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Abstract—We develop a novel lattice coding scheme for the
Two-way Two-relay Channel: 1 ↔ 2 ↔ 3 ↔ 4, where Node 1
and 4 communicate with each other through two relay nodes 2
and 3. Each node only communicates with its neighboring nodes.
The key technical contribution is the lattice-based achievability
strategy, where each relay is able to remove the noise while
decoding the sum of several signals in a Block Markov strategy
and then re-encode the signal into another lattice codeword using
the so-called “Re-distribution Transform”. This allows nodes
further down the line to again decode sums of lattice codewords.
The symmetric rate achieved by the proposed lattice coding
scheme is within 1

2
log 3 bit/Hz/s of the symmetric rate capacity.

I. INTRODUCTION

Lattice codes may be viewed as linear codes in Euclidean
space: the sum of two lattice codewords is again a codeword.
This group property is exploited in additive white Gaussian
noise (AWGN) relay networks, such as [1], [2], [3], [4], where
it has been shown that lattice codes may sometimes outperform
i.i.d. random codes, particularly when interested in decoding
a linear combination of the received codewords. One such
example is the AWGN Two-way Relay channel, where two
users communicate with each other through a relay node [3],
[4]. If the two users employ lattice codewords, the relay node
may decode the sum of the codewords from both users directly
at higher rates than decoding them individually. It is then
sufficient for the relay to broadcast this sum of codewords
to both users since each user, knowing the sum and its own
message, may determine the other desired message.

Past work. Beyond their use in the Two-way Relay Chan-
nel, nested lattice codes have been shown to be capacity
achieving in the point-to-point Gaussian channel [5], the Gaus-
sian Multiple-access Channel [2], Broadcast Channel [6], and
to achieve the same rates as those achieved by i.i.d. Gaussian
codes in the Decode-and-Forward rate and Compress-and-
Forward rates [1] of the Relay Channel [7]. Lattice codes have
also been shown to be useful in the Compute-and-Forward
framework for decoding linear equations of codewords of [2].

The Two-way Two-relay Channel: 1 ↔ 2 ↔ 3 ↔ 4 where
Nodes 1 and 4 exchange information through the relay nodes
2 and 3 is related to [8], which considers the throughput of
i.i.d. random code-based Amplify-and-Forward and Decode-
and-Forward approaches for this channel model, or the i.i.d.
random coding based schemes of [9] where there are also links
between all nodes. This model is also different from that in
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[10] where a two-way relay channel with two parallel (rather
than sequential as in this work) relays are considered.

Contributions. The proposed scheme for the Two-way
Two-relay Channel 1 ↔ 2 ↔ 3 ↔ 4 may be seen as a
generalization of the lattice based scheme of [3], [4] for the
Two-way Relay Channel 1 ↔ 2 ↔ 3. However, this gener-
alization is not straightforward as the multiple relays need to
repeatedly be able to decode the sum of codewords. One may
enable this by having the relays use lattice codewords as well
– something not required in the Two-way Relay Channel. The
scheme includes multiple Block Markov phases where the end
users send new messages encoded by lattice codewords and the
relays decode a combination of lattice codewords. The relays
then perform a “Re-distribution Transform” on the decoded
lattice codeword combinations, and broadcast the resulting
lattice codewords. The novelty of our scheme lies in this “Re-
distribution Transform” which enables both messages to fully
utilize the relays’ power. Furthermore, all decoders are lattice
decoders (more computationally efficient than joint typicality
decoders) and only a single nested lattice pair is needed.

II. PRELIMINARIES ON LATTICE CODES AND NOTATION

Our notation for (nested) lattice codes for transmission over
AWGN channels follows that of [6], [11]. An n-dimensional
lattice Λ is a discrete subgroup of Euclidean space Rn with
Euclidean norm || · || under vector addition. We use bold
x to denote column vectors, xT to denote the transpose of
x, and 0 denote the all zeros vector. All vectors lie in Rn
unless otherwise stated, all logarithms are base 2, and N(µ, σ2)
denotes a Gaussian random variable (or vector) of mean µ and
variance σ2. Further define or note that
• The nearest neighbor lattice quantizer of Λ as : Q(x) =

arg minλ∈Λ ||x− λ||;
• The mod Λ operation as x mod Λ := x−Q(x);
• The Voronoi region of Λ as V := {x : Q(x) = 0}, which

is of volume V := Vol(V)
• The second moment per dimension of a uniform distribu-

tion over V as σ2(Λ) := 1
V · 1

n

∫
V
||x||2 dx;

• For any s ∈ Rn,

(α(s mod Λ)) mod Λ = (αs) mod Λ, α ∈ Z. (1)
β(s mod Λ) = (βs) mod βΛ, β ∈ R. (2)

• The definitions of Rogers and Poltyrev good lattices are
in [1]; we will not need these definitions explicitly. Rather, we
will use the results derived from lattices with these properties.
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1 2 43
Y1 = X2 + Z1 Y2 = X1 + X3 + Z2 Y3 = X2 + X4 + Z3 Y4 = X3 + Z4

Fig. 1. The Gaussian Two-way Two-relay Channel Model.

A. Nested lattice codes

Consider two lattices Λ and Λc such that Λ ⊆ Λc with
fundamental regions V,Vc of volumes V, Vc respectively;
(Λ,Λc) is termed a nested lattice pair . Here Λ is termed the
coarse lattice which is a sublattice of Λc, the fine lattice, and
hence V ≥ Vc. When transmitting over the AWGN channel,
using the set CΛc,V = {Λc ∩ V(Λ)} as codebook, the coding
rate R is

R =
1

n
log |CΛc,V| =

1

n
log

V

Vc
.

Nested lattice pairs satisfying certain properties were shown
to be capacity achieving for the AWGN channel [5].

In this work, we only need one “good” nested lattice pair
Λ ⊆ Λc, in which Λ is both Rogers good and Poltyrev good
and Λc is Poltyrev good (see definitions in [1]). The existence
of such a pair may be guaranteed by [5]; and may be generated
by Construction A [5], [2], which maps the codebook of a
linear block code over a finite field into real lattice points.
Then, as described in [12], one may construct a one-to-one
mapping (1:1) denoted by φ(·) which maps an element in the
finite field w ∈ FPprime = {0, 1, . . . , Pprime−1} to a point in
n-dimension real space t ∈ CΛc,V: t = φ(w) and w = φ−1(t).

B. Technical lemmas

The following lemmas, proven in [12], are needed in the
proposed two-way lattice based scheme. Let tai and tbi ∈
CΛc,V be generated from wai and wbi ∈ FPprime as tai =
φ(wai), tbi = φ(wbi). Furthermore, let α, αi, βi ∈ Z such
that α

Pprime
, αi

Pprime
, βi

Pprime
/∈ Z and θ ∈ R. We use ⊕, ⊗

and 	 to denote modulo Pprime addition, multiplication, and
subtraction over the finite field FPprime

.

Lemma 1. There exists a 1:1 mapping between v =
(
∑
i αiθtai +

∑
i βiθtbi) mod θΛ and u =

⊕
i αiwai ⊕⊕

i βiwbi.

Lemma 2. There exists a 1:1 mapping between α⊗w and w.

Lemma 3. If wai and wbi are uniformly distributed over
FPprime

, then (
∑
i αiθtai+

∑
i βiθtbi) mod θΛ is uniformly

distributed over {θΛc ∩ V(θΛ)}.
III. CHANNEL MODEL

In the Gaussian Two-way Two-relay Channel, Node 1 and 4
exchange messages wa, wb of respective rates Ra, Rb through
multiple full-duplex relays (Node 2 and 3) and multiple hops
as shown in Figure 1. Each node can only communicate with
its neighboring nodes. The channel model may be expressed
as (all bold symbols are n dimensional)

Y1 = X2 + Z1, Y2 = X1 + X3 + Z2

Y3 = X2 + X4 + Z3, Y4 = X3 + Z4

where Zi (i ∈ {1, 2, 3, 4}) is an i.i.d. Gaussian noise vector
with variance Ni: Zi ∼ N(0, NiI), and the input Xi is
subject to the transmit power constraint Pi: 1

nE(XT
i Xi) ≤ Pi.

Standard definitions of achievable rate regions for the pairs
(Ra, Rb) are omitted due to space constraints; see [12]. We
first need the following tangential result, which forms the basis
for our Two-way Two-Relay Channel achievability scheme.

IV. LATTICE CODES IN THE BC PHASE OF THE TWO-WAY
RELAY CHANNEL

The work [3], [4] introduces a two-phase lattice scheme
for the Gaussian Two-way Relay Channel 1 ↔ 2 ↔ 3,
where nodes 1 and 3 exchange information through node 2:
the Multiple-access Channel (MAC) phase and the Broadcast
Channel (BC) phase. In the MAC phase, if the codewords
are from nested lattice codebooks, the relay may decode the
sum of the two codewords directly without decoding them
individually. This is sufficient, as then, in the BC phase, the
relay may broadcast the sum of the codewords to both users
who may determine the other message using knowledge of
their own transmitted message. In the scheme of [3], The relay
re-encodes the decoded sum into a codeword from an i.i.d.
random codebook in [3], and a lattice codebook in [4].

In extending the schemes of [3], [4] to multiple relays we
would want to use lattice codebooks in the BC phase, as in
[4]. This would, for example, allow the signal sent by Node 2
to be aligned with Node 4’s transmitted signal (aligned is used
to mean that the two codebooks are nested) in the Two-way
Two-relay Channel: 1 ↔ 2 ↔ 3 ↔ 4 and hence enable the
decoding of the sum of codewords again at Node 3. However,
the scheme of [4] is only applicable to channels in which the
SNR from the users to the relay are symmetric, i.e. P1

N2
= P3

N2
.

In this case the relay can simply broadcast the decoded (and
possibly scaled) sum of codewords sum without re-encoding it.
Thus, before tackling the Two-way Two-relay channel, we first
devise a lattice-coding scheme for the BC phase in the Two-
way Relay Channel with arbitrary uplink SNRs P1

N2
6= P3

N2
.

In the Two-way Relay Channel [3] Nodes 1 and 3 exchange
messages through the relay Node 2, with channel model:

Y1 = X2 + Z1, Y2 = X1 + X3 + Z2, Y3 = X2 + Z3

where Zi (i ∈ {1, 2, 3}) is an i.i.d. Gaussian noise vector
with variance Ni: Zi ∼ N(0, NiI), and the input Xi is
subject to the transmit power constraint Pi: 1

nE(XT
i Xi) ≤ Pi.

Definitions of achievability are as in [12].
We devise an achievability scheme which uses lattice codes

in both the MAC phase and BC phase. For simplicity, to
demonstrate the central idea of a lattice-based BC phase which
is going to be used in the Two-way Two-relay Channel, we
do not use dithers nor MMSE scaling as in [5], [3], [4].

We assume that P1 = N2p2 and P3 = p2 where p ∈ R and
N ∈ Z. In the next section, we incorporate arbitrary power

Dithers and MMSE scaling allows one to go from achieving rates pro-
portional to log(SNR) to log(1 + SNR). However, we initially forgo the
“1+” term for simplicity and so as not to clutter the main idea with additional
dithers and MMSE scaling.
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constraints by first truncating the powers to have the desired
form; we show that even with this sub-optimal truncation,
constant gap-to-capacity results are possible. We focus on the
symmetric rate, i.e. when the rates of the two messages are
identical.

Codebook generation: Consider the messages wa, wb ∈
FPprime

, where Pprime = [2nRsym ], where Rsym is the
symmetric coding rate and [ ] denotes rounding to the nearest
prime. Nodes 1 and 2 send the codewords X1 = Npta =
Npφ(wa) and X2 = ptb = pφ(wb) where φ(·) is defined in
Section II-A with the nested lattices Λ ⊆ Λc. Notice that their
codebooks are scaled versions of the codebook CΛc,V. The
symmetric coding rate is then Rsym := 1

n log V
Vc

.
In the MAC phase, the relay receives Y2 = X1 +X3 +Z2

and decodes (Npta + ptb) mod NpΛ with arbitrarily low
probability of error as n→∞ with rate constraints

Rsym <

[
1

2
log

(
P1

N2

)]+

, Rsym <

[
1

2
log

(
P3

N2

)]+

according to [12, Lemma 4]. We note that the first rate constant
is redundant as P1 ≥ P3; we are including it in the theorem
statement for intuition, so as to make it easier to understand
the proofs of the main theorems in Section V.

In the BC phase, if, mimicking the steps of [4] the relay sim-
ply broadcasts the scaled version of (Npta+ptb) mod NpΛ:

√
P2

Np
((Npta + ptb) mod NpΛ) =

(√
P2ta +

√
P2

N
tb

)
mod

√
P2Λ,

we would achieve the rate Rsym < [ 1
2 log P2

N3
]+ for the

direction 2 → 3 and the rate Rsym < [ 1
2 log P2

NN1
]+ for the

1 ← 2 direction. While the rate constraint for the direction
2 → 3 is as large as expected, the rate constraint for the
direction 1 ← 2 does not fully utilize the power at the relay,
i.e. the codeword tb appears to use only the power P2/N rather
than the full power P2. One would thus want to somehow
transform the decoded sum (Npta+ptb) mod NpΛ such that
both ta and tb of the transformed signal would be uniformly
distributed over V(

√
P2Λ). Notice that the relay can only

operate on (Npta + ptb) mod NpΛ rather than Npta and
ptb individually.

Re-distribution Transform: To alleviate this problem we
propose the following “Re-distribution Transform” operation
which consists of three steps:

1) multiply the decoded signal by N to obtain N((Npta+
ptb) mod NpΛ),

2) then perform mod Λ to obtain N((Npta + ptb)
mod NpΛ) mod Λ = (N2pta + Nptb) mod NpΛ
according to the operation rule in (1), and finally

3) re-scale the signal to be of second moment P2 as√
P2

Np ((N2pta + Nptb) mod NpΛ) = (N
√
P2ta +√

P2tb) mod
√
P2Λ according to (2). Notice that

(N
√
P2ta +

√
P2tb) mod

√
P2Λ is uniformly dis-

tributed over {√P2Λc ∩ V(
√
P2Λ)} by Lemma 3.

The relay broadcasts

X2 = (N
√
P2ta +

√
P2tb) mod

√
P2Λ.

Notice that (N
√
P2ta +

√
P2tb) mod

√
P2Λ is uniformly

distributed over {√P2Λc ∩V(
√
P2Λ)}, and so its coding rate

is Rsym. Node 1 and Node 3 receive Y1 = X2 + Z1 and
Y3 = X2 +Z3 respectively and, according to [12, Lemma 5],
may decode (N

√
P2ta +

√
P2tb) mod

√
P2Λ at rate

Rsym <

[
1

2
log

P2

N1

]+

, Rsym <

[
1

2
log

P2

N3

]+

.

Nodes 1 and 2 then map the decoded (NPRta + PRtb)
mod PRΛ to Nwa ⊕wb by Lemma 1. With side information
wa, Node 1 may then determine wb; likewise with side
information wb, Node 2 obtains Nwa and wa by Lemma 2.

We note that for the single relay Two-way Relay Channel,
we achieve lower rates than those in [3], [4]. We are describing
it here to explain the intuition behind the scheme which will
be used for multiple relays (the goal of this work) Section V.

V. TWO-WAY TWO-RELAY CHANNEL

We first consider the full-duplex Two-way Two-relay chan-
nel where every node transmits and receives at the same time.

Theorem 4. For the channel model described in Section III,
if P1 = p2, P2 = M2q2, P3 = N2p2 and P4 = q2, where
p, q ∈ R+ and M,N ∈ Z+ the following rate region

Ra, Rb < min

([
1

2
log

(
P1

N2

)]+
,

[
1

2
log

(
P2

N3

)]+
,

[
1

2
log

(
P3

N4

)]+
,

[
1

2
log

(
P4

N3

)]+
,

[
1

2
log

(
P3

N2

)]+
,

[
1

2
log

(
P2

N1

)]+)
(3)

is achievable using lattice codes.

We again note that some terms are redundant, but are
included to allow for a simple, easily generalizable expression
in accordance with Theorem 6.

Proof: Codebook generation: We consider the good
nested lattice pair Λ ⊆ Λc with corresponding codebook
CΛc,V = {Λc ∩ V}, and two messages wa, wb ∈ FPprime

in which Pprime = [2nRsym ] (Rsym is the coding rate).
The codewords associated with the messages wa and wb are
ta = φ(wa) and tb = φ(wb), where the mapping φ(·) from
FPprime

to CΛc,V ∈ Rn is defined in Section II-A.
Encoding and decoding steps: We use a Block Markov En-

coding/Decoding scheme where Node 1 and 4 transmit a new
message wai and wbi, respectively, at the beginning of block
i. To satisfy the transmit power constraints, Node 1 and 4 send
the scaled codewords X1i = ptai = pφ(wai) ∈ {pΛc∩V(pΛ)}
and X4i = qtbi = qφ(wbi) ∈ {qΛc ∩ V(qΛ)} respectively
in block i. Node 2 and 3 send X2i and X3i, and Node j
(j ∈ {1, 2, 3, 4}) receives Yji in block i. The procedure of
the first few blocks (the initialization steps) are described and
then a generalization is made. We note that in general the
coding rates Ra for wa and Rb for wb may be different, as
long as Rsym = max(Ra, Rb), since we may always send
dummy messages to make the two coding rates equal.
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P1 = p2 P2 = M2q2 P3 = N2p2 P4 = q2

Send:

Decode:

pta1

pta1 qtb1

qtb1

Send:

Block 2:

Decode:

Block 1:

pta2 Mqta1 Nptb1 qtb2

(pta2 + Nptb1) mod NpΛ (qtb2 + Mqta1) mod MqΛ

Send:

Decode:

Block 3:

pta3 (Mqta2 + NMqtb1) mod MqΛ (Nptb2 + MNpta1) mod NpΛ qtb3

wb1 (pta3 + Nptb2 + MNpta1) mod NpΛ (qtb3 + Mqta2 + NMqtb1) mod MqΛ wa1

Send:

Decode:

Block 4:

pta4
(Mqta3 + NMqtb2+

NM2qta1) mod MqΛ

(Nptb3 + MNpta2+

MN2ptb1) mod NpΛ

qtb4

wb2 (pta4 + Nptb3 + MNpta2

+MN2ptb1) mod NpΛ

(qtb4 + Mqta3 + NMqtb2+

NM2qta1) mod MqΛ

wa2

Send:

Decode:

Block 5:

pta5 (Mqta4 + NMqtb3 + NM2qta2

+N2M2qtb1) mod MqΛ

(Nptb4 + MNpta3 + MN2ptb2

+M2N2pta1) mod NpΛ

qtb5

wb3 (pta5 + Nptb4 + MNpta3 + MN2ptb2

+M2N2pta1) mod NpΛ

(qtb5 + Mqta4 + NMqtb3 + NM2qta2

+N2M2qtb1) mod MqΛ

wa3

.

.

.

Send:

Decode:

Block i:

ptai
(Mqta(i−1) + NMqtb(i−2) + NM2qta(i−3)

+ · · · + N (i−1)/2M (i−1)/2qtb1) mod MqΛ

(Nptb(i−1) + MNpta(i−2) + MN2ptb(i−3)

+ · · · + M (i−1)/2N (i−1)/2pta1) mod NpΛ

wb(i−2) (ptai + Nptb(i−1) + MNpta(i−2) + . . .

+M (i−1)/2N (i−1)/2pta1) mod NpΛ

qtbi

(qtbi + Mqta(i−1) + NMqtb(i−2) + . . .

+N (i−1)/2M (i−1)/2qtb1) mod MqΛ

wa(i−2)

1 2 43

Fig. 2. Multi-phase Block Markov achievability strategy for Theorem 4.

Block 1: Codewords X11 = pta1 and X41 = qtb1 sent from
Nodes 1 and 4 to Nodes 2 and 3. may be decoded if, resp.

Rsym <

[
1

2
log

(
P1

N2

)]+

, (4)

Rsym <

[
1

2
log

(
P4

N3

)]+

(5)

according to [12, Lemma 5].
Block 2: Node 1 and 4 send new codewords X12 = pta2

and X42 = qtb2, while Node 2 and 3 broadcast X22 = Mqta1

and X32 = Nptb1 received in the last block. Note they are
scaled to fully utilize the transmit power P2 = M2q2 and
P3 = N2p2. Node 2 receives Y22 = X12 + X32 + Z22 and
decodes (pta2 +Nptb1) mod NpΛ if (4) and

Rsym <

[
1

2
log

(
P3

N2

)]+

. (6)

Node 3 decodes (qtb2 +Mqta1) mod MqΛ if (5) and

Rsym <

[
1

2
log

(
P2

N3

)]+

. (7)

Block 3: • Encoding: Node 1 and 4 send new codewords as
in the previous blocks. Node 2 further processes its decoded

codewords combination according to the three steps of the
Re-distribution Transform from previous block as

(N((pta2 +Nptb1) mod NpΛ)) mod NpΛ

=(Npta2 +N2ptb1) mod NpΛ

and scales this to utilize the full transmit power P2 = M2q2

as Mq
Np (Npta2 +N2ptb1) mod NpΛ = (Mqta2 +NMqtb1)

mod MqΛ. It then broadcasts X23 = (Mqta2 + NMqtb1)
mod MqΛ. Notice that since

(Mqta2 +NMqtb1) mod MqΛ ∈ {MqΛc ∩ V(MqΛ)}
according to Lemma 3, its coding rate is Rsym. Similarly,
Node 3 broadcasts X33 = (Nptb2 + MNpta1) mod NpΛ
again at coding rate Rsym.
• Decoding: At the end of this block, Node 2 is able

to decode (pta3 + Nptb2 + MNpta1) mod NpΛ with rate
constraints (4) and (6) according to [12, Lemma 4], and Node
3 decodes (qtb3 +Mqta2 +NMqtb1) mod MqΛ if (7) and
(5). Node 1 decodes (Mqta2 +NMqtb1) mod MqΛ sent by
Node 2 as in the point-to-point channel with rate constraint

Rsym <

[
1

2
log

(
P2

N1

)]+

(8)
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according to Lemma [12, Lemma 5]. From the decoded
(Mqta2 + NMqtb1) mod MqΛ, it obtains wa2 ⊕ Nwb1
(Lemma 1). With its own information wa2, Node 1 can then
obtain N ⊗ wb1 = wa2 ⊕ Nwb1 	 wa2, which may be
mapped to wb1 since Pprime is a prime number (Lemma
2). Notice Pprime = [2nRsym ] → ∞ as n → ∞, so
N � Pprime = [2nR] and N

Pprime
/∈ Z. Similarly, Node 4

can decode wa1 with rate constraint

Rsym <

[
1

2
log

(
P2

N3

)]+

. (9)

Block 4 and 5 proceed similarly, as shown in Figure 2.
Block i: To generalize, in Block i (assume i is odd),
• Encoding: Node 1 and 4 send new messages X1i = ptai

and X4i = qtbi, resp. Node 2 and 3 broadcast

X2i = (Mqta(i−1) + NMqtb(i−2) + NM2qta(i−3)+

N2M2qtb(i−4) + · · ·+ N(i−1)/2M(i−1)/2qtb1) mod MqΛ

X3i = (Nptb(i−1) + MNpta(i−2) + MN2ptb(i−3)+

M2N2pta(i−4) + · · ·+ M(i−1)/2N(i−1)/2pta1) mod NpΛ.

• Decoding: Node 1 decodes the codeword from Node
2 with rate constraint (8) ([12, Lemma 5]) and maps it
to wa(i−1) ⊕ Nwb(i−2) ⊕ NMwa(i−3) ⊕ N2Mwb(i−4) ⊕
· · · ⊕ N (i−1)/2M (i−1)/2−1wb1 (Lemma 1). With its own
messages wai (∀i) and the messages it decoded previously
{wb1, wb2, . . . , wb(i−3)}, Node 1 can obtain N ⊗wb(i−2) and
determine wb(i−2) accordingly (Lemma 2). Similarly, Node 4
can decode wa(i−2) subject to rate constraint (9).
• Re-distribution Transform: In block i, Node 2 decodes

(ptai + Nptb(i−1) + MNpta(i−2) + MN2ptb(i−3) +
M2N2pta(i−4) + · · · + M (i−1)/2N (i−1)/2pta1) mod NpΛ
from the received Y2i = X1i + X3i + Z2i subject
to (4) and (6) ([12, Lemma 4]). It then uses the Re-
distribution Transform to obtain (N(ptai + Nptb(i−1) +
MNpta(i−2) + · · · + M (i−1)/2N (i−1)/2pta1 mod NpΛ))
mod NpΛ = Nptai + N2ptb(i−1) + MN2pta(i−2) +
· · · + M (i−1)/2N (i−1)/2+1pta1 mod NpΛ and scales
it to utilize the full transmit power: Mq

Np (Nptai +

N2ptb(i−1) +MN2pta(i−2) + · · ·+M (i−1)/2N (i−1)/2+1pta1

mod NpΛ) = Mqtai+NMqtb(i−1) +NM2qta(i−2) + · · ·+
N (i−1)/2M (i−1)/2+1qta1 mod MqΛ.

This signal will be transmitted in the next block i+1. Node
3 performs similar operations, decoding qtbi + Mqta(i−1) +
NMqtb(i−2) + · · ·+N (i−1)/2M (i−1)/2qtb1 mod MqΛ sub-
ject to constraints (7) and (5), and transforms it into Nptbi +
MNpta(i−1)+MN2ptb(i−2)+· · ·+M (i−1)/2N (i−1)/2+1ptb1
mod MqΛ, which is transmitted in the next block.

Combining all rate constraints, we obtain

Rsym < min

([
1

2
log

(
P1

N2

)]+
,

[
1

2
log

(
P2

N3

)]+
,

[
1

2
log

(
P3

N4

)]+
,

[
1

2
log

(
P4

N3

)]+
,

[
1

2
log

(
P3

N2

)]+
,

[
1

2
log

(
P2

N1

)]+)

For i even we have analogous steps with slightly different indices as may
be extrapolated from the difference between Block 4 and 5 in Fig. 2.

Assuming there are I blocks in total, the final achievable rate
is I−2

I Rsym, which, as I →∞, approaches Rsym.
We may achieve the same region for the permuted powers:

Lemma 5. The rates of Theorem 4 may also be achieved when
P1 = N2p2, P3 = p2 and/or P2 = q2, P4 = M2q2.

Proof: The proof is shown in [12].
Theorem 4 and Lemma 5 both hold for powers for which

P1/P3 and/or P2/P4 are either the squares of integers or the
reciprocal of the squares of integers. However, these scenarios
do not cover general power constraints with arbitrary ratios.
We next present an achievable rate region for arbitrary powers:
Theorem 6. For the Two-way Two-relay Channel with arbi-
trary transmit power constraints, any rates satisfying

Ra, Rb < max

P ′
i≤Pi,

P ′
1

P ′
3
=N2 or 1

N2 ,
P ′
2

P ′
4
=M2 or 1

M2

min

([
1

2
log

(
P ′1
N2

)]+
,

[
1

2
log

(
P ′2
N3

)]+
,

[
1

2
log

(
P ′3
N4

)]+
,

[
1

2
log

(
P ′4
N3

)]+
,

[
1

2
log

(
P ′3
N2

)]+
,

[
1

2
log

(
P ′2
N1

)]+)

for some N,M ∈ Z+ and i ∈ {1, 2, 3, 4}, are achievable.
This rate region for Ra = Rb is within 1

2 log 3 bit/Hz/s per
user from the symmetric rate capacity.

Proof: The proof is shown in [12].
The half-duplex case and extensions to more than two relays

are also discussed in [12].
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