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Abstract—This paper considers the K-user cognitive interfer-
ence channel with one primary and K − 1 secondary/cognitive
transmitters with a cumulative message sharing structure, i.e.,
cognitive transmitter i, i ∈ [2 : K], non-causally knows all
messages of the users with index less than i. We first propose
a computable outer bound valid for any memoryless channel
and show the sum-rate to be achievable for the symmetric K-
user Linear Deterministic Channel. Interestingly, for the K-
user channel having only the K-th transmitter know all other
messages is sufficient to achieve the sum-capacity, i.e., cognition
at transmitters 2 to K−1 is not needed. Next, the sum-capacity of
the symmetric Gaussian noise channel is characterized to within
a constant additive and multiplicative gap, which depend on K.
As opposed to other interference channel models, a single scheme
suffices for both the weak and strong interference regimes.
Moreover it is only required for transmitters 2 to K−1 to have,
in addition to their own message, non-causal message knowledge
of the transmitter 1’s message.

I. INTRODUCTION

The cognitive radio channel, first introduced in [1], consists
of two source-destination pairs in which one of the transmitters
called the secondary transmitter has non-causal knowledge of
the message of the other transmitter known as the primary
transmitter. This non-causal message knowledge idealizes a
cognitive radio’s ability to overhear other transmissions and
exploit them to either cancel them out at their own receiver
or aid in their transmission. For the state-of-the-art on the
2-user cognitive channel we refer the reader to [2], [3]. In
this paper we extend the 2-user cognitive interference channel
model to K-users. The K-user cognitive interference channel
(CIFC) consists of one primary and K−1 secondary, or cogni-
tive, users. We assume a cumulative message sharing (CMS)
cognition structure introduced in [4] for the 3-user channel,
and extended here to K-users, whereby user 1 is the primary
user, and cognitive users i, i ∈ [2 : K], know the messages of
user 1 through i−1. The cumulative message cognition model
is inspired by the concept of overlaying, or layering multiple
co-existing cognitive networks. The first “layer” consists of
the primary users. Each additional cognitive layer transmits
simultaneously with the previous layers (overlay) given the
lower layers’ codebooks. We idealize higher layers being able
to obtain lower layers’ messages through non-causal cognition.

Past Work. The literature on multi-user cognitive interfer-
ence channels is limited, in part since the 2-user counterpart
is not yet fully understood [2], [3]. The only other work
on a K-CIFC with K > 3 is that of [5], [6] to the best

of our knowledge. In [5] the channel model consists of
one primary user and K − 1 parallel cognitive users; each
cognitive user only knows the primary message in addition to
their own message (thus not a cumulative message structure);
for this channel model the capacity in the “very strong”
interference regime is obtained [5]. In [6] the sum capacity of
the K-user linear deterministic cognitive interference channel
with cumulative message sharing is obtained. In [4], [6]–
[10] different 3-user cognitive channels are considered which
differ from the one considered here either in the number
of transmitter/receivers, or in the message sharing/cognition
structure in all but [4], [6], [7]. In [7], several types of 3-
user cognitive interference channels are proposed: that with
“cumulative message sharing” (CMS) as considered here, that
with “primary message sharing” where the message of the
single primary user is known at both cognitive transmitters,
and finally “cognitive only message sharing” (CoMS) where
there are two primary users who do not know each others’
message and a single cognitive user which knows both primary
messages. In [6] the sum-capacity for the 3-user channel with
CMS for the linear deterministic channel (LDC) is obtained
– our work generalizes this to K-users and to the Gaussian
noise channel, where a constant gap to capacity is obtained.

Contributions and Outline. We consider the K-user CIFC
with CMS (K-CIFC-CMS), with the following contributions:
1) In Section III we obtain a novel outer bound region that
reduces to the outer bound of [2] for the 2-user case (partially
presented in [6] for the LDC). The bound is valid for any
memoryless channel and any number of users, and does not
contain auxiliary random variables and is thus computable for
many channels including the Gaussian noise channel.
2) In Section IV we derive the sum-capacity for the symmetric
K-user LDC exactly; the outer bound was obtained in [6]
and here we show achievability. Interestingly, the scheme only
requires one user to be fully cognitive of the messages of all
other users, which considerably relaxes the CMS requirement.
3) In Section V we derive the sum-capacity for the symmetric
K-user Gaussian noise channel to within a constant additive
and multiplicative gap. The additive gap is a function of the
number of users and grows as (K − 2) log2(K − 2); the
proposed achievable scheme can be thought of as a MIMO-
broadcast scheme where only one encoding order is possible
due to the CMS mechanism; interestingly, a single scheme
suffices for both the weak and strong interference regimes;
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Fig. 1. The Gaussian 3-CIFC-CMS

moreover the achievable scheme only requires the first K − 1
cognitive users to know the message of the primary user but
not those of other cognitive users, again considerably relaxing
the CMS requirement. The multiplicative gap is K and is
achieved by having all users beam-form to the primary user.

II. CHANNELMODEL

The K-CIFC-CMS channel consists of: channel inputs
Xi ∈ Xi, i ∈ [1 : K], channel outputs Yi ∈ Yi, i ∈
[1 : K], a memoryless channel P(Y1, . . . , YK |X1, . . . , XK),
and independent messages Wi known to users 1, 2, . . . , i,
i ∈ [1 : K]. A code with non-negative rate vector
(R1, . . . , RK) and block length N is defined by: messages
Wi, i ∈ [1 : K], uniformly distributed over [1 : 2NRi ],
encoding functions XN

i

(
W1, . . . ,Wi

)
, i ∈ [1 : K], decoding

functions Ŵi

(
Y Ni
)
, i ∈ [1 : K], and probability of error

P
(N)
e := maxi∈[1:K] P[Ŵi 6= Wi]. The capacity of the K-

CIFC-CMS channel consists of all rates (R1, . . . , RK) such
that P (N)

e → 0 as N →∞.

A. The Gaussian Noise Channel

The single-antenna complex-valued K-CIFC-CMS with Ad-
ditive White Gaussian Noise (AWGN), shown in Fig. 1 for the
case K = 3, has input-output relationship

Y` =
∑

i∈[1:K]

h`iXi + Z`, ` ∈ [1 : K], (1)

where, without loss of generality, the inputs are subject to the
power constraint E[|Xi|2] ≤ 1, i ∈ [1 : K], and the noises
are marginally (the joint distribution does not matter as the
receivers cannot cooperate) proper-complex Gaussian random
variables with parameters Z` ∼ N (0, 1), ` ∈ [1 : K]. The
channel gains hij , (i, j) ∈ [1 : K]2, are constant. Without loss
of generality we may assume the direct links hii, i ∈ [1 :
K] to be real-valued and non-negative since a receiver can
compensate for the phase of one of its channel gains.

B. The Linear Deterministic Approximation

The Linear Deterministic approximation of the Gaussian
Noise Channel at high SNR (LDC) was first introduced in [11]
and for the K-CIFC-CMS has input-output relationship:

Y` =
∑

i∈[1:K]

Sm−n`iXi, ` ∈ [1 : K], (2)

where m := max(i,j)∈[1:K]2{nij}, S is the binary shift matrix
of dimension m, Xi and Yi are binary vectors of length m,

and the channel gains n`i, (`, i) ∈ [1 : K]2, are non-negative
integers. The channel in (2) can be thought of as the high
SNR approximation of the channel in (1) with their parameters
related as nij = blog(1 + |hij |2)c, (i, j) ∈ [1 : K]2.

III. OUTERBOUND FOR THE K-USER CIFC WITH CMS

We obtain a general and computable outer bound next. The
sum-capacity bound is obtained by giving Si as side informa-
tion to receiver i, i ∈ [1 : K], where Si := [Si−1,Wi−1, Y

N
i−1]

starting with S1 := ∅. With this “nested” side information,
the mutual information terms can be expressed in terms of
entropies which may be recombined in ways that can be easily
single-letterized. This form of the side information allows us
to extend the result from the 3-user case [6] to any number of
users. Other partial sum-rate bounds are obtained with similar
side information structure.

Theorem 1. The capacity region of a general memoryless K-
CIFC-CMS is contained in the region defined by i ∈ [1 : K]

Ri ≤ I(Yi;X[i:K]|X[1:i−1]), (3a)
K∑
j=i

Rj ≤
K∑
j=i

I(Yj ;X[j:K]|X[1:j−1], Y[1:j−1]), i ∈ [1 : K]

(3b)

for some joint input distribution PX1,...,XK
, where XS :=

{Xi : i ∈ S} for some index set S ⊆ [1 : K]. Moreover,
each rate bound in (3b) may be tightened with respect to the
channel joint conditional distribution as long as the channel
conditional marginal distributions are preserved.

Proof: The the individual rate bounds in (3a) are trivial
cut-set bounds, we therefore present the proof of (3b):

N

K∑
j=i

(Rj − εN ) ≤
K∑
j=i

I(Y Nj ;Wj) Fano’s inequality

≤
K∑
j=i

I(Y Nj , W[1:i−1], W[i:j−1], Y
N
[i:j−1];Wj)

=

K∑
j=i

I(Y N[i:j];Wj |W[1:j−1]) independence of messages

=

K∑
j=i

j∑
k=i

I(Y Nk ;Wj |W[1:j−1], Y
N
[i:k−1]) chain rule

=

K∑
k=i

K∑
j=k

I(Y Nk ;Wj |W[1:j−1], Y
N
[i:k−1])

=

K∑
k=i

I(Y Nk ;W[k:K]|W[1:i−1],W[i:k−1], Y
N
[i:k−1])

≤
K∑
k=i

N∑
t=1

I(Yk,t;X[k:K],t|X[1:k−1],t, Y[i:k−1],t).

Finally, by introducing a time-sharing random variable and by
‘conditioning reduces entropy’, we arrive at (3b).
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IV. SUM-CAPACITY OF THE LDC K-CIFC-CMS

For the LDC, we show a sum-capacity achieving scheme
that only requires cognition of all messages at one trans-
mitter. For simplicity we consider the symmetric case only.
In a symmetric LDC all direct links have the same strength
nii = nd ≥ 0, i ∈ [1 : K], and all the cross links have the
same strength n`i = nc = α nd ≥ 0, (`, i) ∈ [1 : K]2, ` 6= i.

Theorem 2. The sum-capacity bound in (3b) for i = 1 is
achievable for the symmetric LDC K-CIFC-CMS.

Proof: For the symmetric LDC K-CIFC-CMS the sum-
capacity in was shown to be upper bounded by [6], [12]:∑K

k=1Rk
nd

≤
{
Kmax{1, α} − α for α 6= 1
1 for α = 1

. (4)

The discontinuity at α = 1 in (4) follows from the fact that
when nd = nc the channel reduces to a K-user MAC with
sum-capacity given by maxH(Y1) = nd.

To show the achievability of (4), let Uj , j ∈ [1 : K], be a
vector composed of i.i.d. Bernoulli(1/2) bits. Let the transmit
signals be

Xj = Uj , j ∈ [1 : K − 1],

XK =

[
Inc

0nc×[nd−nc]+

0[nd−nc]+×nc
0[nd−nc]+×[nd−nc]+

]K−1∑
j=1

Uj


+

[
0nc×nc 0nc×[nd−nc]+

0[nd−nc]+×nc
I[nd−nc]+

]
UK ,

where 0n×m indicates the all zero matrix of dimension n×m,
In the identity matrix of dimension n, and [x]+ := max{x, 0}.
Recall that operations are on GF(2). With these choices,
it may be shown that Y` = (Sm−nd + Sm−nc)X`. Then,
since the matrix Sm−nd + Sm−nc is full rank for nd 6= nc,
receiver `, ` ∈ [1 : K], decodes U` from (Sm−nd +
Sm−nc)−1Y` = X`. Hence receiver `, ` ∈ [1 : K − 1],
can decode m = max{nd, nc} = nd max{1, α} bits since
X` = U`, while receiver K can decode the lower [nd−nc]+ =
nd(max{1, α} − α) bits of UK from XK .

Remark: Interestingly, with the proposed scheme, receivers
from 1 to K − 1 are interference free, while receiver K
decodes nc bits of the ‘interference function’

∑K−1
j=1 Uj .

Hence, cognition is only needed at one transmitter in all
interference regimes, i.e., our sum-capacity result holds for all
symmetric LDC cognitive channels where user i is cognizant
of any subset (including the empty set) of the messages of
users with index less than i.

V. SUM-CAPACITY OF THE GAUSSIAN K-CIFC-CMS

In this section we derive the sum-capacity for the symmetric
Gaussian channel to within a constant gap. We denote the
direct link gains as |hd|, which can be taken to be real-
valued and non-negative without loss of generality, and the
interference link gains as hi. For this channel, we may show
constant additive and multiplicative gaps which depend on K
but not the channel parameters. To do so, we first evaluate our

outer bound, then obtain a generic achievability scheme, and
finally show the additive and multiplicative gaps.

A. Upper Bound

For the symmetric Gaussian K-CIFC-CMS with |hd| 6= hi
the bound in (3b) with i = 1 is further upper bounded as

K∑
u=1

Ru ≤
K∑
u=1

I
(
Xu, · · · , XK ;Yu

∣∣∣X1, Y1, · · · , Xu−1, Yu−1

)
= I
(
X1, · · · , XK ; |hd|X1 + hi

K∑
i=2

Xi + Z1

)
+

K−1∑
u=2

I
(
Xu, · · · , XK ; |hd|Xu + hi

K∑
i=u+1

Xi + Zu

∣∣∣X`, hi

K∑
i=u

Xi + Z`, ` ∈ [1 : u− 1]
)

+ I
(
XK ; |hd|XK + ZK

∣∣∣X`, hiXK + Z`, ` ∈ [1 : K − 1]
)

≤ h
(
|hd|X1 + hi

K∑
i=2

Xi + Z1

)
− h(Z1)

+

K−1∑
u=2

h
(
[|hd| − hi]Xu + Zu − Zu−1)− h(Zu)

+ h
(
|hd|XK + ZK

∣∣∣hiXK +
1

K − 1

K−1∑
`=1

Z`

)
− h(ZK).

Finally, by the “Gaussian maximizes entropy” principle:

K∑
k=1

Rk ≤ log

(
1 +

(
|hd|+ (K − 1)|hi|

)2)
(5a)

+ (K − 2) log(2) + (K − 2) log

(
1 +

∣∣|hd| − hi∣∣2
2

)
(5b)

+ log

(
1 +

|hd|2

1 + (K − 1)|hi|2

)
. (5c)

For hi = |hd| all received signals are statistically equivalent,
therefore the K-CIFC-CMS is equivalent to a K-user MAC
with correlated inputs, whose sum-capacity is bounded by

K∑
k=1

Rk ≤ log(1 +K2|hd|2).

B. Achievable Scheme

In this section we describe a scheme which will be used
to show a constant gap to the symmetric upper bound de-
rived in Section V-A. Inspired by the capacity achieving
strategy for the Gaussian MIMO-BC, we introduce a scheme
that uses Dirty Paper Coding (DPC) with encoding order
1 → 2 → 3 → · · ·K. We denote by Σ` the covariance
matrix corresponding to the message intended for decoder `,
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` ∈ [1 : K], as transmitted across the K antennas/transmitters.
The input covariance matrix is

Cov[X1, . . . , XK ] =

K∑
`=1

Σ` :

[
K∑
`=1

Σ`

]
k,k

≤ 1, k ∈ [1 : K],

(6a)

where the constraints on the diagonal elements correspond to
the input power constraints. Moreover, since message ` can
only be broadcasted by transmitters with index larger than `,
we further impose[

Σ`

]
k,k

= 0 for all 1 ≤ k < ` ≤ K. (6b)

The achievable rate region is then the set of non-negative
rates (R1, . . . , RK) that satisfy, for h†` := [h`,1h`,2 . . . h`,K ]

R` ≤ log

1 +
h†`Σ`h`

1 + h†`

(∑K
k=`+1 Σk

)
h`

 , (7)

for ` ∈ [1 : K] and all possible Cov[X1, . . . , XK ] complying
with (6), with the convention that

∑K
k=K+1 Σk = 0.

In particular we consider the transmit signals

X1 = α1U1,

Xj = γjUj + βjU
(ZF)
j + αjU1, j ∈ [2 : K − 1],

XK = γKUK − βK
K−1∑
j=2

U
(ZF)
j + αKU1,

where U`, U
(ZF)
` are i.i.d. N (0, 1), ` ∈ [1 : K], and the

coefficients {αj , βj , γj}j∈[1:K] are such that

|α1|2 ≤ 1,

|γj |2 + |βj |2 + |αj |2 ≤ 1, j ∈ [2 : K − 1],

|γK |2 + |βK |2(K − 2) + |αK |2 ≤ 1,

in order to satisfy the power constraints. Notice the negative
sign for βK , which we shall use to implement zero-forcing
of the aggregate interference

∑K−1
j=2 U

(ZF)
j . Moreover, all

transmitters cooperate in beam forming U1 to receiver 1.
These two facts can be easily seen by observing that for
β1 = . . . = βK := β

K∑
`=1

X` =

K∑
`=1

γ`U`, γ1 :=

K∑
`=1

α`.

With these choices the message covariance matrices are

Σ1 = aa†, a := [α1, . . . , αK ]T ,

Σj = |γj |2 eje
†
j + |β|

2 (ej − eK)(ej − eK)†, j ∈ [2 : K],

where ej indicates a length-K vector of all zeros except for
a one in position j, j ∈ [1 : K], † indicates the Hermitian
transpose, and where β = β1 = . . . = βK . We next express
the channel vectors h` for the symmetric Gaussian channel as

h` = (|hd| − hi) e` + hi

(
K∑
k=1

ek

)
, ` ∈ [1 : K].

By noticing that h`e
†
j = δ[`− j](|hd| − hi) + hi, ` ∈ [1 : K],

where δ[k] is the Kronecker’s delta function, the following
rates (see [12]) are achievable

R1 = log

1 +

∣∣∣|hd|+ |hi|∑K
j=2 αj

∣∣∣2
1 + |hi|2

∑K
k=2 |γk|2

 , (8a)

Rj = log

1 +

∣∣∣|hd| − hi∣∣∣2 |β|2 + |hd|2 |γj |2
1 + |hi|2

∑K
k=j+1 |γk|2

 , (8b)

RK = log
(
1 + |hd|2 |γK |2

)
, (8c)

for j ∈ [2 : K − 1] and with α1 = exp(j∠hi) (notice the
phase of α1 which allows coherent combining at receiver 1 of
the different signals carrying U1, i.e., all users beamform to
the primary receiver).

C. Constant Additive Gap

Theorem 3. The sum-capacity bound in (3b) is achievable
for the symmetric Gaussian K-CIFC-CMS to within 6 bits
per channel use for K = 3 and to within (K − 2) log2(K −
2) + 3.88 bits per channel use for K ≥ 4.

Proof: We now choose the parameters in (8) so as to
match the upper bound in (5). We recall that user K is the
most cognitive user and can therefore ‘pre-code’ the whole
interference seen at its receiver by using DPC; by doing
so, receiver K would not have anything to treat as noise
besides the Gaussian noise itself. We therefore interpret the
term 1

1+(K−1)|hi|2 ≤ 1 in (5c) as the fraction of power
transmitter K dedicates to its own signal. This is as setting

|γK |2 =
1

1 + (K − 1)|hi|2

in (8c). This choice guarantees that (8c) exactly matches (5c).
Next we match the upper bound term in (5b) to the achievable
rates in (8b) by setting

γj = 0, j ∈ [2,K − 1],
1

2
=

|β|2

1 + |hi|2|γK |2
.

However, from the power constraint for user K, |β|2 ≤
1−|γK |2
K−2 , which imposes the following condition

K − 4

K − 2
+

(
|hi|2 +

2

K − 2

)
|γK |2 ≤ 0.

The above condition cannot be satisfied for K ≥ 4; for K = 3
it requires that

|γ3|2 =
1

1 + 2|hi|2
≤ 1

|hi|2 + 2
,

which can be satisfied by |hi|2 ≥ 1. Therefore, in the following
we shall assume |hi|2 ≥ 1 and set γj = 0, j ∈ [2,K − 1] and

|β|2 =


1−|γK |2
K−2 = 1

K−2

(
1− 1

1+(K−1)|hi|2

)
K ≥ 4

1+|hi|2|γ3|2
2 = 1+3|hi|2

2(1+2|hi|2) K = 3
,
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which implies

|αK |2 =

{
0 K ≥ 4

1− |β|2 − |γK |2 = −1+|hi|2
2(1+2|hi|2) K = 3

.

Finally, for j ∈ [2 : K − 1]

|αj |2 = 1−|βj |2 =

{
K−3
K−2 + 1

K−2
1

1+(K−1)|hi|2 K ≥ 4
1+|hi|2

2(1+2|hi|2) K = 3
.

The rates may then be bounded for K ≥ 4 (using |hi|2 ≥ 1):

RK = log

(
1 +

|hd|2

1 + (K − 1)|hi|2

)
Rj ≥ log

(
1 +

∣∣|hd| − hi∣∣2
K − 2

K − 1

K + 1

)
, j ∈ [2 : K − 1],

R1 ≥ log

(
1 +

∣∣|hd|+ |hi|√(K − 3)(K − 2)
∣∣2

2

)
,

and for K = 3

R3 = log

(
1 +

|hd|2

1 + 2|hi|2

)
, R2 = log

(
1 +

∣∣|hd| − hi∣∣2 1
2

)
R1 ≥ log

(
1 +

∣∣|hd|+ |hi| 12 ∣∣2
2

)
.

By taking the difference between the upper bound in (5)
and the derived achievable-rates, we find that the gap is upper
bounded by, for K ≥ 4:

GAP ≤ (K − 2) log (K − 2) + log(2 exp(2)),

(where we used K loge(1 + 1/K) ≤ 1), and for K ≥ 3

GAP ≤ log(2) + log

(
1 +

(
|hd|+ 2|hi|

)2)
− log

(
1 +

∣∣|hd|+ |hi| 12 ∣∣2
2

)
≤ 6 log(2).

For |hi|2 < 1, set βj = αj = 0, γj = 1 for j ∈ [2 : K] so that
K∑
`=1

R` =

K∑
`=1

log

(
1 +

|hd|2

1 + (K − `)|hi|2

)
.

The gap to the upper bound is at most

GAP ≤ (K − 2) log(2) + 2 log(K − 1) +

K−1∑
`=2

log

(
K − `

2

)
.

which is smaller than the gap for |hi|2 ≥ 1. Details on the
calculation of the gaps are found in [12].

D. Constant Multiplicative Gap

We next consider the sum-capacity to within a multiplicative
gap, more relevant at low SNR than additive gaps.

Theorem 4. The symmetric sum-capacity is achievable to
within a factor K by beamforming to the primary user.

Proof: The rate of user j in (3a) is upper bounded by
Cj := log(1 + (|hd| + (K − j)|hi|)2) ≤ C1, j ∈ [1 : K];

this implies that the sum-rate is upper bounded by K × C1.
Consider an achievability scheme in which all users beamform
to user 1: this achieves the sum-rate R1 + · · ·RK = C1. This
is to within a factor K of the upper bound, proving Th. 4.

Interestingly, the achievable scheme only requires user K
to be cognitive of the messages of all other users, while the
rest of users only need to know the message of user 1 in
addition to their own message; this considerably relaxes the
CMS requirement.

VI. CONCLUSION

We presented a general outer bound region for the K-
user cognitive interference channel with cumulative message
sharing. This computable outer bound was used to show
that the symmetric sum-capacity is exactly achievable for the
linear deterministic channel and to within constant gap for the
Gaussian noise channel. While the focus of this paper was on
cumulative message sharing, we note that, interestingly, the
same sum-capacity outer bound may be achieved with a dif-
ferent message sharing structure with less message knowledge
at the cognitive transmitters.
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