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• Decode and Forward (DF)

• Compress and Forward (CF)

• Amplify and Forward (AF)

• Quantize and Forward

All use random coding!
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The (X+Z1, X+Z2) Wyner-Ziv problem

31

general jointly Gaussian sources and side-informations (including the aforementioned source X+Z1 with

side-information X + Z2). The scheme we present next is an example of this more general scheme, and

is provided only for completeness in order to use it to derive a lattice Compress-and-Forward scheme in

Section V-B.

Qq( )
�

mod Λ
� �

mod Λ
�Y = X + Z1

α1

U −U
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Ŷ

31

general jointly Gaussian sources and side-informations (including the aforementioned source X+Z1 with

side-information X + Z2). The scheme we present next is an example of this more general scheme, and

is provided only for completeness in order to use it to derive a lattice Compress-and-Forward scheme in

Section V-B.

Qq( )
�

mod Λ
� �

mod Λ
�Y = X + Z1

α1

U −U

−α1α2(X + Z2)

α1

α2(X + Z2)

Ŷ
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Fig. 5: Wyner-Ziv encoding of a jointly Gaussian source using nested lattice codes. At high resolution α = 1.
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Fig. 6: Equivalent channel for the scheme of Figure 5.

DPC scheme can be found in [66] (also [16]). For the high signal-to-noise (SNR) case the analysis simplifies,

and the resulting coding rate (which like above it is the logarithm of the nesting ratio) becomes

1

2
log

(

P/G(Λ2)

µ(Λ1, Pe) · σ2
z

)

≈ C − 1

2
log

(

G(Λ2) · µ(Λ1, Pe)
)

(51)

where C = 1
2 log

(

1 + P
N

)

denotes the AWGN channel capacity. We see again that in order to make the capacity

loss term small, we need nested lattices with a small cross NSM-VNR product, but in reversed order w.r.t. the

Wyner-Ziv problem above.

More delicate analysis and lattice properties are required at the non- high SNR regime; see e.g. [40] for the

error exponent in lattice decoding.

VI. WAVEFORM SOURCES AND CHANNELS

We shall now apply the lattice coding techniques developed so far to the efficient encoding of signals and

channels with memory. One of the interesting observations we shall make is that memory can be treated as

“side-information”. This gives rise to “reversed” forms of common prediction and equalization techniques in

source and channel coding.

A. Predictive Quantization and Wyner-Ziv DPCM

Linear prediction is an effective mean to exploit memory in source coding. In differential pulse code modulation

(DPCM), [32], the current source sample is predicted from the past reconstruction - a procedure called backward
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Theorem 8: Lattices for the (X+Z1,X+Z2) Wyner-Ziv problem. The following rate-distortion function

for the lossy compression of the source X + Z1 subject to the reconstruction side-information X + Z2

and squared error distortion metric may be achieved using lattice codes:
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,

and 0 otherwise.

Proof: Consider a pair of nested lattice codes Λ ⊆ Λq, where Λ is Poltyrev-good with second

moment N1 + PN2
P+N2

, and Λq is Rogers-good with second moment D. We consider the encoding and

decoding schemes of Figure 9. We let U be a quantization dither signal which is uniformly distributed

over V(Λq), and introduce the following MMSE coefficients (choices justified later):

α1 =

�
1− D

N1 + PN2
P+N2

, α2 =
P

P + N2
. (11)

Encoding: The encoder quantizes the scaled and dithered signal α1(X + Z1) + U to the nearest fine

lattice point, which is then modulo-ed back to the coarse lattice Voronoi region as

I := Qq(α1(X + Z1) + U) mod Λ

= (α1(X + Z1) + U−Eq) mod Λ,

where Eq := (α1(X + Z1) + U) mod Λq is independent of everything else and uniformly distributed

over V(Λq) according to the Crypto lemma [39]. The encoder sends the index i of I to the decoder at
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Outline - a lattice CF scheme

• Lattice notation

• Lattice (X+Z1, X+Z2) Wyner-Ziv coding scheme

• Lattices achieve CF rate for AWGN relay

• Compress and forward review
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A Lattice CF scheme

same as that achieved by Gaussian codes in the 
CF scheme of [Cover, El Gamal, 1979]
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Compress and forward, successive decoding

Block 1
Encoding

Block 2 Block 3 Block 4

Mimic all steps with lattice codes

1 2

R

1 2

R

1 2

R

Decoding

Compress + forward

x1,1(w1) x1,2(w2) x1,3(w3) x1,4(1)

xR,1(1)

y2,2 − xR,2 y2,3 − xR,3y2,1 − xR,1

�yR,2 �yR,3�yR,1

Combine Combine Combine

yR,1 → yR,1(i1) yR,2 → yR,2(i2) yR,3 → yR,3(i3)

xR,2(i1) xR,4(i3)xR,3(i2)

〈 〈 〈
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Block bEncoding
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+ D
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R

Block b

x1,b(wb)
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• Y �
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Conclusion

• can random codes be replaced by structured codes in Gaussian networks?
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Conclusion

• can random codes be replaced by structured codes in Gaussian networks?

• CF, DF lattices can achieve same rates as random Gaussian codebooks

• can this be combined with linearity of lattices to achieve higher rates in 
Gaussian networks?

• what is the capacity of relay channels, what are we stuck at?
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Questions?

Natasha Devroye
University of Illinois at Chicago 
http://www.ece.uic.edu/Devroye
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