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Abstract—The interference channel with a cognitive relay
consists of a classical interference channel with two source-
destination pairs and with an additional cognitive relay that has a
priori knowledge of the sources’ messages and aids in the sources’
transmission. We derive a new outer bound for this channel using
an argument originally devised for the “more capable” broadcast
channel, and show the achievability of the proposed outer bound
for a class of channels where there is no loss in optimality if
both destinations decode both messages. This result is analogous
to the “very strong interference” capacity result for the classical
interference channel and for the cognitive interference channel,
and is the first capacity known capacity result for the general
interference channel with a cognitive relay.

Index Terms—Interference channel with a cognitive relay;
Capacity; Outer bound; Strong interference

I. INTRODUCTION

Cognition is a rapidly emerging new paradigm in wireless
communication whereby a node changes its communication
scheme to efficiently share the spectrum with other users in
the network. Cooperation among smart and well-connected
wireless devices has been recognized as a key factor in
improving the spectrum utilization and throughput of wireless
networks [1]. The information theoretic study of cognitive
networks has focused mostly on the cognitive interference
channel, a variation of the classical interference channel where
one of the transmitters has perfect, a priori knowledge of
both the messages to be transmitted. Albeit idealistic, this
form of genie-aided cognition has provided precious insights
on the rate advantages that can be obtained with transmitter
cooperation with one cognitive encoder. In this paper we study
a natural extension of the cognitive interference channel where
the genie-aided cognition, instead of being provided to only
one of the users of the interference channel, is rather provided
to a third node, a cognitive relay, that aids the communication
between both source-destination pairs.

Past work. Few results are available for the InterFerence
Channel with a Cognitive Relay (IFC-CR) and the fully
general information theoretic capacity of this channel remains
an open problem. The IFC-CR was initially considered in [2]
where the first achievable rate region was proposed, and was
improved upon in [3], which also provided a sum-rate outer
bound for the Gaussian channel. This outer bound is based on
an outer bound for the MIMO Gaussian cognitive interference
channel and, in general, has no closed form expression. In
[4] an achievable rate region was derived that contains all

previously known achievable rate regions1. The first outer
bounds for a general (i.e., not Gaussian) IFC-CR were derived
in [5] by using the fact that the capacity region only depends
on the conditional marginal distribution of the channel outputs.
The authors of [5] first derived an outer bound valid for any
IFC-CR and successively tighten the bound for a class of
semi-deterministic channels in the spirit of [6], [7]. In [5], the
tightened bound was also shown to be capacity for a the high-
SNR binary linear deterministic approximation of the Gaussian
channel, a model originally proposed in [8] for the classical
IFC, for the case where the sources do not interfere at the non-
intended destinations. In [9], with the insights gained from
the high-SNR binary linear deterministic channel, the authors
showed capacity to within 3 bits/sec/Hz for any finite SNR.

Contributions. In this paper we determine:

1) a new outer bound for the IFC-CR inspired by
an argument originally devised for the “more capable”
broadcast channel [10], also utilized in deriving the
capacity of the cognitive interference channel in “weak
interference” [11].

2) a new outer bound in the “strong interference”
regime at receiver 1 and/or 2 which is defined as the
regime where-loosely speaking-the non-intended desti-
nation can decode more information than the intended
destination.

3) capacity for the “very strong interference” regime,
a regime obtained by adding an additional constraint to
the “strong interference” regime at receiver 1 and/or 2.
In this regime, capacity is achieved by a superposition
scheme in which both decoders, without rate loss, de-
code both messages.

Paper Organization. The rest of the paper is organized
as follows: in Section II we formally introduce the channel
model. In Section III we present a new outer bound for
the general channel and an outer bound for the “strong
interference” regime. In Section IV we show the achievability
of the “strong interference at receiver 1 and/or 2” outer bound
in the “very strong interference” regime. Section V specializes
the results of the paper to the Gaussian interference channel
with a cognitive relay. Section VI concludes the paper.

1The authors of [4] refer to the IFC-CR as broadcast channel with cognitive
relays, arguing that the model can also be obtained by adding two partially
cognitive relays to a broadcast channel.
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Fig. 1. The general InterFerence Channel with a Cognitive Relay (IFC-CR).

II. CHANNEL MODEL

We consider the IFC-CR in which the transmission of the
two independent messages Wi ∈ [1 : 2NRi ], i ∈ {1, 2},
is aided by a single cognitive relay, whose input to the
channel has subscript c. The memoryless channel has transition
probability PY1,Y2|X1,X2,Xc

. A rate pair is achievable if there
exists a sequence of encoding functions

XN
1 = XN

1 (W1), XN
2 = XN

2 (W2), XN
c = XN

c (W1,W2),

and a sequence of decoding functions

Ŵ1 = Ŵ1(Y N1 ), Ŵ2 = Ŵ2(Y N2 ),

such that
lim
N→∞

max
i=1,2

Pr
[
Ŵi 6= Wi

]
= 0.

The capacity region is defined as the closure of the region of all
achievable (R1, R2)-pairs. The capacity of the general IFC-CR
is open. The IFC-CR subsumes three well-studied channels as
special cases: (a) InterFerence Channel (IFC): if Xc = ∅; (b)
Broadcast Channel (BC): if X1 = X2 = ∅; and (c) Cognitive
InterFerence channel (C-IFC): if X1 = ∅ or X2 = ∅.

III. OUTER BOUNDS

The previously proposed outer bound for the general memo-
ryless IFC-CR in [5, Th.3.1] equals capacity when the channel
reduces to a Gaussian C-IFC in “weak interference” [11,
Lem.3.6], in “very strong interference” [12, Th.6] and in
“primary decodes cognitive” regimes [13, Th.3.1]. However,
it does not reduce to the outer bound in [11, Th. 3.2], which
is capacity for the C-IFC in the “very weak interference”
regime [11, Th.3.4], and for the semi-deterministic C-IFC [14,
Th.8.1]. For this reason we next derive a new outer bound
inspired by the capacity of the “more capable” BC of [10]
which does correspond to the outer bound of [11, Th.3.2]
when the IFC-CR reduces to a C-IFC. We also derive a simple
expression from this first outer bound for a specific class of
channels: the “strong interference” regime, where one message
is more favorably decoded at the non-intended receiver than
at the intended receiver. This regime parallels the “strong
interference” regime for the IFC [15] and the C-IFC [12, Th.6].

Remark 1. We note however that out notation is not entirely
consistent with past uses of the term “strong interference”.

Here, as in our previous work on the C-IFC [14], [16], we use
“strong interference” to denote regimes inspired by similar
results in the IFC for which we may obtain either a tighter or
simpler outer bound for the channel of interest, and use the
terms “very strong interference” to denote regimes in which
additional conditions, therefore forming subsets of the “strong
interference” regimes, are imposed on top of the “strong
interference” conditions for capacity.

Theorem 1. “More capable” BC-type outer bound. If
(R1, R2) lies in the capacity region of the IFC-CR, then the
following must hold:

R1 ≤ I(Y1; X1, Xc|X2, Q), (1a)
R1 ≤ I(Y1; U2, X1|Q), (1b)
R2 ≤ I(Y2; X2, Xc|X1, Q), (1c)
R2 ≤ I(Y2; U1, X2|Q), (1d)

R1+R2 ≤ I(Y1; X1, Xc|U1, X2, Q)+I(Y2; U1, X2|Q), (1e)
R1+R2 ≤ I(Y2; X2, Xc|U2, X1, Q)+I(Y1; U2, X1|Q), (1f)
R1+R2 ≤ I(Y1; U1|Q) + I(Y2; U2|Q), (1g)

R1+R2 ≤ I(Y1; X1, X2, Xc|Q)+I(Y2; X2, Xc|Y ′1 , X1, Q), (1h)

R1+R2 ≤ I(Y2; X1, X2, Xc|Q)+I(Y1; X1, Xc|Y ′2 , X2, Q), (1i)

for some input distribution PQ,X1,X2,Xc,U1,U2 that factors as:

PQPX1|QPX2|QPXc|X1,X2,QPU1,U2|X1,X2,Xc,Q, (2)

for and Y ′1 and Y ′2 having the same marginal distributions as
Y1 and Y2, respectively, but otherwise arbitrarily correlated.

Proof: The bounds in (1a) and (1c), as well as the sum-
rate bounds in (1h) and (1i), were originally derived in [5, Th.
3.1]. The bound in (1d) is obtained as follows:

N(R2 − εN ) ≤ I(Y N2 ;W2)

(a)

≤
N∑
i=1

H(Y2,i|Y N2,i+1)−H(Y2,i|Y N2,i+1,W2, X
N
2 , Y

i−1
1 )

(b)

≤
N∑
i=1

I(Y2,i;Ui,1, X2,i),

where (a) follows from the “conditioning reduces entropy”
[17] property and (b) from defining:

U1,i = [Y i−1
1 ,W2, X

i−1
2 , XN

2,i+1, Y
N
2,i+1], (3)

and letting X0 = XN+1 = ∅. The bound in (1d) is obtained
by introducing a time-sharing Random Variable (RV) Q uni-
formly distributed on the interval [1 : N ] and independent of
everything else. For the sum-rate bound in (1e):

N(R1 +R2 − 2εN ) ≤ I(Y N1 ;W1|W2) + I(Y N2 ;W2)

≤
N∑
i=1

I(Y1,i;W1, Y
N
2,i+1|Y i−1

1 ,W2, X
N
2 )

+ I(Y2,i;W2, X
N
2 , Y

N
2,i+1)

≤
N∑
i=1

I(Y1,i;Y N2,i+1|Y i−1
1 ,W2, X

N
2 )

− I(Y2,i;Y i−1
1 |W2, X

N
2 , Y

N
2,i+1)



+ I(Y1,i;W1|Y i−1
1 ,W2, X

N
2 , Y

N
2,i+1)

+ I(Y2,i;W2, X
N
2 , Y

N
2,i+1, Y

i−1
1 )

(c)
=

N∑
i=1

I(Y1,i;W1|Ui,1, X2,i) + I(Y2,i;Ui,1, X2,i)

≤
N∑
i=1

I(Y1,i;X1i, Xci|U1,i, X2i) + I(Y2,i;U1,i, X2i),

where (c) follows from Csiszár’s sum identity [18] and the
definition of U1,i in (3). The bounds in (1b) and (1f) are
obtained similarly to the bounds in (1d) and (1e), respectively,
by swapping the role of the sources and by defining:

U2,i = [Y i−1
2 ,W1, X

i−1
1 , XN

1,i+1, Y
N
1,i+1]. (4)

Finally, the bound in (1g) is obtained as follows:

N(R1 +R2 − 2ε) ≤ I(Y N1 ;W1) + I(Y N2 ;W2)

≤
N∑
i=1

H(Y1,i) +H(Y2,i)

−H(Y1,i|Y i−1
2 , Y N1,i+1, X

i−1
1 , XN

1,i+1,W1)

−H(Y2,i|Y i−1
1 , Y N2,i+1, X

i−1
2 , XN

2,i+1,W2)

=
N∑
i=1

H(Y1,i)−H(Y1,i|U2,i) +H(Y2,i)−H(Y2,i|U1,i).

Remark 2. Th. 1 is the tightest known outer bound for a
general IFC-CR and it reduces to the capacity region of the
“more capable” BC when X1 = X2 = ∅ in which case (1b)
and (1e) are tight. Th. 1 also reduces to the outer bound of
[11, Th. 3.2] when either X2 = ∅ or X1 = ∅ in which case
(1b), (1d) and (1e) are tight. However, Th. 1 does not reduce to
the capacity region of the class of deterministic IFCs studied
in [8] and to the outer bound for the semi-deterministic IFC
in [7] when Xc = ∅. The difficulty in deriving outer bounds
for the IFC-CR that are tight when the IFC-CR reduces to an
IFC is also noted in [5]. The authors of [5, Th. 3.2] are able
to derive tight bounds in this scenario by imposing additional
constraints on the effect of interference on the channel outputs.

Theorem 2. “Strong interference at Rx 1” outer bound. If

I(Y2;X2, Xc|X1) ≤ I(Y1;X2, Xc|X1) (5)

for all distributions

PX1,X2,Xc
= PX1PX2PXc|X1,X2 , (6)

then, if (R1, R2) lies in the capacity region of the IFC-CR,
the following must hold:

R1 ≤ I(Y1;X1, Xc|X2, Q), (7a)
R2 ≤ I(Y2;X2, Xc|X1, Q), (7b)

R1 +R2 ≤ I(Y1;X1, X2, Xc|Q), (7c)

for some distribution

PQ,X1,X2,Xc
= PQPX1|QPX2|QPXc|X1,X2,Q. (8)

Proof: Since

I(Y1;X2, Xc|X1, U) =
∑
u

P (u)I(Y1;X2, Xc|X1, U = u)

≥
∑
u

P (u)I(Y2;X2, Xc|X1, U = u) = I(Y2;X2, Xc|X1, U)

we see that I(Y2;X2, Xc|X1, U) ≤ I(Y1;X2, Xc|X1, U), for
all PX1,X2,Xc,U = PX1PX2PXc|X1,X2PU |X1,X2,Xc

. From this,
it follows that when condition (5) holds, we can upper bound
the bound in (1f) as:

I(Y1;U2, X1|Q) + I(Y2;X2, Xc|X1, U2, Q)
≤ I(Y1;U2, X1|Q) + I(Y1;X2, Xc|X1, U2, Q)
≤ I(Y1;X1, X2, Xc, U2|Q) = I(Y1;X1, X2, Xc|Q),

where the last equality follows from the Markov chain Y1 −
(X1, X2, Xc) − U2 which is readily established by using the
memoryless property of the channel. We drop all remaining
bounds involving the auxiliary random variable U , which
loosens the outer bound.
Remark 3. Given the symmetry of the channel model, Th. 2
holds when the role of the sources is reversed, which we then
term the “strong interference at Rx 2” outer bound. Although
not valid for a general IFC-CR, Th. 2 is expressed only as a
function of the channel inputs and does not contain auxiliary
RVs as in Th. 1.
Remark 4. When condition (5) holds, it also implies:

0 ≤ I(Y2;X2, Xc|X1, Y
′
1) ≤ I(Y1;X2, Xc|X1, Y

′
1) = 0 (9)

since Y ′1 must have the same conditional marginal distribution
of Y1 but can otherwise be arbitrarily correlated with the
channel outputs; we can thus choose Y1 = Y ′1 and such that Y2

is a degraded version of Y ′1 conditioned on X1. Given (9), sum
rate bound (1h) coincides with (7c). The bound (7c) is derived
in [5] using the fact that the capacity region does not depend
on the conditional joint distribution of the channel outputs but
only on their conditional marginal distributions. As for the C-
IFC of [14], the sum rate bound derived using Csiszár’s sum
identity coincides with the bound derived using Sato’s idea in
the “strong interference” regime.

IV. CAPACITY IN “VERY STRONG INTERFERENCE AT RX 1”

In this section we show the achievability of the outer bound
of Th. 2 in the “very strong interference at Rx 1” regime (to be
defined later), which is a subset of the “strong interference at
Rx 1” regime defined by (5). This result parallels the capacity
results under “strong interference at RX 1” for the IFC [15]
and the C-IFC [12], where the channel reduces to a compound
two-user multiple access channel. 2 For this class of channels
the interfering signal at each receiver can be decoded without
imposing any additional rate penalty and thus successively
stripped from the received signal. Since the interference can

2We again note that our terminology of “strong” and “very strong” does not
exactly correspond to that for IFC and C-IFC channels besides the authors’
previous work. We use “very strong” to denote that we need to satisfy the
“strong” conditions as well as additional constraints.



always be distinguished from the intended signal, there is
no need to perform interference pre-coding at the cognitive
relay. This greatly simplifies the achievable scheme required
to match the outer bound in Th. 2. We will show in fact that
a simple superposition coding schemes achieves Th. 2.

Theorem 3. Capacity in “very strong interference at Rx
1”. If (5) holds together with

I(Y1;X1, X2, Xc) ≤ I(Y2;X1, X2, Xc) (10)

for all distributions in (6), then the region in (7) is capacity.

Proof: Under the assumption of the theorem, the region
in (7) is an outer bound for the considered IFC-CR. The
achievability of the outer bound the region in (7) can be
shown by considering a transmission scheme that employs
two common messages, U1c, U2c for source 1 and source 2,
respectively, that are encoded in the channel inputs according
to the distributions PX1|U1c

, PX2|U2c
and PXc|U1c,U2c

. This
scheme achieves the region:

R1 ≤ I(Y1;U1c|U2c, Q), (11a)
R2 ≤ I(Y2;U2c|U1c, Q), (11b)

R1 +R2 ≤ I(Y1;U1c, U2c|Q), (11c)
R1 +R2 ≤ I(Y2;U1c, U2c|Q), (11d)

for some input distribution that factors as:

PQPU1c,X1|QPU2c,X2|QPXc|U1c,U2c,X1,X2,Q, (12)

where Q is a time-sharing random variable defined as in Th. 1.
Let now U1c = X1, U2c = X2 and Xc be a deterministic
function of X1, X2. Under the condition in (10) the bound in
(11d) can be dropped from the region in (11) and the resulting
region coincides with the one in (7).

Following the proof of Th. 3 one can also show:

Theorem 4. Capacity in “strong interference at Rx 1 and
at Rx 2”. If the condition in (5) holds for all distributions
in (6) together with the equivalent of (5) with the role of the
users swapped, then the region in (11) with U1c = X1 and
U2c = X2 is capacity.

V. THE GAUSSIAN CASE

In the following we evaluate Th. 2 and Th. 3 for the
Gaussian IFC-CR. Without loss of generality we restrict our
attention to the Gaussian IFC-CR in standard form given by:

Y1 = |h11|X1 + |h1c|Xc + h12X2 + Z1, (13a)
Y2 = h21X1 + |h2c|Xc + |h22|X2 + Z2, (13b)

where hi ∈ C, i ∈ {11, 1c, 12, 22, 2c, 21}, are constant
and known to all terminals, Zi ∼ NC(0, 1), i ∈ {1, 2},
and E[|Xi|2] ≤ 1, i ∈ {1, 2, c}. The channel links hi, i ∈
{11, 22, 1c, 2c} can be taken to be real-valued without loss of
generality because receivers and transmitters can compensate
for the phase of the signals. The correlation among the noises
is irrelevant because the capacity of the channel without

receiver cooperation only depends on the noise marginal
distributions.

Theorem 5. The “strong interference at Rx 1” outer bound
for the Gaussian IFC-CR. If∣∣∣|h22|+ β̃∗2 |h2c|

∣∣∣2 ≤ ∣∣∣h12 + β̃∗2 |h1c|
∣∣∣2 (14)

for

]β̃2 = ]
(
|h22||h2c| − h12|h1c|

)
, (15a)

|β̃2|2 =


1 if |h2c| ≥ |h1c|

min

1,

∣∣∣|h2c||h22|−|h1c|h12

∣∣∣∣∣∣|h2c|2−|h1c|2
∣∣∣
 if |h2c| < |h1c|

(15b)

the capacity of a Gaussian IFC-CR is contained in the set:

R1 ≤ C
(
||h11|+ |h1c|β1|2

)
, (16a)

R2 ≤ C
(
||h22|+ |h2c|β2|2

)
, (16b)

R1 +R2 ≤ C
(
||h11|+ |h1c|β1|2 + |h12 + |h1c|β2|2

)
,

(16c)

taken over the union of all (β1, β2) : |β1|2 + |β2|2 ≤ 1.

Proof: Given the “Gaussian maximizes entropy” property
[17] we have that the union over all the distributions in (8) of
the region in (7) is equal to the union over all the zero-mean
complex-valued proper Gaussian random vectors [X1, X2, Xc]
with covariance matrix

Cov(X1, X2, Xc) =

 1 0 β1

0 1 β2

β∗1 β∗2 1

 (17)

for some |β1|2 + |β2|2 ≤ 1. With this factorization we can
rewrite the condition in (5) as

max
|β1|2+|β2|2≤1

∣∣|h22|+ β∗2 |h2c|
∣∣2 − ∣∣h12 + β∗2 |h1c|

∣∣2
+
(
|h2c|2 − |h1c|2

) (
1− |β1|2 − |β2|2

)
≤ 0

The solution of this maximization problem is (15).

Theorem 6. Capacity in “very strong interference at RX
1” for the Gaussian IFC-CR.

If in addition to condition (14) the following also holds:

(|h11|2 + |h1c|2 + |h12|2)− (|h21|2 + |h2c|2 + |h22|2)

+2
√∣∣|h11||h1c| − h21|h2c|

∣∣2 +
∣∣h12|h1c| − |h22||h2c|

∣∣2 ≤ 0
(18)

the region of (16) is capacity.

Proof: With the factorization in (17) the condition in (10)
can be rewritten as

(|h11|2 + |h1c|2 + |h12|2)− (|h21|2 + |h2c|2 + |h22|2) + max
|β1|2+|β2|2≤1

2Re {β1 (|h1c||h11| − |h2c|h21) + β2 (|h1c|h12 − |h2c||h22|)} ≤ 0



Fig. 2. The “strong interference at Rx 1” regime of Th. 5 (light grey) and
the “very strong interference at Rx 1” regime of Th. 6 (dark grey) for the
real-valued Gaussian IFC-CR with |h11| = |h22| = |hd| = 1 and |h1c| =
|h2c| = |hc| = 2 in the plane (h12, h21) ∈ R2.

The solution of this maximization problem is (18).
Remark 5. When the IFC-CR reduces to an IFC, i.e., h1c =
h2c = 0, the condition in (14) reduces to the well-known
“strong interference at Rx 1” |h22|2 ≤ |h12|2, and the
condition in (18) to |h11|2 + |h12|2 ≤ |h21|2 + |h22|2 (larger
total received power at Rx 2 than at Rx 1).

When the IFC-CR reduces to a C-IFC with user 1 as primary
user, i.e., h22 = h12 = 0, the condition in (14) reduces to
|h2c|2 ≤ |h1c|2 (strong interference at the primary receiver)
and the condition in (18) to

|h11|2 + |h1c|2−|h21|2−|h2c|2 +2
∣∣|h11||h1c|−h21|h2c|

∣∣ ≤ 0,

which is the same as the condition in [19, Th.II.3].
When the IFC-CR reduces to a C-IFC with user 2 as primary

user, i.e., h11 = h21 = 0, the conditions in (14) in (18)
are equivalent to I(Y1;X2, Xc) = I(Y2;X2, Xc) for all input
distributions, that is,

|h1c|2 + |h12|2 = |h2c|2 + |h22|2, h12|h1c| = |h22||h2c|.

When the IFC-CR reduces to a BC. i.e., h11 = h21 = h22 =
h12 = 0 the conditions in (14) and in (18) are equivalent to
I(Y1;Xc) = I(Y2;Xc) for all input distributions, that is, a BC
with statistically equivalent Rx’s, i.e., |h2c|2 = |h1c|2.

A representation of the “strong interference at Rx 1”
condition of Th. 5 and the “very strong interference at Rx
1” condition of Th. 6 for the real-valued Gaussian IFC-
CR in the plane (h12, h21) ∈ R2 is shown in Fig. 2 for
|h1c| = |h2c| = |hc| and |h11| = |h22| = |hd|.

VI. CONCLUSION AND FUTURE WORK

We introduce a new outer bound for the interference channel
with a cognitive relay and show the achievability of this outer
bound in the “very strong interference” regime by having both
decoders decode both messages as in a compound multiple
access channel. Although significant, the contributions of this
paper are only the first step to a better understanding of the

capacity region of the cognitive interference channel with a
cognitive relay which remains largely undiscovered.
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