Receiver-side Opportunism in Cognitive Networks

Natasha Devroye, University of Illinois at Chicago Petar Popovski, Aalborg University

Secondary spectrum licensing

Primary users

Secondary spectrum licensing

Secondary users \leftrightarrow Cognitive radios

Primary users

1. White-space filling

1. White-space filling

1. White-space filling

1. White-space filling

1. White-space filling

1. White-space filling

1. White-space filling

2. Underlay / interference-temperature

3. Overlay

1. White-space filling

2. Underlay / interference-temperature

3. Overlay

Emphasis on cognitive Tx, CTx!

PR

CTx adjusts power to interference temp.

What about intelligent CRx behavior?

What about intelligent CRx behavior?

Opportunistic Interference Cancelation! OIC

• Past work: plain point-to-point cognitive channel with OIC

• This work: Multiple access channel with OIC

• This work: Interference channel with OIC

• This work: Broadcast channel with OIC

• Past work: plain point-to-point cognitive channel with OIC

• This work: Multiple access channel with OIC

• This work: Interference channel with OIC

• This work: Broadcast channel with OIC

• Past work: plain point-to-point cognitive channel with OIC

• This work: Multiple access channel with OIC

• This work: Interference channel with OIC

• This work: Broadcast channel with OIC

• Past work: plain point-to-point cognitive channel with OIC

• This work: Multiple access channel with OIC

• This work: Interference channel with OIC

CTx

X,

/ Xp

h_{p1}

N₁

h_{1p}

h₁₁

hpp

CRx

KEY ASSUMPTION:

CRx has codebook of (PTx, PRx)

KEY ASSUMPTION:

CRx has codebook of (PTx,PRx)

uses this to decode

"opportunistically"

Decode PTx message ``opportunistically"?

Constraint 1: R_p^* fixed by primary

Constraint 2: primary SNR at CRx depends on channel gain

$$\gamma_{p1} := |h_{1p}|^2 P_p$$

Multiple Access Channel, know capacity!

 $R_c \leq I(X_1; Y_1 | X_p)$ $R_p \leq I(X_p; Y_1 | X_1)$ $R_c + R_p \leq I(X_1, X_p; Y_1)$

Multiple Access Channel, know capacity!

$$R_{c} \leq I(X_{1}; Y_{1}|X_{p})$$

$$R_{p} \leq I(X_{p}; Y_{1}|X_{1})$$

$$R_{c} + R_{p} \leq I(X_{1}, X_{p}; Y_{1})$$
Fixed to $R_{p}^{*} \Rightarrow \text{find } R_{c}$

Case 1: γ_{p1} large , opportunistically cancel PTx message

$$Y_1 = h_{11}X_1 + h_{p1}X_p + N_1$$

Case 1: γ_{p1} large , **opportunistically cancel** PTx **message** $Y_1 = h_{11}X_1 + h_pX_p + N_1$
"Opportunistically:"

Case 1: γ_{p1} large , opportunistically cancel PTx message $Y_1 = h_{11}X_1 + h_pX_p + N_1$

Case 2: $\gamma_{p1}\,\,{\rm small}\,$, treat PTx message as noise $Y_1 = h_{11}X_1 + h_{p1}X_p + N_1$

"Opportunistically:"

Case 1: γ_{p1} large , **opportunistically cancel** PTx **message** $Y_1 = h_{11}X_1 + h_pX_p + N_1$

Case 2: $\gamma_{p1}\,\,{\rm small}\,$, treat PTx message as noise $Y_1 = h_{11}X_1 + h_{p1}X_p + N_1$

"Opportunistically:"

Case 1: γ_{p1} large , **opportunistically cancel** PTx **message** $Y_1 = h_{11}X_1 + h_pX_p + N_1$ Case 2: γ_{p1} small , treat PTx message as noise $Y_1 = h_{11}X_1 + h_{p1}X_p + N_1$ Rc

What about **OIC** in *networks* of cognitive users?

What about **OIC** in *networks* of cognitive users?

Same idea - use primary codebook knowledge to **decode and cancel** primary message when channel conditions permit!

• Interference margin: single primary user operates at a positive I_0

$$R_p = \log\left(1 + \frac{|h_{pp}|^2}{1+I_0}\right)$$

• Interference margin: single primary user operates at a positive I_0

$$R_p = \log\left(1 + \frac{|h_{pp}|^2}{1+I_0}\right)$$

Codebook knowledge: all CRxs have primary codebook knowledge

• Interference margin: single primary user operates at a positive I_0

$$R_p = \log\left(1 + \frac{|h_{pp}|^2}{1+I_0}\right)$$

- Codebook knowledge: all CRxs have primary codebook knowledge
- Primary remains oblivious to secondary operation: primary continues to operate as usual and does not change ANY of its behavior! Support legacy systems!

• Interference margin: single primary user operates at a positive I_0

$$R_p = \log\left(1 + \frac{|h_{pp}|^2}{1+I_0}\right)$$

- Codebook knowledge: all CRxs have primary codebook knowledge
- Primary remains oblivious to secondary operation: primary continues to operate as usual and does not change ANY of its behavior! Support legacy systems!
- Channel knowledge assumption: CTxs and CRxs assumed to know quasi-static channel gains h_{ij}

What secondary rates can we achieve?

Relative values of γ_{p1} and R_p^* will allow/prevent OIC

- divide into cases: decode PTx message at or not
- for each case, obtain region as M+1 user MAC channel with FIXED $\,R_p^*$
- take union over power constraints

$$P_{MAC} = \{ (P_1, P_2, \cdots, P_M) \text{ such that} \\ |h_{1p}|^2 P_1 + |h_{2p}|^2 P_2 + \cdots + |h_{Mp}|^2 P_M \le I_{margin} \}$$

For a given R_p^* , γ_{p1} , an achievable rate region \mathcal{R}_{MAC} is given by the convex hull of the union over all $\mathbf{P} = (P_1, P_2, \dots, P_M) \in \mathcal{P}_{MAC}$ of the regions $\mathcal{R}(\mathbf{P}) = (R_1, R_2, \dots, R_p)$ such that if $R_p^* \geq C(\gamma_{p1})$, the primary signal is treated as noise, resulting in the region:

$$\bigcap_{T \subset \{1,2,\cdots M\}} \left(\sum_{t \in T} R_t \right) \leq I(Y_1; \mathbf{X}_{\mathbf{T}} | \mathbf{X}_{\overline{\mathbf{T}}}),$$

and if $R_p^* < C(\gamma_{p1})$ then the primary signal may be decoded at CRx 1, resulting in the region

$$\bigcap_{\substack{T \subset \{1,2,\cdots M,p\}\\T \neq \{p\}}} \left(\sum_{t \in T} R_t \right) \leq I(Y_1; \mathbf{X_T} | \mathbf{X_{\overline{T}}}), \text{ where } R_p = R_p^*.$$

What secondary rates can we achieve?

Relative values of $\gamma_{p1}, \gamma_{p2}, R_p^*$ will allow/prevent OIC

- divide into cases: decode PTx message at one, both or neither CRx
- for each case, obtain region as known achievable rate region (3 user extension of Han + Kobayashi region for interference channel) with FIXED R_p^*
- take union over power constraints

$$P_{INT} = \{ (P_1, P_2) \text{ such that } |h_{1p}|^2 P_1 + |h_{2p}|^2 P_2 \le I_{margin} \}$$

For a given R_p^* , γ_{p1} and γ_{p2} , an achievable rate region \mathcal{R}_{INT} is given by the convex hull of the union over all $\mathbf{P} = (P_1, P_2) \in \mathcal{P}_{INT}$ of the regions $\mathcal{R}(\mathbf{P}) = (R_1 = R_{11} + R_{12}, R_2 = R_{21} + R_{22})$ such that:

1. If $R_p^* \ge \max(C(\gamma_{p1}), C(\gamma_{p2}))$ then the primary signal is treated as noise at both CRxs, with resulting region:

$$\bigcap_{T \subset T_1} \left(\sum_{t_1 \in T} R_{t_1} \right) \le I(Y_1; \mathbf{X_T} | \mathbf{X_{\overline{T}}}),$$
$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} R_{t_2} \right) \le I(Y_2; \mathbf{X_T} | \mathbf{X_{\overline{T}}}).$$

2. If $C(\gamma_{p2}) < R_p^* < C(\gamma_{p1})$, then CRx 1 can decode the primary, while CRx 2 cannot, with resulting region:

$$\bigcap_{T \subset T_1^p, T \neq \{p\}} \left(\sum_{t_1 \in T} R_{t_1} \right) \le I(Y_1; \mathbf{X}_{\mathbf{T}} | \mathbf{X}_{\overline{\mathbf{T}}}), \text{ for } R_p = R_p^*$$
$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} R_{t_2} \right) \le I(Y_2; \mathbf{X}_{\mathbf{T}} | \mathbf{X}_{\overline{\mathbf{T}}}).$$

3. If $C(\gamma_{p1}) < R_p^* < C(\gamma_{p2})$, then CRx 2 can decode the primary, while CRx 1 cannot, with resulting region:

$$\bigcap_{T \subset T_1} \left(\sum_{t_1 \in T} R_{t_1} \right) \le I(Y_1; \mathbf{X}_{\mathbf{T}} | \mathbf{X}_{\overline{\mathbf{T}}})$$
$$\bigcap_{T \subset T_2^p, T \neq \{p\}} \left(\sum_{t_2 \in T} R_{t_2} \right) \le I(Y_2; \mathbf{X}_{\mathbf{T}} | \mathbf{X}_{\overline{\mathbf{T}}}), \text{ for } R_p = R_p^*$$

4. If $R_p^* < C(\gamma_{p1})$ and $R_p^* < C(\gamma_{p2})$ then both CRxs can decode the primary message, resulting in the region:

$$\bigcap_{T \subset T_1^p, T \neq \{p\}} \left(\sum_{t_1 \in T} R_{t_1} \right) \le I(Y_1; \mathbf{X_T} | \mathbf{X_{\overline{T}}}), \text{ for } R_p = R_p^*$$
$$\bigcap_{T \subset T_2^p, T \neq \{p\}} \left(\sum_{t_2 \in T} R_{t_2} \right) \le I(Y_2; \mathbf{X_T} | \mathbf{X_{\overline{T}}}), \text{ for } R_p = R_p^*.$$

(FAST)

What secondary rates can we achieve?

Relative values of $\gamma_{p1}, \gamma_{p2}, R_p^*$ will allow/prevent OIC

- divide into cases: decode PTx message at one, both or neither CRx
- for each case, obtain region as known achievable rate region (adjusted Marton's region) with FIXED R_p^\ast

For a given primary rate $R_p = R_p^*$, and given γ_{p1} and γ_{p2} , an achievable rate region \mathcal{R}_{BC} is given by the convex hull of the union over all distributions p(u, v, x) = p(u, v)p(x|u, v) of the regions $\mathcal{R}(\mathbf{P}) = \{(R_1, R_2)\}$ such that:

1. If $R_p^* \ge I(X_p; Y_1|X)$ and $R_p^* \ge I(X_p; Y_2|X)$ then the primary signal is treated as noise at both Rxs:

$$R_1 \le I(U; Y_1) \qquad R_2 \le I(V; Y_2) R_1 + R_2 \le I(U; Y_1) + I(V; Y_2) - I(U; V)$$

2. If $I(X_p; Y_2|X) < R_p^* < I(X_p; Y_1|X)$, then CRx 1 can decode the primary, while CRx 2 cannot:

$$R_{1} \leq \min(I(U; Y_{1}|X_{p}), I(U, X_{p}; Y_{1}) - R_{p}^{*})$$

$$R_{2} \leq I(V; Y_{2})$$

$$R_{1} + R_{2} \leq \min(I(U; Y_{1}|X_{p}), I(U, X_{p}; Y_{1}) - R_{p}^{*})$$

$$+ I(V; Y_{2}) - I(U; V)$$

3. If $I(X_p; Y_1|X) < R_p^* < I(X_p; Y_2|X)$, then CRx 2 can decode the primary, while CRx 1 cannot:

$$R_{1} \leq I(U; Y_{1})$$

$$R_{2} \leq \min(I(V; Y_{2}|X_{p}), I(V, X_{p}; Y_{2}) - R_{p}^{*})$$

$$R_{1} + R_{2} \leq \min(I(V; Y_{2}|X_{p}), I(V, X_{p}; Y_{2}) - R_{p}^{*})$$

$$+ I(U; Y_{1}) - I(U; V)$$

4. If $R_p^* < I(X_p; Y_1|X)$ and $R_p^* < I(X_p; Y_2|X)$ then both Rxs can decode the primary message:

$$R_{1} \leq \min(I(U; Y_{1}|X_{p}), I(U, X_{p}; Y_{1}) - R_{p}^{*})$$

$$R_{2} \leq \min(I(V; Y_{2}|X_{p}), I(V, X_{p}; Y_{2}) - R_{p}^{*})$$

$$R_{1} + R_{2} \leq \min(I(U; Y_{1}|X_{p}), I(U, X_{p}; Y_{1}) - R_{p}^{*})$$

$$+ \min(I(V; Y_{2}|X_{p}), I(V, X_{p}; Y_{2}) - R_{p}^{*}) - I(U; V)$$

(FAST

Channel parameters for BC with OIC: For the BC with OIC, we vary the channel to visit the four different OIC scenarios described in Theorem 4. Specifically, let $\gamma_{pi} = |h_{pi}|^2 P_p$ then the parameters used in the four cases of Theorem 4 are: P = 6, noise power 1, $R_p = 0.5$, $h_1 = 1$, $h_2 = 0.7$. Case 1: $\gamma_{p1} = \gamma_{p2} = 0.3$. Case 2: $\gamma_{p1} = 1$, $\gamma_{p2} = 0.3$. Case 3: $\gamma_{p1} = 0.3$, $\gamma_{p2} = 1$. Case 4: $\gamma_{p1} = \gamma_{p2} = 1$.

Added benefit of OIC - interference reduction

• for fixed secondary rates, OIC may allow secondary to REDUCE POWER, and thus reduce interference to primary! (shown for IC with OIC)

Conclusion

- Interference margin
- Codebook knowledge
- Primary remains oblivious to secondary operation

Cognitive Rxs may **opportunistically decode and cancel primary message**, improving own rates at no cost to primary whatsoever!

Questions?

