−5, 10, 0.6) for which the direct propagation path between
emitter and receiver is blocked. However, 7 multipath propa-
gation paths are available, and the algorithm correctly rejects
clutter and localizes the emitter even in this non-line of sight
case.

As shown in Figure 11, at measurement noise levels σ =
0.005/c ≈ 16.7 ps and above, the algorithm occasionally
selected an incorrect association, which resulted in estimated
positions clustered about an incorrect position. These trials
account for the additional positioning errors above and beyond
the values predicted by the CRLB that are seen at larger σ
values; when those trials are excluded the RMSE is closer to
the value predicted by the CRLB. The set of virtual receivers in
the urban canyon geometry result in a large GDOP, dominated
by the contribution of the x-direction error. The point cloud
is spread primarily along that direction.

Finally, we investigated how the robustness of the associ-
ation algorithm depends on the choice of the parameter K,
which sets the minimum number of associated TOAs for a
solution to be considered valid. The emitter was fixed at
point e = (1,−5, 0.6), which is marked by a circle in Fig.
10(a). The receiver was at r0 = (12,−4, 5). 100 trials were
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TABLE II: Algorithm for computing diffuse double-bounce multipath

1. Compute the coordinates of the specular reflection points on S1 and S2. There exists a unique double-bounce multipath eigenray
from emitter to receiver consisting of specular reflections at S1 and S2 [24], [26]. Hence the specular reflection coordinates are
functions of the emitter, the receiver and the locations of the baseline smooth S1 and baseline smooth S2.

2. Consider sub-reflectors (pi, qj) and (pk, ql) on surfaces S1 and S2, respectively.
3. Compute the three time delays, from emitter to sub-reflector (pi, qj), from (pi, qj) to (pk, ql), and from sub-reflector (pk, ql)

to the receiver. These are denoted by τ (1)ij , τ
(kl)
ij , τ

(2)
kl , respectively.

4. Obtain the diffuse multipath component, whose magnitude is W(pi, qj)W(pk, ql), and whose phase is proportional to the sum
of the computed time delays in step-3.

5. Repeat steps 1–4 with a different set of sub-reflectors until all sub-reflectors on S1 and S2 have been exhausted.
6. Coherently add all the diffuse multipath components to obtain a composite double-bounce multipath.
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Fig. 9: Error bars (bias & standard deviation) of estimates: (a) x, (b) y, (c) z, (d) b, the time of emission, assuming correct
association of the emitter. Results are shown for 100 Monte Carlo trials. The standard deviation of the wall roughness was
varied from 2%-10% of the carrier wavelength, in increments of 2%. The weight parameter γ = 0.6.
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TABLE III: Bias and standard deviation in estimated emitter position and time of emission, for a wall roughness of 3% the
carrier wavelength, for varying (a) weight parameter γ, and (b) spatial correlation η of the sub-reflectors. Dimensions are in
meters; the scene of interest has a size on the order of 10s of meters.

(a) η = 0.3

γ = 0.3 γ = 0.6 γ = 0.9
Bias in estimated [x, y, z, b] [0.2575,0.003, [0.0821,0.0031, [0.0557,-0.0071,

-0.1794,0.0522] -0.0327,-0.0673] -0.0042,-0.0815]
Standard deviation in estimated [x, y, z, b] [0.099, 0.0949, [0.0436, 0.0316, [0.0255, 0.0073,

0.0510, 0.0316] 0.02, 0.02] 0.0126, 0.0126]

(b) γ = 0.6

η = 0.3 η = 0.6 η = 0.9
Bias in estimated[x, y, z, b] [0.0826,0.0037, [0.0776,0.0031, [0.0780,0.0031,

-0.0319,0.0678] -0.0309,0.0651] -0.0322,0.0652]
Standard deviation in estimated [x, y, z, b] [0.048, 0.01, [0.04,0.01, [0.0436,0.01,

0.0224, 0.0224] 0.0173,0.0173] 0.02,0.02]
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Fig. 10: In all images, the independent variables are the (x, y) components of the emitter position. The receiver is located at
r0 = (12,−4, 5), the point indicated by ∗ . Clutter scatterers are at the points marked +. (a) shows the number of propagation
paths for each emitter position. The square indicates an emitter position with no line-of-sight to the receiver, for which
localization is nonetheless possible based on the 7 NLOS paths. (b) shows the fraction of trials in which the correct association
was obtained. (c) shows the RMSE positioning error predicted by a first order analysis of the virtual receiver positions. (d)
shows the RMSE positioning error actually achieved.
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Fig. 11: The estimated emitter position for 100 trials with clutter and noise with standard deviations σ =
{0.005/c, 0.01/c, 0.02/c}. Blue points indicate position estimates for trials where the correct association is determined and
clutter is rejected. At the lowest noise level (a), these are tightly clustered around the true emitter position, e = (1,−5, 0.6).
The estimated positions in trials with erroneous associations are indicated by red points.

run with the range of TOA measurement uncertainties used
in the first experiment, and with clutter as before. For this
configuration, the number of measured TOAs was M = 8.
Requiring varying number of associations, K = 5, 6, 7, 8,
resulted in varying robustness to error, as shown in Figure
12. Requiring candidate solutions to make a larger number of
associations greatly reduces the probability that solutions that
erroneously associate clutter TOAs will be accepted.
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Fig. 12: This shows the fraction of correct association achieved
for the emitter at e = (1,−5, 0.6) and receiver at r0 =
(12,−4, 5). Setting K = 8 requires the algorithm to consider
only candidate solutions with 8 or more associations and
resulted in a higher fraction of trials with correct association
than when K was set lower.

VI. CONCLUSION

This report described a method for localizing an emitter
using only a single receiver by exploiting multipath scattering
in a known environment. In contrast with past studies of
multipath-based localization, we do not assume that the emitter
and receiver are synchronized, and for this reason, the problem
under consideration is one of pseudoranging, rather than rang-
ing. The multipath TOA RF emitter localization problem can

be made exactly equivalent to the GPS problem, by properly
identifying the times of arrival of the multipath components
with GPS pseudoranges, and the difference between the time
of emission and time of arrival of the line-of-sight signal
with the clock offset between the satellites and GPS receiver.
Localization was based on the Bancroft method, an algebraic,
weighted-least-squares solution to the GPS equations.

The main difficulty of the proposed approach was found
to lie in correctly associating measured times-of-arrival of
multipath components to known scattering surfaces. We de-
scribed a test based on error residuals that can discriminate the
correct association from erroneous associations. This same test
is also useful for rejecting clutter returns. We also described an
approximate solution method to the association problem that
avoids combinatorial complexity at the cost of a small proba-
bility of missing the correct association. Finally, we analyzed
in detail the performance of the localization method in the
urban canyon geometry. The concept of geometric dilution of
precision was used to determine the optimal receiver position.

The sensitivity of the proposed method to noise, clutter,
and wall roughness were studied in Monte Carlo simula-
tions. At high SNRs, the proposed solution to the associa-
tion problem consistently selected the correct association and
rejected clutter TOAs. It was seen via numerical modeling
that roughness of the scattering surfaces causes a persistent,
but small bias in the estimate of the emitter position. In
all, we find that although single-sensor localization presents
significant challenges, multipath exploitation could provide
accurate localization of RF emitters for an interesting range
of applications where coordination and synchronization of
spatially-distributed receivers is not possible.
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