#### A Lattice Compress and Forward Scheme

Natasha Devroye, *Assistant Professor, UIC* Yiwei Song, *Ph.D. candidate, UIC* 



#### Gaussian networks



UNVERSITY OF ALLINGS ATCHICAGO AND COMPUTER Engineering COLLEGE OF ENGINEERING

#### Gaussian networks



UNVERSITY OF LLINGS ATCHEGO OF ENGINEERING

#### Structured codes for Gaussian networks



UNVERSITY OF LLINGS AT CHICAGO and Computer Engineering COLLEGE OF ENGINEERING

#### Structured codes for Gaussian networks



UIC Department of Electrical and Computer Engineering COLLEGE OF ENGINEERING

#### Structured codes for Gaussian networks





















• have: "decode the sum"









• have: "decode the sum"



• missing: "decode the sum"







• missing: "decode the sum"

• have: "decode the sum"



• missing: cooperation







• missing: "decode the sum"

• have: "decode the sum"





• AWGN relay channel





• AWGN relay channel



**``Cooperation**"

Various links carry same message!



• AWGN relay channel



*Cooperation* 

Various links carry same message!

- Decode and Forward (DF)
- Compress and Forward (CF)
- Amplify and Forward (AF)
- Quantize and Forward



• AWGN relay channel



#### **`Cooperation**"

Various links carry same message!

- Decode and Forward (DF)
- Compress and Forward (CF)
- Amplify and Forward (AF)
- Quantize and Forward

#### All use random coding!



• AWGN relay channel



#### **`Cooperation**"

Various links carry same message!

- Decode and Forward (DF)
- Compress and Forward (CF)
- Amplify and Forward (AF)
- Quantize and Forward

#### All use random coding!

#### Lattice versions?



## Central contribution

• AWGN relay channel





## Central contribution

• AWGN relay channel



• Decode and Forward (DF) → lattice codes achieve **DF** rate of random Gaussian codes [Song, Devroye ``List decoding for nested lattices

and applications to relay channels" Allerton 2010]



## Central contribution

• AWGN relay channel



- Decode and Forward (DF) → lattice codes achieve **DF** rate of random Gaussian codes [Song, Devroye ``List decoding for nested lattices and applications to relay channels" Allerton 2010]
  - **This paper** → lattice codes achieve **CF** rate of random Gaussian codes







• AWGN relay channel DF and CF schemes first considered in [Cover, El Gamal, 1979]



• DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]





- DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]
- CF extension / generalization to arbitrary # of relays and sources in [Kramer, Gastpar, Gupta, 2004], [Lim, Kim, El Gamal, Chung, 2010]





- DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]
- CF extension / generalization to arbitrary # of relays and sources in [Kramer, Gastpar, Gupta, 2004], [Lim, Kim, El Gamal, Chung, 2010]
- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)



- DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]
- CF extension / generalization to arbitrary # of relays and sources in [Kramer, Gastpar, Gupta, 2004], [Lim, Kim, El Gamal, Chung, 2010]
- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)
- Noisy network coding [Lim, Kim, El Gamal, Chung, 2010] (finite gap)



- DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]
- CF
   CF
   In the first of the first
- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)
- Noisy network coding [Lim, Kim, El Gamal, Chung, 2010] (finite gap)





- DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]
- CF
   CF
   In the second sources in
   [Kra
   [Kra
- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)
- Noisy network coding [Lim, Kim, El Gamal, Chung, 2010] (finite gap)
- Lattice-based schemes?





- DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]
- CF
   CF
   In the second sources in
   [Kra
   [Kra
- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)
- Noisy network coding [Lim, Kim, El Gamal, Chung, 2010] (finite gap)
- Lattice-based schemes?
  - Quantize-and-map extended to lattice codes in [Ozgur, Diggavi, 2011]

• AWGN relay channel DF and CF schemes first considered in [Cover, El Gamal, 1979]



• DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]



- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)
- Noisy network coding [Lim, Kim, El Gamal, Chung, 2010] (finite gap)
- Lattice-based schemes?
  - Quantize-and-map extended to lattice codes in [Ozgur, Diggavi, 2011]
  - Compute-and-forward framework [Nazer, Gastpar, TransIT, 2011], [Niesen, Whiting, 2011]

• AWGN relay channel DF and CF schemes first considered in [Cover, El Gamal, 1979]



and Computer Engineering

• DF extension to arbitrary # of relays and sources in [Xie, Kumar, 2004]



- Quantize-and-map scheme for arbitrary # of relays and sources in [Avestimehr, Diggavi, Tse, 2011] (finite gap)
- Noisy network coding [Lim, Kim, El Gamal, Chung, 2010] (finite gap)
- Lattice-based schemes?
  - Quantize-and-map extended to lattice codes in [Ozgur, Diggavi, 2011]
  - Compute-and-forward framework [Nazer, Gastpar, TransIT, 2011], [Niesen, Whiting, 2011]
  - Lattice DF single relay channel [Song, Devroye, Allerton 2010]

### Outline - a lattice CF scheme

• Lattice notation

• Compress and forward review

• Lattice (X+Z1, X+Z2) Wyner-Ziv coding scheme

• Lattices achieve CF rate for AWGN relay

### Lattice notation

- $\Lambda = \{\lambda = G \mathbf{i} : \mathbf{i} \in \mathbb{Z}^n\}, G$  the generator matrix
- lattice quantizer of  $\Lambda$ :

- $\mathbf{x} \mod \Lambda := \mathbf{x} Q(\mathbf{x})$
- fundamental region  $\mathcal{V} := \{\mathbf{x} : Q(\mathbf{x}) = \mathbf{0}\}$  of volume V
- second moment per dimension of a uniform distribution over  $\mathcal{V}$ :

$$\sigma^2(\Lambda) := \frac{1}{V} \cdot \frac{1}{n} \int_{\mathcal{V}} ||\mathbf{x}||^2 d\mathbf{x}$$

 $Q(\mathbf{X}) = \arg\min_{\lambda \in \Lambda} ||\mathbf{X} - \lambda||$ 







### Nested lattice codes

• Nested lattice pair :  $\Lambda \subseteq \Lambda_c$  (  $\Lambda$  is Rogers-good and Poltyrev-good,  $\Lambda_c$  is Poltyrev-good )





### Nested lattice codes

• Nested lattice pair :  $\Lambda \subseteq \Lambda_c$  (  $\Lambda$  is Rogers-good and Poltyrev-good,  $\Lambda_c$  is Poltyrev-good )

The (dithered) code book ★ C = {Λ<sub>c</sub> ∩ V(Λ)} ★ is used to achieve the capacity of AWGN channel and used to achieve the quadratic Gaussian R(D) in [Erez, Litsyn, Zamir, Trans. IT, 2005] [Erez+Zamir, Trans. IT, 2004]





#### Nested lattice codes

• Nested lattice pair :  $\Lambda \subseteq \Lambda_c$  (  $\Lambda$  is Rogers-good and Poltyrev-good,  $\Lambda_c$  is Poltyrev-good )

• The (dithered) code book  $\star$   $\mathcal{C} = \{\Lambda_c \cap \mathcal{V}(\Lambda)\}$ is used to achieve the capacity of AWGN channel and used to achieve the quadratic Gaussian R(D) in *[Erez, Litsyn, Zamir, Trans. IT, 2005] [Erez+Zamir, Trans. IT, 2004]* 

• Coding rate: 
$$R = \frac{1}{n} \log |\mathcal{C}| = \frac{1}{n} \log \frac{V(\Lambda)}{V(\Lambda_c)}$$
 arbitrary (# of  $\bigstar$ )




## Outline - a lattice CF scheme

• Lattice notation

• Compress and forward review

• Lattice (X+Z1, X+Z2) Wyner-Ziv coding scheme

• Lattices achieve CF rate for AWGN relay



• DF limited by need to decode at relay  $R < I(X_1; Y_R | X_R)$ 



- DF limited by need to decode at relay  $R < I(X_1; Y_R | X_R)$
- CF is NOT limited in this fashion



- DF limited by need to decode at relay  $R < I(X_1; Y_R | X_R)$
- CF is NOT limited in this fashion





- DF limited by need to decode at relay  $R < I(X_1; Y_R | X_R)$
- CF is NOT limited in this fashion





- DF limited by need to decode at relay  $R < I(X_1; Y_R | X_R)$
- CF is NOT limited in this fashion

















| $y_{R,1} \to \widehat{y_{R,1}}(i_1)$ |  |  |
|--------------------------------------|--|--|
|                                      |  |  |



















$$y_{R,1} \rightarrow \widehat{y_{R,1}}(i_1)$$

$$x_{R,1}(1)$$







$$y_{R,1} \rightarrow \widehat{y_{R,1}}(i_1)$$

$$x_{R,1}(1)$$







**Compress + forward** 



| ard                                  |                                      | <br> |
|--------------------------------------|--------------------------------------|------|
| $y_{R,1} \to \widehat{y_{R,1}}(i_1)$ | $y_{R,2} \to \widehat{y_{R,2}}(i_2)$ |      |
| $x_{R,1}(1)$                         |                                      |      |



UNVERSITY OF ILLINOIS ATCHICAGE AND COMPUTER Engineering COLLEGE OF ENGINEERING



| R | $y_{R,1} \to \widehat{y_{R,1}}(i_1)$ | $y_{R,2} \to \widehat{y_{R,2}}(i_2)$ |  |
|---|--------------------------------------|--------------------------------------|--|
|   | $x_{R,1}(1)$                         | $x_{R,2}(i_1)$                       |  |





| R | $y_{R,1} \to \widehat{y_{R,1}}(i_1)$ | $y_{R,2} \to \widehat{y_{R,2}}(i_2)$ |  |  |
|---|--------------------------------------|--------------------------------------|--|--|
|   | $x_{R,1}(1)$                         | $x_{R,2}(i_1)$                       |  |  |





Compress + forward  $\begin{array}{c|c} & y_{R,1} \rightarrow \widehat{y_{R,1}}(i_1) & y_{R,2} \rightarrow \widehat{y_{R,2}}(i_2) \\ & x_{R,1}(1) & x_{R,2}(i_1) \end{array}$ 





Compress + forward  $y_{R,1} \rightarrow \widehat{y_{R,1}(i_1)} \quad y_{R,2} \rightarrow \widehat{y_{R,2}(i_2)} \quad x_{R,1}(i_1) \quad x_{R,2}(i_1)$ 





Compress + forward  $y_{R,1} \rightarrow \widehat{y_{R,1}(i_1)} \quad y_{R,2} \rightarrow \widehat{y_{R,2}(i_2)} \quad x_{R,1}(1) \quad x_{R,2}(i_1)$ 



COLLEGE OF ENGINEERING

Monday, October 17, 2011















































Combine

UNVERSITY OF ELLINGS AT CHARGE OF ENGINEERING

Combine





UNVERSITY OF ALLINGS AT CHICAGO COLLEGE OF ENGINEERING

## Key issue in CF: how to compress?

$$Y_R = X_1 + Z_R$$



## Key issue in CF: how to compress?

$$Y_R = X_1 + Z_R$$



direct link side-information

 $Y_2 = X_1 + Z_2$ 

# Key issue in CF: how to compress?



## Outline - a lattice CF scheme

• Lattice notation

• Compress and forward review

• Lattice (X+Z1, X+Z2) Wyner-Ziv coding scheme

• Lattices achieve CF rate for AWGN relay



• Gaussian Wyner-Ziv  $(X + Z_1, X + Z_2)$ 



• Gaussian Wyner-Ziv  $(X + Z_1, X + Z_2)$ 

• in [Zamir, Shamai, Erez, 2002] demonstrated a lattice scheme for Gaussian (X + Z, X) Wyner-Ziv which is fully general



• Gaussian Wyner-Ziv  $(X + Z_1, X + Z_2)$ 

• in [Zamir, Shamai, Erez, 2002] demonstrated a lattice scheme for Gaussian (X + Z, X) Wyner-Ziv which is fully general

• demonstrate  $(X + Z_1, X + Z_2)$  for completeness

$$\alpha_1 = \sqrt{1 - \frac{D}{N_1 + \frac{PN_2}{P + N_2}}}, \quad \alpha_2 = \frac{P}{P + N_2}$$

**Theorem.** The following rate-distortion function for the lossy compression of the source  $X + Z_1$  subject to the reconstruction side-information  $X + Z_2$  and squared error distortion metric may be achieved using lattice codes:

$$R(D) = \frac{1}{2} \log \left( \frac{\sigma_{X+Z_1|X+Z_2}^2}{D} \right), \qquad 0 \le D \le \sigma_{X+Z_1|X+Z_2}^2$$
$$= \frac{1}{2} \log \left( \frac{N_1 + \frac{PN_2}{P+N_2}}{D} \right), \qquad 0 \le D \le N_1 + \frac{PN_2}{P+N_2},$$

and 0 otherwise.

$$\alpha_1 = \sqrt{1 - \frac{D}{N_1 + \frac{PN_2}{P + N_2}}}, \quad \alpha_2 = \frac{P}{P + N_2}$$

**Theorem.** The following rate-distortion function for the lossy compression of the source  $X + Z_1$  subject to the reconstruction side-information  $X + Z_2$  and squared error distortion metric may be achieved using lattice codes:

$$\begin{aligned} R(D) &= \frac{1}{2} \log \left( \frac{\sigma_{X+Z_1|X+Z_2}^2}{D} \right), \qquad 0 \le D \le \sigma_{X+Z_1|X+Z_2}^2 \\ &= \frac{1}{2} \log \left( \frac{N_1 + \frac{PN_2}{P+N_2}}{D} \right), \qquad 0 \le D \le N_1 + \frac{PN_2}{P+N_2}, \end{aligned}$$

and 0 otherwise.



$$\alpha_1 = \sqrt{1 - \frac{D}{N_1 + \frac{PN_2}{P + N_2}}}, \quad \alpha_2 = \frac{P}{P + N_2}$$

**Theorem.** The following rate-distortion function for the lossy compression of the source  $X + Z_1$  subject to the reconstruction side-information  $X + Z_2$  and squared error distortion metric may be achieved using lattice codes:

$$\begin{aligned} R(D) &= \frac{1}{2} \log \left( \frac{\sigma_{X+Z_1|X+Z_2}^2}{D} \right), \qquad 0 \le D \le \sigma_{X+Z_1|X+Z_2}^2 \\ &= \frac{1}{2} \log \left( \frac{N_1 + \frac{PN_2}{P+N_2}}{D} \right), \qquad 0 \le D \le N_1 + \frac{PN_2}{P+N_2}, \end{aligned}$$

and 0 otherwise.


#### Comparison with [Zamir, Erez, Shamai, 2002]



Fig. 5: Wyner-Ziv encoding of a jointly Gaussian source using nested lattice codes. At high resolution  $\alpha = 1$ .

#### Comparison with [Zamir, Erez, Shamai, 2002]



Fig. 5: Wyner-Ziv encoding of a jointly Gaussian source using nested lattice codes. At high resolution  $\alpha = 1$ .



$$\alpha_1 = \sqrt{1 - \frac{D}{N_1 + \frac{PN_2}{P + N_2}}}, \quad \alpha_2 = \frac{P}{P + N_2}$$

#### Comment on $\alpha_1, \alpha_2$



Decoding (function  $g(\cdot, \cdot)$ )

 $\mathbf{X} + \mathbf{Z}_1 = \alpha_2(\mathbf{X} + \mathbf{Z}_2) + (1 - \alpha_2)\mathbf{X} + \mathbf{Z}_1 - \alpha_2\mathbf{Z}_2,$  $\rightarrow$  choosing  $\alpha_2 = \frac{P}{P+N_2}$ , then  $\mathbf{X} + \mathbf{Z_2} \perp (1 - \alpha_2)\mathbf{X} + \mathbf{Z_1} - \alpha_2\mathbf{Z_2}$ 

$$\alpha_1 = \sqrt{1 - \frac{D}{N_1 + \frac{PN_2}{P + N_2}}}, \quad \alpha_2 = \frac{P}{P + N_2}$$

#### Comment on $\alpha_1, \alpha_2$



$$\mathbf{X} + \mathbf{Z}_{1} = \alpha_{2}(\mathbf{X} + \mathbf{Z}_{2}) + (1 - \alpha_{2})\mathbf{X} + \mathbf{Z}_{1} - \alpha_{2}\mathbf{Z}_{2},$$
  

$$\rightarrow \text{ choosing } \alpha_{2} = \frac{P}{P + N_{2}}, \text{ then } \mathbf{X} + \mathbf{Z}_{2} \perp (1 - \alpha_{2})\mathbf{X} + \mathbf{Z}_{1} - \alpha_{2}\mathbf{Z}_{2}$$

 $\rightarrow \alpha_1 \equiv$  source coding MMSE coefficient

 $\rightarrow \alpha_2 \equiv$  channel coding MMSE coefficient

$$\alpha_1 = \sqrt{1 - \frac{D}{N_1 + \frac{PN_2}{P + N_2}}}, \quad \alpha_2 = \frac{P}{P + N_2}$$

## Comment on $\alpha_1, \alpha_2$



 $\mathbf{X} + \mathbf{Z}_{1} = \alpha_{2}(\mathbf{X} + \mathbf{Z}_{2}) + (1 - \alpha_{2})\mathbf{X} + \mathbf{Z}_{1} - \alpha_{2}\mathbf{Z}_{2},$  $\rightarrow \text{ choosing } \alpha_{2} = \frac{P}{P + N_{2}}, \text{ then } \mathbf{X} + \mathbf{Z}_{2} \perp (1 - \alpha_{2})\mathbf{X} + \mathbf{Z}_{1} - \alpha_{2}\mathbf{Z}_{2}$ 

 $\rightarrow \alpha_1 \equiv \text{source coding MMSE coefficient} \$  $\rightarrow \alpha_2 \equiv \text{channel coding MMSE coefficient} \$  Lose if do not pick these optimally

#### Outline - a lattice CF scheme

• Lattice notation

• Compress and forward review

• Lattice (X+Z1, X+Z2) Wyner-Ziv coding scheme

• Lattices achieve CF rate for AWGN relay

# R 1 2

## A Lattice CF scheme

**Theorem.** For the three user Gaussian relay channel described by the input/output equations  $Y_R = X_1 + N_R$  at the relay's receiver and  $Y_2 = X_1 + X_R + N_2$  at the destination, with corresponding input and noise powers  $P_1, P_R, N_R, N_2$ , the following rate may be achieved using lattice codes in a lattice Compress-and-Forward fashion:

$$R < \frac{1}{2} \log \left( 1 + \frac{P_1}{N_2} + \frac{P_1 P_R}{P_1 N_R + P_1 N_2 + P_R N_R + N_R N_2} \right).$$

# R 1 2

## A Lattice CF scheme

**Theorem.** For the three user Gaussian relay channel described by the input/output equations  $Y_R = X_1 + N_R$  at the relay's receiver and  $Y_2 = X_1 + X_R + N_2$  at the destination, with corresponding input and noise powers  $P_1, P_R, N_R, N_2$ , the following rate may be achieved using lattice codes in a lattice Compress-and-Forward fashion:

$$R < \frac{1}{2} \log \left( 1 + \frac{P_1}{N_2} + \frac{P_1 P_R}{P_1 N_R + P_1 N_2 + P_R N_R + N_R N_2} \right).$$

#### same as that achieved by Gaussian codes in the CF scheme of [Cover, El Gamal, 1979]

#### Mimic all steps with lattice codes





UNVERSITY OF ALLINGS AT CHICAGO COLLEGE OF ENGINEERING







rate 
$$R$$
  
 $v \leftrightarrow t_1, \Lambda_1 \subseteq \Lambda_{c1}, \sigma^2(\Lambda_1) = P_1$ 















UNVERSITY OF ILLINGS ATCHICAGE AND COMPUTER Engineering COLLEGE OF ENGINEERING





Encoding  
Block b  

$$x_{1,b}(w_b)$$

$$x_{1,b}(w_b)$$

$$y_{R,b} \rightarrow \widehat{y_{R,b}(i_b)}$$
send  $x_{R,b}(i_{b-1})$ 

$$y_{R,b} \rightarrow \widehat{y_{R,b}(i_b)}$$
send  $x_{R,b}(i_{b-1})$ 

$$x_{1} \subseteq \Lambda_{c1}, \sigma^2(\Lambda_1) = P_1$$

$$x_{1} \subseteq \Lambda_{c1}, \sigma^2(\Lambda_1) = P_1$$

$$x_{1} \in \hat{R} \quad \sigma^2(\Lambda) = N_R + \frac{P_1 N_2}{P_1 + N_2} + D$$

$$i \leftrightarrow t_R, \quad \Lambda_R \subseteq \Lambda_{cR}$$
rate  $R' \quad \sigma^2(\Lambda_R) = P_R$ 

$$P_R$$

$$y'_{2,b-1} = X_{1,b-1} + Z_2$$

$$(-Y'_{2,b} = Y_{2,b} - X_{R,b}(i_{b-1}) = X_{1,b} + Z_2$$





UNVERSITY OF ILLINGS ATCHCAGO and Computer Engineering COLLEGE OF ENGINEERING







• decodes *i* from  $Y_2 = X_1 + X_R + Z_2$  as long as  $R' < \frac{1}{2} \log_2 \left( 1 + \frac{P_R}{P_1 + N_2} \right)$ 





• decodes *i* from  $Y_2 = X_1 + X_R + Z_2$  as long as  $R' < \frac{1}{2} \log_2 \left( 1 + \frac{P_R}{P_1 + N_2} \right)$ 

• source coding < channel coding rate:  $\frac{1}{2} \log \left( 1 + \frac{N_R + \frac{P_1 N_2}{P_1 + N_2}}{D} \right) < \frac{1}{2} \log \left( 1 + \frac{P_R}{P_1 + N_2} \right)$ 



• decodes *i* from  $Y_2 = X_1 + X_R + Z_2$  as long as  $R' < \frac{1}{2} \log_2 \left( 1 + \frac{P_R}{P_1 + N_2} \right)$ 

• source coding < channel coding rate:  $\frac{1}{2}\log\left(1+\frac{N_R+\frac{P_1N_2}{P_1+N_2}}{D}\right) < \frac{1}{2}\log\left(1+\frac{P_R}{P_1+N_2}\right)$ 

• use  $Y'_2 = Y_2 - X_R$  from previous block and  $X_R$  from current block to reconstruct  $\hat{Y}_R$  as in  $(X + Z_R, X + Z_2)$  Wyner-Ziv



- decodes *i* from  $Y_2 = X_1 + X_R + Z_2$  as long as  $R' < \frac{1}{2} \log_2 \left( 1 + \frac{P_R}{P_1 + N_2} \right)$
- source coding < channel coding rate:  $\frac{1}{2} \log \left( 1 + \frac{N_R + \frac{P_1 N_2}{P_1 + N_2}}{D} \right) < \frac{1}{2} \log \left( 1 + \frac{P_R}{P_1 + N_2} \right)$

• use  $Y'_2 = Y_2 - X_R$  from previous block and  $X_R$  from current block to reconstruct  $\hat{Y}_R$  as in  $(X + Z_R, X + Z_2)$  Wyner-Ziv

• coherently combine  $Y'_2$  and  $\hat{Y}_R$  to decode w, as long as  $R < \frac{1}{2} \log \left( 1 + \frac{P_1}{N_2} + \frac{P_1}{N_R + D} \right)$ 





- decodes *i* from  $Y_2 = X_1 + X_R + Z_2$  as long as  $R' < \frac{1}{2} \log_2 \left( 1 + \frac{P_R}{P_1 + N_2} \right)$
- source coding < channel coding rate:  $\frac{1}{2} \log \left( 1 + \frac{N_R + \frac{P_1 N_2}{P_1 + N_2}}{D} \right) < \frac{1}{2} \log \left( 1 + \frac{P_R}{P_1 + N_2} \right)$

• use  $Y'_2 = Y_2 - X_R$  from previous block and  $X_R$  from current block to reconstruct  $\hat{Y}_R$  as in  $(X + Z_R, X + Z_2)$  Wyner-Ziv

• coherently combine  $Y'_2$  and  $\hat{Y}_R$  to decode w, as long as  $R < \frac{1}{2} \log \left( 1 + \frac{P_1}{N_2} + \frac{P_1}{N_R + D} \right)$ 

• note: pick  $\alpha_1 = 1$  rather than source coding MMSE to render compression noise independent of all else





• CF, DF lattices can achieve same rates as random Gaussian codebooks



• CF, DF lattices can achieve same rates as random Gaussian codebooks

 can this be combined with linearity of lattices to achieve higher rates in Gaussian networks?



• CF, DF lattices can achieve same rates as random Gaussian codebooks

 can this be combined with linearity of lattices to achieve higher rates in Gaussian networks?

• what is the capacity of relay channels, what are we stuck at?

# Questions?

Natasha Devroye University of Illinois at Chicago http://www.ece.uic.edu/Devroye



Monday, October 17, 2011