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Emphasis on cognitive Tx, CTx!
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[P. Popovski, H. Yomo, K. Nishimori, R. D. Taranto, and R. Prasad, DYSPAN 2007]
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Same idea - use primary codebook 
knowledge to decode and cancel primary 
message when channel conditions permit!
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• Channel knowledge assumption: CTxs and CRxs assumed to know quasi-

static channel gains
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Multiple access channel with OIC

• divide into cases: decode PTx message at or not

• for each case, obtain region as M+1 user MAC channel with FIXED 

• take union over power constraints
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Fig. 4. Impact of opportunistic interference cancellation.

1− α, β̄ = 1− β,

Xp ∼ N (0, Pp), X11 ∼ N (0, λα25), X12 ∼ N (0, λᾱ25),
X21 ∼ N (0, λ̄β25), X22 ∼ N (0, λ̄β̄25),

X1 = X11 + X12, X2 = X21 + X22

In Theorem 4: For some power split 0 ≤ λ ≤ 1, select the
input distributions

Xp ∼ N (0, Pp), X1 ∼ N (0, λP ), X2 ∼ N (0, λ̄P ),
X = X1 + X2, U = X1 + αX2, V = βX1 + X2,

where α,β are arbitrary real coefficients such that the right
hand sides of the bounds of Theorem 4 remain positive. Such
an approach is motivated by [11].

Plots. Fig. 4(a),(b) and (c) illustrates the improvement in the
rate region when using opportunistic decoding at the cognitive
receiver of a MAC, IC and BC respectively. The use of
OIC is seen to increase achievable rates at the expense of
increased decoding complexity - acceptable as our computing
abilities continue to advance - and codebook knowledge -
an assumption whose validity will depend on the scenario of
interest. Outer bounds are the subject of ongoing work [12].

Effect on the primary user. The benefits of OIC are not
only relevant to the secondary links. Primary receivers see
a significant reduction in the amount of interference they
undergo from the secondary transmitters if OIC is enabled.
Fig. 5 illustrates that if the secondary system is determined to
send at a particular sum-rate, the interference to the primary
will be notably reduced if the primary users make their
codebooks, transmission rate and interference margins public.
This is because the cognitive transmitters are able to reduce
their transmission powers if the cognitive receivers experience
less interference from the primary system.

VII. CONCLUSION

We have extended work on opportunistic interference can-

cellation (OIC) to three multi-user scenarios in which a
single primary Tx-Rx link communicates simultaneously with
a group of cognitive (secondary) users that form one of three
classical multi-user channels: 1) a multiple access channel
(MAC), 2) interference channel (IC), or 3) a broadcast channel
(BC). Assuming the cognitive users are permitted to transmit
subject to peak interference at the primary receiver, we derived
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Fig. 5. The interference to the primary for given desired secondary rates in
the interference channel under the different decoding scenarios.

achievable rate regions which, when evaluated in Gaussian
noise, demonstrated the benefits of exploiting this codebook
knowledge at the secondary Rxs through opportunistically
canceling the interference seen from the primary Tx. Inter-
estingly, these gains are possible simply through codebook
sharing and do not require the primary link to change its
encoders/decoders.
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Fig. 4. Impact of opportunistic interference cancellation.

1− α, β̄ = 1− β,

Xp ∼ N (0, Pp), X11 ∼ N (0, λα25), X12 ∼ N (0, λᾱ25),
X21 ∼ N (0, λ̄β25), X22 ∼ N (0, λ̄β̄25),

X1 = X11 + X12, X2 = X21 + X22

In Theorem 4: For some power split 0 ≤ λ ≤ 1, select the
input distributions

Xp ∼ N (0, Pp), X1 ∼ N (0, λP ), X2 ∼ N (0, λ̄P ),
X = X1 + X2, U = X1 + αX2, V = βX1 + X2,

where α,β are arbitrary real coefficients such that the right
hand sides of the bounds of Theorem 4 remain positive. Such
an approach is motivated by [11].

Plots. Fig. 4(a),(b) and (c) illustrates the improvement in the
rate region when using opportunistic decoding at the cognitive
receiver of a MAC, IC and BC respectively. The use of
OIC is seen to increase achievable rates at the expense of
increased decoding complexity - acceptable as our computing
abilities continue to advance - and codebook knowledge -
an assumption whose validity will depend on the scenario of
interest. Outer bounds are the subject of ongoing work [12].

Effect on the primary user. The benefits of OIC are not
only relevant to the secondary links. Primary receivers see
a significant reduction in the amount of interference they
undergo from the secondary transmitters if OIC is enabled.
Fig. 5 illustrates that if the secondary system is determined to
send at a particular sum-rate, the interference to the primary
will be notably reduced if the primary users make their
codebooks, transmission rate and interference margins public.
This is because the cognitive transmitters are able to reduce
their transmission powers if the cognitive receivers experience
less interference from the primary system.

VII. CONCLUSION

We have extended work on opportunistic interference can-

cellation (OIC) to three multi-user scenarios in which a
single primary Tx-Rx link communicates simultaneously with
a group of cognitive (secondary) users that form one of three
classical multi-user channels: 1) a multiple access channel
(MAC), 2) interference channel (IC), or 3) a broadcast channel
(BC). Assuming the cognitive users are permitted to transmit
subject to peak interference at the primary receiver, we derived
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Fig. 5. The interference to the primary for given desired secondary rates in
the interference channel under the different decoding scenarios.

achievable rate regions which, when evaluated in Gaussian
noise, demonstrated the benefits of exploiting this codebook
knowledge at the secondary Rxs through opportunistically
canceling the interference seen from the primary Tx. Inter-
estingly, these gains are possible simply through codebook
sharing and do not require the primary link to change its
encoders/decoders.
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1− α, β̄ = 1− β,

Xp ∼ N (0, Pp), X11 ∼ N (0, λα25), X12 ∼ N (0, λᾱ25),
X21 ∼ N (0, λ̄β25), X22 ∼ N (0, λ̄β̄25),

X1 = X11 + X12, X2 = X21 + X22

In Theorem 4: For some power split 0 ≤ λ ≤ 1, select the
input distributions

Xp ∼ N (0, Pp), X1 ∼ N (0, λP ), X2 ∼ N (0, λ̄P ),
X = X1 + X2, U = X1 + αX2, V = βX1 + X2,

where α,β are arbitrary real coefficients such that the right
hand sides of the bounds of Theorem 4 remain positive. Such
an approach is motivated by [11].

Plots. Fig. 4(a),(b) and (c) illustrates the improvement in the
rate region when using opportunistic decoding at the cognitive
receiver of a MAC, IC and BC respectively. The use of
OIC is seen to increase achievable rates at the expense of
increased decoding complexity - acceptable as our computing
abilities continue to advance - and codebook knowledge -
an assumption whose validity will depend on the scenario of
interest. Outer bounds are the subject of ongoing work [12].

Effect on the primary user. The benefits of OIC are not
only relevant to the secondary links. Primary receivers see
a significant reduction in the amount of interference they
undergo from the secondary transmitters if OIC is enabled.
Fig. 5 illustrates that if the secondary system is determined to
send at a particular sum-rate, the interference to the primary
will be notably reduced if the primary users make their
codebooks, transmission rate and interference margins public.
This is because the cognitive transmitters are able to reduce
their transmission powers if the cognitive receivers experience
less interference from the primary system.

VII. CONCLUSION

We have extended work on opportunistic interference can-

cellation (OIC) to three multi-user scenarios in which a
single primary Tx-Rx link communicates simultaneously with
a group of cognitive (secondary) users that form one of three
classical multi-user channels: 1) a multiple access channel
(MAC), 2) interference channel (IC), or 3) a broadcast channel
(BC). Assuming the cognitive users are permitted to transmit
subject to peak interference at the primary receiver, we derived
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Fig. 5. The interference to the primary for given desired secondary rates in
the interference channel under the different decoding scenarios.

achievable rate regions which, when evaluated in Gaussian
noise, demonstrated the benefits of exploiting this codebook
knowledge at the secondary Rxs through opportunistically
canceling the interference seen from the primary Tx. Inter-
estingly, these gains are possible simply through codebook
sharing and do not require the primary link to change its
encoders/decoders.
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by considering four separate cases, depending on whether CRx
1 and/or CRx 2 may decode the primary message.

Theorem 4: For a given primary rate Rp = R∗
p, and given

γp1 and γp2, an achievable rate region RBC is given by the
convex hull of the union over all distributions p(u, v, x) =
p(u, v)p(x|u, v) of the regions R(P) = {(R1, R2)} such that:

1) If R∗
p ≥ I(Xp;Y1|X) and R∗

p ≥ I(Xp;Y2|X) then the
primary signal is treated as noise at both Rxs:

R1 ≤ I(U ;Y1) R2 ≤ I(V ;Y2)
R1 + R2 ≤ I(U ;Y1) + I(V ;Y2)− I(U ;V )

2) If I(Xp;Y2|X) < R∗
p < I(Xp;Y1|X), then CRx 1 can

decode the primary, while CRx 2 cannot:

R1 ≤ min(I(U ;Y1|Xp), I(U, Xp;Y1)−R∗
p)

R2 ≤ I(V ;Y2)
R1 + R2 ≤ min(I(U ;Y1|Xp), I(U, Xp;Y1)−R∗

p)
+ I(V ;Y2)− I(U ;V )

3) If I(Xp;Y1|X) < R∗
p < I(Xp;Y2|X), then CRx 2 can

decode the primary, while CRx 1 cannot:

R1 ≤ I(U ;Y1)
R2 ≤ min(I(V ;Y2|Xp), I(V,Xp;Y2)−R∗

p)
R1 + R2 ≤ min(I(V ;Y2|Xp), I(V,Xp;Y2)−R∗

p)
+ I(U ;Y1)− I(U ;V )

4) If R∗
p < I(Xp;Y1|X) and R∗

p < I(Xp;Y2|X) then both
Rxs can decode the primary message:

R1 ≤ min(I(U ;Y1|Xp), I(U, Xp;Y1)−R∗
p)

R2 ≤ min(I(V ;Y2|Xp), I(V,Xp;Y2)−R∗
p)

R1 + R2 ≤ min(I(U ;Y1|Xp), I(U, Xp;Y1)−R∗
p)

+ min(I(V ;Y2|Xp), I(V,Xp;Y2)−R∗
p)− I(U ;V )

An outline of the proof is found in [8] online.

VI. GRAPHICAL COMPARISON OF OPPORTUNISTIC AND
NON-OPPORTUNISTIC RATE REGIONS

In this section we illustrate the impact of opportunistic
interference cancellation (or opportunistic cognitive decoding)
graphically. We consider a 2 → 1 MAC, a 2 → 2 IC,
and a 1 → 2 BC in which the cognitive Rx(s) wish to

opportunistically decode the messages of a single primary Tx-
Rx pair. As in [11], [10], Theorems 1, 3 and 4 can readily
be extended to memoryless channels with discrete time and
continuous alphabets by finely quantizing the input, output,
and interference variables (Gaussian in this case). We now
evaluate the mutual information terms of Theorems 1, 3, and
4 under specific Gaussian input distributions and plot the
obtained regions in Fig. 4 and 5.

Channel parameters for MAC and IC with OIC: We
assume all noise powers are equal to 1, while h11 = 1, h21 =
0.5, h12 = 0.5, h22 = 1, hp1 = 0.3, hp2 = 0.5, h1p = h2p =
0.2 and Pp = 10. These are the same for both the MAC and
interference channels with OIC. Notice that all parameters are
specified except the primary transmission rate Rp, the PTx
to PRx channel, hpp, and the cognitive transmit powers P1

and P2. When all other parameters are fixed, by adjusting
hpp and Rp, different subsets of the cognitive Rxs will be
able to decode the primary message. We fix the interference
margin at Imargin = 1,1 so that the primary rate Rp and hpp

are related as Rp = log2

�
1 + |hpp|2Pp

1+Imargin

�
. We summarize

the remaining parameters and cases in Table I. The transmit
powers of the cognitive transmitters may be anything such
that the interference margin is met, i.e. (P1, P2) ∈ PMAC

and (P1, P2) ∈ PINT respectively, which, with the given
parameters, are PMAC = PINT = {(P1, P2)|P1 + P2 ≤ 25}.
This is more general than fixing the transmit powers.

Channel parameters for BC with OIC: For the BC with
OIC, we vary the channel to visit the four different OIC
scenarios described in Theorem 4. Specifically, let γpi =
|hpi|2Pp then the parameters used in the four cases of Theorem
4 are: P = 6, noise power 1, Rp = 0.5, h1 = 1, h2 = 0.7.
Case 1: γp1 = γp2 = 0.3. Case 2: γp1 = 1, γp2 = 0.3. Case
3: γp1 = 0.3, γp2 = 1. Case 4: γp1 = γp2 = 1 .

To evaluate the mutual information terms of Theorems 1, 3
and 4, the following Gaussian input distributions are assumed:

In Theorem 1: For power split 0 ≤ λ ≤ 1, et λ̄ := 1− λ,

Xp ∼ N (0, Pp), X1 ∼ N (0, λ25), X2 ∼ N (0, λ̄25).

In Theorem 3: For power splits 0 ≤ λ, α, β ≤ 1, let ᾱ :=

1This margin was chosen to equal the noise power as it seems plausible
that systems are likely to be able to withstand double the background noise.

TABLE I
PARAMETERS USED FOR GAUSSIAN MAC AND IC WITH OIC.

MAC with OIC Interference channel with OIC
CRx 1 cannot decode CRx 1 and CRx 2 cannot decode
hpp = 1 hpp = 1
Rp = 1.2925 Rp = 1.2925

Only CRx 2 can decode
hpp = 0.4
Rp = 0.424

CRx 1 can decode CRx 1 and CRx 2 can both decode
hpp = 0.1 hpp = 0.1
Rp = 0.0352 Rp = 0.0352



Added benefit of OIC - interference reduction

• for fixed secondary rates, OIC may allow secondary to REDUCE POWER, and 
thus reduce interference to primary! (shown for IC with OIC)
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1− α, β̄ = 1− β,

Xp ∼ N (0, Pp), X11 ∼ N (0, λα25), X12 ∼ N (0, λᾱ25),
X21 ∼ N (0, λ̄β25), X22 ∼ N (0, λ̄β̄25),

X1 = X11 + X12, X2 = X21 + X22

In Theorem 4: For some power split 0 ≤ λ ≤ 1, select the
input distributions

Xp ∼ N (0, Pp), X1 ∼ N (0, λP ), X2 ∼ N (0, λ̄P ),
X = X1 + X2, U = X1 + αX2, V = βX1 + X2,

where α,β are arbitrary real coefficients such that the right
hand sides of the bounds of Theorem 4 remain positive. Such
an approach is motivated by [11].

Plots. Fig. 4(a),(b) and (c) illustrates the improvement in the
rate region when using opportunistic decoding at the cognitive
receiver of a MAC, IC and BC respectively. The use of
OIC is seen to increase achievable rates at the expense of
increased decoding complexity - acceptable as our computing
abilities continue to advance - and codebook knowledge -
an assumption whose validity will depend on the scenario of
interest. Outer bounds are the subject of ongoing work [12].

Effect on the primary user. The benefits of OIC are not
only relevant to the secondary links. Primary receivers see
a significant reduction in the amount of interference they
undergo from the secondary transmitters if OIC is enabled.
Fig. 5 illustrates that if the secondary system is determined to
send at a particular sum-rate, the interference to the primary
will be notably reduced if the primary users make their
codebooks, transmission rate and interference margins public.
This is because the cognitive transmitters are able to reduce
their transmission powers if the cognitive receivers experience
less interference from the primary system.

VII. CONCLUSION

We have extended work on opportunistic interference can-

cellation (OIC) to three multi-user scenarios in which a
single primary Tx-Rx link communicates simultaneously with
a group of cognitive (secondary) users that form one of three
classical multi-user channels: 1) a multiple access channel
(MAC), 2) interference channel (IC), or 3) a broadcast channel
(BC). Assuming the cognitive users are permitted to transmit
subject to peak interference at the primary receiver, we derived
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Fig. 5. The interference to the primary for given desired secondary rates in
the interference channel under the different decoding scenarios.

achievable rate regions which, when evaluated in Gaussian
noise, demonstrated the benefits of exploiting this codebook
knowledge at the secondary Rxs through opportunistically
canceling the interference seen from the primary Tx. Inter-
estingly, these gains are possible simply through codebook
sharing and do not require the primary link to change its
encoders/decoders.
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Conclusion

• Interference margin

•  Codebook knowledge

• Primary remains oblivious to secondary operation

Cognitive Rxs may opportunistically 
decode and cancel primary message, 
improving own rates at no cost to primary 

whatsoever!
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