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Abstract—Two distinct, but overlapping, networks that operate
at the same time, space, and frequency is considered. The first net-
work consists of randomly distributed primary users, which form
an ad hoc network. The second network again consists of ran-
domly distributed ad hoc secondary users or cognitive users. The
primary users have priority access to the spectrum and do not
need to change their communication protocol in the presence of
the secondary users. The secondary users, however, need to adjust
their protocol based on knowledge about the locations of the pri-
mary users to bring little loss to the primary network’s throughput.
By introducing preservation regions around primary receivers, a
modified multihop routing protocol is proposed for the cognitive
users. Assuming with , it is shown that the sec-
ondary network achieves almost the same throughput scaling law
as a stand-alone network while the primary network throughput is
subject to only a vanishingly small fractional loss. Specifically, the
primary network achieves the sum throughput of order and,
for any , the secondary network achieves the sum throughput
of order with an arbitrarily small fraction of outage. Thus,
almost all secondary source-destination pairs can communicate at
a rate of order .

Index Terms—Cognitive radio, heterogeneous networks, inter-
ference management, routing algorithm, scaling law.

I. INTRODUCTION

I N their pioneering work [1], Gupta and Kumar posed and
studied the limits of communication in ad hoc wireless

networks. Assuming nodes are uniformly distributed in
a plane and grouped into source-destination (S-D) pairs at
random, they showed that one can achieve the sum throughput
of . This is achieved using a multihop transmis-
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sion scheme in which nodes transmit to one of the nodes in
their neighboring cells, requiring full connectivity with at least
one node per cell. A trade-off between throughput and delay of
fully-connected networks was studied in [2] and was extended
in [3] to trade-offs between throughput, delay as well as energy.
The work in [4] has studied relay networks in which a single

source transmits its data to the intended destination using the
other nodes as relays. Using percolation theory [5], [6], they
showed that a constant rate is achievable for a single S-D pair
if we allow a small fraction of nodes to be disconnected. This
result can be applied to ad hoc networks having multiple S-D
pairs and the work in [7] proposed a new multihop routing pro-
tocol based on such partial connectivity, that is all S-D pairs per-
form multihop transmissions based on this partially-connected
sub-network. They showed that the proposed multihop routing
improves the sum throughput as .
Information-theoretic upper bounds on throughput scaling

laws were derived in [8]–[11]. It was shown that the multihop
routing using neighbor nodes achieves a throughput scaling
close to its upper bound in the power-limited and high attenu-
ation regime. Recently, a hierarchical cooperation scheme was
proposed in [12] and was shown to achieve better throughput
scaling than the multihop strategy in the interference-limited or
low attenuation regime, achieving a scaling very close to their
new upper bound. A more general hierarchical cooperation was
proposed in [13], which works for an arbitrary node distribution
in which a minimum separation between nodes is guaranteed.
The existing literatures have focused on throughput scaling

laws of a single network. However, the necessity of extending
and expanding results to capture multiple overlapping networks
is becoming apparent. Recent measurements have shown that
despite increasing demands for bandwidth, much of the cur-
rently licensed spectrum remains unused a surprisingly large
portion of the time [14]. In the US, this has led the Federal Com-
munications Commission (FCC) to consider easing the regula-
tions towards secondary spectrum sharing through their Sec-
ondary Markets Initiative [15]. The essence of secondary spec-
trum sharing involves having primary license holders allow sec-
ondary license holders to access the spectrum. Different types
of spectrum sharing exist but most agree that the primary users
have a higher priority access to the spectrum, while secondary
users opportunistically use it. These secondary users often re-
quire greater sensing abilities and more flexible and diverse
communication abilities than legacy primary users. Secondary
users are often assumed to be cognitive radios, or wireless de-
vices which are able to transmit and receive according to a va-
riety of protocols and are also able to sense and independently
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adapt to their environment [16]. These features allow them to
behave in a more “intelligent” manner than current wireless
devices.
In this paper, we consider cognitive networks, which consist

of secondary, or cognitive, users who wish to transmit over the
spectrum licensed to the primary users. The single-user case in
which a single primary and a single cognitive S-D pairs share
the spectrum has been considered in the literature, see for ex-
ample [17]–[20] and the references therein. In [17] the primary
and cognitive S-D pairs are modeled as the interference channel
with asymmetric side-information. In [19] the communication
opportunities are modeled as a two-switch channel. Recently,
a single-hop cognitive network was considered in [21], where
multiple secondary S-D pairs transmit in the presence of a single
primary S-D pair. It was shown that a linear scaling law of the
single-hop secondary network is obtained when its operation is
constrained to guarantee a particular outage constraint for the
primary S-D pair.
We study a more general environment in which a primary

ad hoc network and a cognitive ad hoc network both share the
same space, time and frequency dimensions. The primary net-
work consists of nodes randomly distributed and grouped
into S-D pairs at random. The cognitive network consists of
secondary nodes distributed randomly and S-D pairs are again
chosen randomly. Our main assumptions are that (1) the primary
network continues to operate as if no secondary network were
present, (2) the secondary nodes know the locations of the pri-
mary nodes, and (3) the secondary network is denser than the
primary network. Under these assumptions, we will illustrate
routing protocols for the primary and secondary networks that
result in almost the same throughput scaling as if each were a
single network. Note that the constraint that the primary network
does not alter its protocol because of the secondary network is
what makes the problem nontrivial. Indeed, if the primary net-
work were to change its protocol when the secondary network
is present, a simple time-sharing scheme is able to achieve the
throughput scaling of homogeneous networks for both primary
and secondary networks.
For the primary network, we use a routing protocol that is a

simple modification of the nearest neighbor multihop schemes
in [1], [7]. We propose a novel multihop routing protocol for
the secondary network, in which the secondary routes avoid
passing too close to the primary nodes, reducing the interfer-
ence to them.We show that when a denser “intelligent” network
is layered on top of a sparser oblivious one, then both networks
achieve almost the same throughput scalings simultaneously as
if each were a single network. Specifically, the primary network
achieves the sum throughput of in the presence of the
secondary network and, for any , the secondary network
achieves the sum throughput of with an arbitrarily
small fraction of outage in the presence of the primary network.
This result may be extended to more than two networks, pro-
vided each layered network obeys the same three main assump-
tions as in the two network case.
This paper is structured as follows. In Section II we out-

line the system model: we first look at the network geometry,
co-existing primary and secondary ad hoc networks, then turn
to the information-theoretic achievable rates before stating our

assumptions on the primary and secondary network behaviors.
In Section III we explain the protocols used for the primary and
secondary networks and prove that the claimed throughput scal-
ings may be achieved. In Section IV we briefly discuss the infor-
mation-theoretic upper bounds and the possibility of alternative
routing methods. We conclude in Section V and refer the proofs
of the lemmas to the Appendix.

II. SYSTEM MODEL

In order to study throughput scaling laws of ad hoc cognitive
networks, we must define an underlying network model. We
first explain our geometric model, which will be considered in
Section III. We then look at the transmission schemes, resulting
achievable rates, and assumptions made about the primary and
secondary networks.
Throughout this paper, we use to denote the probability

of an event and we will be dealing with events which take
place with high probability (w.h.p.), or with probability one as
the node density tends to infinity.1 Let and
be two functions defined on some subset of the real numbers.
We will also use the following order notations [22].
• if there exist and such that

for all .
• if .
• if and

.

A. Network Geometry

We consider a planar area in which a network of primary
nodes and a network of secondary nodes co-exist. That is, the
two networks share the same space, time, code, and frequency
dimensions. Fig. 1 illustrates the network model. For the pri-
mary network, nodes are distributed according to a Poisson
point process (p.p.p.) of density over a unit square, which are
randomly grouped into primary S-D pairs. For the secondary
network, nodes are distributed according to a p.p.p. of density
over the same unit square and are also randomly grouped

into secondary S-D pairs. The densities of the primary nodes
and secondary nodes are related according to

(1)

Our study is limited to the case where , that is the density
of the secondary nodes is higher than that of the primary nodes.
The wireless propagation channel typically includes path-loss

with distance, shadowing and fading effects. However, in this
work we assume the channel gain depends only on the distance
between a transmitter (Tx) and its receiver (Rx), and ignore
shadowing and fading. Thus, the channel power gain , nor-
malized by a constant, is given by

(2)

where denotes the distance between a Tx and its Rx and
denotes the path-loss exponent.

1For simplicity, we use the notation ‘w.h.p.’ in the paper to mean an event
occurs with high probability as the node densities tend to infinity.
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Fig. 1. We consider the geometric network model: the primary nodes as well
as the secondary nodes form distinct and co-existing ad hoc networks.

B. Rates and Throughputs Achieved

Each network operates based on slotted transmissions. We as-
sume that the duration of each slot and the coding scheme em-
ployed are such that one can achieve the additive white Gaussian
noise (AWGN) channel capacity. For a given signal to interfer-
ence and noise ratio (SINR), this capacity is given by the well
known formula bps/Hz assuming the addi-
tive interference is also white, Gaussian, and independent from
the noise and signal. We assume that primary slots and sec-
ondary slots have the same duration and are synchronized with
each other. We further assume that all primary and secondary
nodes are subject to a transmit power constraint .
We now characterize the rates achieved by primary and sec-

ondary transmission pairs. Suppose that primary pairs and
secondary pairs communicate simultaneously. Before pro-

ceeding with a detailed description, let us define the notations
used in the paper, given by Table I. Then, the th primary pair
can communicate at a rate of

(3)

where denotes the Euclidean norm of a vector. Here, and
are given by

(4)

and

(5)

Similarly, the th secondary pair can communicate at a rate of

(6)

where and are given by

(7)

and

(8)

TABLE I
DEFINITION OF SYMBOLS RELATED TO ACHIEVABLE RATES FOR EACH

PRIMARY AND SECONDARY TRANSMIT PAIR

Throughout the paper, the achievable per-node throughput of
the primary and secondary networks are defined as follows.

Definition 1: A throughput of per primary node is said
to be achievable w.h.p. if all primary sources can transmit at a
rate of (bps/Hz) to their primary destinations w.h.p. in the
presence of the secondary network.

Definition 2: Let denote the outage fraction
of the secondary network, which may vary as a function of
. A throughput of per secondary node is said to be

-achievable w.h.p. if at least fraction of sec-
ondary sources can transmit at a rate of (bps/Hz) to their
secondary destinations w.h.p. in the presence of the primary
network.
In Section III, we will propose a secondary routing scheme

that makes as .2 Thus, although we allow
a fraction of secondary S-D pairs to be in outage, almost all
secondary S-D pairs will be served at a rate of for suffi-
ciently large . Let us define as the sum throughput of
the primary network, or times the number of primary S-D
pairs.3 Similarly, we define as the sum throughput of the
secondary network, or times the number of served sec-
ondary S-D pairs at a rate of . While and
represent the per-node and sum throughputs of the primary net-
work in the presence of the secondary network, we use the no-
tations and to denote the per-node and sum
throughputs of the primary network in the absence of the sec-
ondary network, respectively.

C. Primary and Secondary User Behaviors

As primary and secondary nodes must share the spectrum,
the rules or assumptions made about this co-existence are of
critical importance to the resulting achievable throughputs and

2In this paper, is equivalent to since .
3We note that, in general, since the nodes are thrown at

random according to a p.p.p. of density . The actual number of nodes in the
network will vary in a particular realization.
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scaling laws. Primary networks may be thought of as existing
communication systems that operate in licensed bands. These
primary users are the license holders, and thus have higher pri-
ority access to the spectrum than secondary users. Thus, our
first key assumption is that the primary network does not have
to change its protocol due to the secondary network. In other
words, all primary S-D pairs communicate with each other as
intended, regardless of the secondary network. The secondary
network, which is opportunistic in nature, is responsible for re-
ducing its interference to the primary network to an “acceptable
level”, while maximizing its own throughput . This ac-
ceptable level may be defined to be one that does not degrade
the throughput scaling of the primary network.More strictly, the
secondary network should satisfy w.h.p.

(9)

during its transmission, where is the maximum al-
lowable fraction of throughput loss for the primary network. No-
tice that the above condition guarantees .
The secondary network may ensure (9) by adjusting its pro-
tocol based on information about the primary network. Thus,
our second key assumption is that the secondary network knows
the locations of all primary nodes. Since the secondary network
is denser than the primary network, each secondary node can
measure the interference power from its adjacent primary node
and send it to a coordinator node. Based on these measured
values, the secondary network can establish the locations of the
primary nodes.

III. ACHIEVABLE THROUGHPUT SCALING LAWS

Since the primary network needs not change its transmission
scheme due to the presence of the secondary network, we as-
sume it transmits according to the multihop routing similar to
those in [1], [2], which we call Gupta-Kumar (GK) routing. As
a primary protocol, we also consider the multihop routing pro-
posed in [7], which we call Franceschetti-Dousse-Tse-Thiran
(FDTT) routing. Of greater interest is how the secondary nodes
will transmit such that the primary network remains unaffected
in terms of throughput scaling.

A. Main Results

The main results of this paper describe achievable throughput
scaling laws of the primary and secondary networks. We simply
state these results here and derive them in the remainder of this
section.
For any , the primary network can achieve the

following per-node and sum throughputs w.h.p.

(10)

and

(11)

where

(12)

and . The following per-node and
sum throughputs are -achievable w.h.p. for the secondary
network:

(13)

and

(14)

where

(15)

which converges to zero as .
This result is of particular interest as it shows that the primary

network can not only operate at the same scaling law as if the
secondary network were absent, but the secondary network can
also achieve almost the same scaling law obtained by the mul-
tihop routing as if the primary network did not exist. That is,
compared to the stand-alone sum throughput of , the
secondary network achieves for any with an
arbitrarily small fraction of outage. Thus, almost all secondary
S-D pairs can communicate at a rate of in the limit
of large .
In the remainder of this section, we first outline the operation

of the primary network and then focus on the design of a sec-
ondary network protocol under the given primary protocol. We
analyze achievable throughputs of the primary and secondary
networks, which will determine the throughput scaling of both
co-existing networks. Throughout this work, we place the
proofs of technical lemmas in the Appendix and show the main
proofs in the text.

B. Network Protocols

We assume the primary network communicates according to
the GK routing protocol. We will explain the FDTT routing in
Section IV-B, which can be extended from the results of the GK
routing. The challenge is thus to prove that the secondary nodes
can exchange information in such a way that satisfies

w.h.p. We first outline a primary network
protocol, and then design a secondary network protocol which
operates in the presence of the primary network.
1) Primary Network Protocol: We assume that the primary

network delivers data using the multihop routing, in a manner
similar to [1], [2]. The basic multihop protocol is as follows:
• Divide the unit area into square cells of area .
• A -time divisionmultiple access (TDMA) scheme is used,
in which each cell is activated during one out of slots.

• Define the horizontal data path (HDP) and the vertical data
path (VDP) of a S-D pair as the horizontal line and the
vertical line connecting a source to its destination, respec-
tively. Each source transmits data to its destination by first
hopping to the adjacent cells on its HDP and then on its
VDP.
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• When a cell becomes active, it delivers its traffic. Specif-
ically, a Tx node in the active cell transmits a packet to
a node in an adjacent cell (or in the same cell). A simple
round-robin scheme is used for all Tx nodes in the same
cell.

• At each transmission, a Tx node transmits with power
, where denotes the distance between the Tx and its

Rx.
This protocol requires full connectivity, meaning that each

cell should have at least one node. Let denote the area of a
primary cell. The following lemma indicates how to determine
satisfying this requirement.

Lemma 1: The following facts hold:
a) The number of primary nodes in a unit area is within

w.h.p., where is an arbitrarily small
constant.

b) Suppose . Then, each primary cell has at least
one primary node w.h.p.
Proof: The proof is in the Appendix.

Based on Lemma 1, we set . Under the given pri-
mary protocol, and

are achievable w.h.p. when the secondary net-
work is absent or silent.
Results similar to Lemma 1 can be found in [1], [2], where

their proposed schemes also achieve the same and
. Note that the Gupta-Kumar’s model [1], [2] assumes

uniformly distributed nodes in the network and a constant rate
between Tx and Rx if SINR is higher than a certain level. Al-
though we assume that the network is constructed according to
a p.p.p. (rather than uniform) and that the information-theoretic
rate is achievable (rather than a constant rate), the
above primary network protocol provides the same throughput
scaling as that under the Gupta-Kumar’s model.
2) Secondary Network Protocol: Since the secondary nodes

know the primary nodes’ locations, an intuitive idea is to have
the secondary network operate in a multihop fashion in which
they circumvent each primary node in order to reduce the effect
of secondary transmissions to the primary nodes.
Around each primary node we define its preservation region:

a square containing 9 secondary cells, with the primary node
at the center cell. The secondary nodes, when determining their
routing paths, need to avoid these preservation regions. Our pro-
tocol for the secondary ad hoc network is the same as the basic
multihop protocol except that
• The secondary cell size is .
• At each transmission a secondary node transmits its packet
three times repeatedly (rather than once) using three slots.

• The secondary paths avoid the preservation regions (see
Fig. 2). That is, if the HDP or VDP of a secondary S-D pair
is blocked by a preservation region, this data path circum-
vents the preservation region by using its adjacent cells. If
a secondary source (or its destination) belongs to preserva-
tion regions or its data path is disconnected by preservation
regions, the corresponding S-D pair is not served.

• At each transmission, a Tx node transmits with power
, where denotes the distance between the Tx and

its Rx and .

Fig. 2. Examples of secondary data paths: a secondary S-D pair goes around
if it is blocked by a preservation region. If a source (or its destination) is in a
preservation region or its data path is disconnected by preservation regions, the
corresponding S-D pair is not served.

Since converges to zero as , there exists
such that the power constraint is satisfied for any if

. We will show in Lemma 2 that adjusting induces
a trade-off between the rates of the primary and secondary net-
works that satisfies the condition (9) while the scaling laws of
both networks are unchanged.
Unlike the primary protocol, each secondary cell transmits

a secondary packet three times repeatedly when it is activated.
As we will show later, the repeated secondary transmissions can
guarantee the secondary receivers a certain minimum distance
from all primary interferers for at least one packet, thus guar-
anteeing the secondary network a nontrivial rate. Therefore, the
duration of the secondary -TDMA scheme is three times longer
than that of the primary 9-TDMA. The main difference between
this scheme and the previous multihop routing schemes is that
the secondary multihop paths must circumvent the preservation
regions and that a portion of secondary S-D pairs is not served.
But this portion will be negligible as . By re-routing
the secondary nodes’ transmission around the primary nodes’
preservation regions, we can guarantee the primary nodes a non-
trivial rate.
Similar to Lemma 1, we can also prove that the total number

of secondary nodes is within w.h.p. and
that each secondary cell has at least one secondary node w.h.p.

C. Throughput Analysis

In this subsection, we analyze the per-node and sum through-
puts of each network under the given protocols and derive
throughput scaling laws with respect to the node densities.
1) Primary Network Throughputs: Let us consider the pri-

mary network in the presence of the secondary network.We first
show that each primary cell can sustain a constant aggregate rate
(Lemma 2), which may be used in conjunction with the number
of data paths each primary cell must transmit (Lemma 3) to ob-
tain the per-node and sum throughputs in Theorem 1.
Let and denote the achievable aggregate

rate of each primary cell in the presence and in the absence of
the secondary network, respectively. We define

(16)
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Fig. 3. Examples of original HDPs (left) and their extended HDPs (right) of
the primary S-D pairs.

having a finite value for , which will be used to derive
an upper bound on the interference power of the primary and
secondary networks. Then the following lemma holds.

Lemma 2: If , then

(17)

where
and is given by (16). Here is a solution

of . Moreover,
is lower bounded by , where

is a constant independent of .
Proof: The proof is in the Appendix.

The essence of the proof of Lemma 2 lies in showing that
the secondary nodes, even as , do not cause the aggre-
gate rate of each primary cell to decay with . This is done by
introducing the preservation regions, which guarantee the min-
imum distance of from all secondary Txs to the primary
Rxs. This lemma will be used to show that (9) can be satisfied
w.h.p. if in Theorem 1.
The next lemma determines the number of data paths that

each cell should carry. To obtain an upper bound, we extend
each HDP to the entire horizontal line and all cells through
which this horizontal line passes should deliver the corre-
sponding data of HDP (see Fig. 3). Similarly, we extend each
VDP to the entire vertical line. We define this entire horizontal
and vertical line as an extended HDP and an extended VDP,
respectively. Throughout the rest of the paper, our analysis
deals with extended HDPs and VDPs instead of original HDPs
and VDPs. Since we are adding hops to our routing scheme,
the extended traffic gives a lower bound on the achievable
throughput.

Lemma 3: Each primary cell needs to carry at most
data paths w.h.p.

Proof: The proof is in the Appendix.

Lemma 3 shows how the number of data paths varies with the
node density . Lemmas 1 to 3 will be used to prove the main
theorem, stated next.

Theorem 1: For any , by setting
, the primary network can achieve

and
w.h.p., where

(18)

and

(19)

The definitions of and are given in Lemma 2.
Proof: First consider the stand-alone throughput of the pri-

mary network. Since each primary cell can sustain a rate of
(Lemma 2), each primary S-D pair can achieve a rate of

at least divided by the maximum number of data paths per
primary cell. The number of data paths is upper bounded by

w.h.p. (Lemma 3). Therefore, is lower
bounded by w.h.p. Now the whole network contains

at least primary S-D pairs w.h.p. (Lemma 1). There-
fore, is lower bounded by w.h.p.
Finally Lemma 2 shows that, for any , if we set

, then
is achievable in the limit of large . Since the number of
primary data paths carried by each primary cell and the
total number of primary S-D pairs are not changed due to
the secondary network, and

are also achievable w.h.p., which
completes the proof.

2) Secondary Network Throughputs: Let us now consider the
per-node and sum throughputs of the secondary network in the
presence of the primary network. The main difference between
the primary and secondary transmission schemes arises from the
presence of the preservation regions. Recall that the secondary
nodes wish to transmit according to a multihop protocol, but
their path may be blocked by a preservation region. In this case,
they must circumvent the preservation region, or possibly the
cluster of preservation regions.4 As we will see later, circum-
venting these preservation regions (clusters) only degrades the
secondary network’s throughput scaling by at most
due to the relative primary and secondary node densities: the
secondary nodes increase at the rate and .
Formally, we define the distance of two preservation regions

as the minimum distance of any two points in each preservation
region. A set of preservation regions is said to form a cluster
if for each of the preservation regions in the cluster there exists
another preservation region in the same cluster at a distance less
than . Hence, if there is no cluster that includes two preser-
vation regions, then the re-routed paths from each of these two
preservation regions will be delivered by two disjoint sets of
secondary cells. We also define the effective area of a cluster as
the total area of all secondary cells in the cluster and at a distance
less than from the cluster. Fig. 4 illustrates an example of
a cluster of preservation regions and the corresponding effec-
tive area. From the definition, we know that the effective area
of a cluster consisting of preservation regions is less than or
equal to .

4Since the primary nodes are distributed according to a p.p.p., clustering of
preservation regions may occur.
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Fig. 4. Example of a cluster of preservation regions and the corresponding ef-
fective area, where the distance of the two shaded preservation regions is equal
to .

Lemma 4: Any cluster of preservation regions has at most
preservation regions w.h.p.

Proof: The proof is in the Appendix.

This lemma is needed to ensure that the secondary network
remains connected, to bound the number of data paths that pass
through secondary cells, and to prove the next lemma. As men-
tioned earlier, whenever a secondary source or destination lies
within a preservation region or there is no possible data path,
this pair is not served. The next lemma shows that the fraction
of these unserved secondary S-D pairs is arbitrarily small w.h.p.

Lemma 5: The fraction of unserved secondary S-D pairs is
upper bounded by w.h.p., which con-
verges to zero as .

Proof: The proof is in the Appendix.

Next, Lemma 6 shows that, in the presence of the primary
network, each secondary cell may sustain a constant aggregate
rate.

Lemma 6: Each secondary cell can sustain traffic at
a rate of independent of . Here is given by

and is given by (16).

Proof: The proof is in the Appendix.

Themain challenge in proving Lemma 6 is the presence of the
primary Txs. Since the primary node density is smaller than the
secondary node density, the primary cells are relatively further
away from each other, thus requiring higher power to communi-
cate. Although the relatively higher power could be a potential
problem because the secondary nodes repeat their transmissions
for three slots, the interfering primary transmission occurs at a
certain minimum distance away from the secondary Rx on one
of these slots. Hence, this allows us to bound the interference of
the more powerful primary nodes without changing the scaling
laws. From Lemma 2, the value of , which is a normalized
transmit power of the secondary Txs, should be smaller than

in order to satisfy (9). We also notice that the
range of does not affect the throughput scalings of the sec-
ondary network.
Let us define the secondary cells that border the preservation

regions as loaded cells and the other cells as regular cells. The
loaded cells will be required to carry not only their own traffic,
but also re-routed traffic around the preservation regions and, as

a result, could deliver more data than the regular cells. The next
lemma bounds the number of data paths that each regular cell
and each loaded cell must transport. As the number of data paths
each cell could carry was essentially the limiting factor in the
sum throughput of the primary network, the following lemma is
of crucial importance for the secondary sum throughput scaling
law.

Lemma 7: Each regular secondary cell needs to carry at most
data paths and each loaded secondary cell carries

at most data paths w.h.p.
Proof: The proof is in the Appendix.

As it will be shown later, for the loaded cells are
the bottleneck of the overall throughput. But even in this case, at
most throughput degradation occurs. For , since
the secondary network is much denser than the primary network,
the fraction of secondary data paths needing to be re-routed di-
minishes to zero as the node densities increase. Thus, in the
limit, almost all secondary cells behave as regular cells.
Finally, we can use the previous lemmas to obtain the per-

node and sum throughputs of the secondary network in the fol-
lowing theorem.

Theorem 2: For any , by setting
, the following per-node and sum through-

puts are -achievable w.h.p. for the secondary network:

(20)

and

(21)

where

(22)

which converges to zero as . The definitions of
and are given in Lemmas 2 and 6, respectively.

Proof: Note that by setting ,
the secondary network satisfies (9) during its transmission. Let
us first consider . Let (similarly, ) denote the
number of secondary S-D pairs whose original or re-routed
HDPs (VDPs) pass through loaded cells. Suppose the following
two cases where the projections of two preservation regions
on the -axis are at a distance greater than or equal to
(Fig. 5(a)) and less than (Fig. 5(b)), respectively. For the
first case, all extended HDPs in the area of will pass
through the loaded cells generated by two preservation regions.
But for the second case, the number of extended HDPs passing
through the loaded cells is less than the previous case w.h.p.
because the corresponding area is smaller than .
Thus, assuming that projections of all preservation regions on
the -axis are at a distance of at least from each other
gives an upper bound on . In this worst-case scenario, all
sources located in the area of generate
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Fig. 5. Upper bound on the number of secondary S-D pairs whose extended
HDPs pass through the loaded cells.

extended HDPs w.h.p., which must pass through the loaded
cells, where we use the fact that the number of preservation
regions is upper bounded by w.h.p. By assuming
that all nodes are sources, the resulting upper bound follows

. Similarly, an upper bound on
follows . From Lemma 8

(23)

Then

(24)

which converges to zero as . Hence, we obtain w.h.p.

(25)

where . In conclusion, the frac-
tion of S-D pairs whose data paths pass through the loaded cells
is upper bounded by w.h.p., which tends to zero as

. This indicates that almost all data paths will pass
through regular cells rather than loaded cells. If we treat the
S-D pairs passing through the loaded cells and the S-D pairs not
served as outages, is obviously upper bounded w.h.p. by

(26)

where we use the fact that the fraction of S-D pairs not served is
upper bounded by w.h.p. (Lemma 5). Then the achiev-
able per-node throughput is determined by the rate of S-D pairs
passing only the regular cells. Since each secondary cell can
sustain a constant rate of w.h.p. (Lemma 6), from the result
of Lemma 7, each served secondary S-D pair that passes only
through regular cells can achieve a rate of at least

w.h.p. Therefore, is lower bounded by

w.h.p.
Let us now consider the case where . Unlike the

previous case, most served S-D pairs in this case pass through
loaded cells, which will become bottlenecks. By assuming that
all served S-D pairs pass through loaded cells, we obtain a lower
bound on with , which

is an upper bound on the fraction of unserved S-D pairs. There-
fore, based on Lemmas 6 and 7, is lower bounded by

w.h.p.

Since there are at least nonoutage S-D
pairs, is lower bounded by
w.h.p., which completes the proof.

IV. DISCUSSIONS

In this section, we study information-theoretic upper bounds
and compare them with the achievable lower bounds derived in
the previous section. We also consider throughput scaling laws
when the primary network uses the FDTT routing in [7] and
alternative routing methods when different assumptions about
the primary and secondary networks are given.

A. Cut-Set Upper Bound

In Section III, we show that the secondary network can
achieve and for
any with an arbitrarily small fraction of outage. Then
the question is how far this achievable scaling law is from
the optimal one. To partially answer this question, we briefly
introduce information-theoretic upper bounds developed for
single networks. The cut-set upper bound in [12] shows that
for the power-limited regime, i.e., the power constraint of the
secondary nodes scales as , and , the stand-alone
sum throughput of the secondary network is upper bounded by

w.h.p. for any . From the
fact that , we know
w.h.p. Notice that this cut-set upper bound holds for any arbi-
trary outage . Also, for a given

is upper bounded by

w.h.p. In summary, we obtain and
w.h.p. for any . There-

fore, the multiplicative gap between the upper and
lower bounds has an arbitrarily small exponent, i.e., .

B. FDTT Routing

As mentioned before, the multihop routing in [7] can
be adopted as a primary protocol, which provides the sum
throughput of . The key observation is that the construc-
tion of multihop data paths with a hop distance of
is possible, which consists of the “highway” for multihop
transmission. During Phase 1, each source directly transmits its
packet to the closest node on the highway and, during Phase 2,
the packet is delivered to the node on the highway closest to
the destination by multihop transmissions using the nodes on
the highway. Finally, during Phase 3, the destination directly
receives the packet from the closet node on the highway.
Assuming that the primary network operates based on the

FDTT routing, we can derive throughput scaling laws of the sec-
ondary network. As the same manner in Section III, we assume
that the transmit power of each primary Tx scales according to
its hop distance so that each primary Rx will receive the in-
tended signal with a constant power. Note that since the hop
distance for Phase 1 (or 3) is given by , the max-
imum transmit power of Phase 1 (or 3) is greater than that of
the GK routing. For the GK routing, the hop distance is given
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Fig. 6. Alternative secondary protocol with different information about the pri-
mary network: the secondary network operates based on 81-TDMA.

by . The maximum transmit power of Phase 2,
on the other hand, is smaller than that of the GK routing be-
cause the hop distance is given by . Therefore, we can
apply the previous secondary routing protocol during Phase 2 of
the primary FDTT routing, which will cause less interference to
the secondary network. Based on the analysis used for the GK
routing, we derive similar results in Theorems 1 and 2 except
now we have and .

C. Alternative Routing

Themain assumption defining the role of the primary and sec-
ondary networks is that the primary network operates as if no
secondary network were present and the secondary network ad-
justs its protocol based on the locations of the primary nodes. If
the secondary network knows when the primary nodes are acti-
vated in addition to their locations, then -TDMA between the
secondary cells in Fig. 6 can achieve
and w.h.p. Specifically, each group
of the secondary cells can be activated based on the -TDMA
(dotted region) and within each group secondary cells operate
-TDMA. Furthermore if the primary network can change its
protocol in the presence of the secondary network, then a simple
time-sharing, which allocates and fractions of time
for the primary and secondary networks respectively, will sat-
isfy (9) while providing a stand-alone throughput scaling law
for the secondary network.

V. CONCLUSION

In this paper, we studied two co-existing ad hoc networks
with different priorities (a primary and a secondary net-
work) and analyzed their simultaneous throughput scalings.
It was shown that each network can achieve almost the same
throughput scaling as when the other network is absent. Al-
though we allow outage for the secondary S-D pairs, the
fraction of pairs in outage converges to zero as the node den-
sities increase. Furthermore, these scalings can be achieved
by adjusting the secondary protocol while keeping that of the
primary network unchanged. In essence, the primary network is
unaware of the presence of the secondary network. To achieve
this result, the secondary nodes need knowledge of the locations
of the primary nodes and the secondary nodes need to be denser

than the primary. For where the primary network is
denser than the secondary network, on the other hand, it seems
to be more challenging to achieve similar throughput scaling
results while keeping the primary unchanged, as there are many
primary nodes around each secondary node. Our result may be
extended to more than two networks, provided each layered
network obeys the same three main assumptions as in the two
network case.

APPENDIX

Before proving our lemmas, we recall the following useful
lemma from [7].

Lemma 8 (Franceschetti, Dousse, Tse, and Thiran): Let
be a Poisson random variable with parameter . Then

(27)

Proof: We refer readers to the paper [7].

Proof of Lemma 1: Let denote the number of primary
nodes in a unit area. For part (a), we wish to show that

as . Noting that is a Poisson random
variable withmean and standard deviation , we use Cheby-
shev’s inequality to see that

Clearly, as tends to infinity we can make this quantity arbi-
trarily small.
For part (b), let denote the number of primary nodes in a

primary cell. Then is given by

(28)

Therefore, the probability that there is at least one cell having no
node is upper bounded by , where the union bound
and the fact that there are at most primary cells are used. Since

as , (b) holds w.h.p., which completes the proof.
Proof of Lemma 2: Suppose that at a given moment, there

are active primary cells and active secondary
cells, including the th active primary cell. Then, the rate of the
th active primary cell is given by

(29)

where indicates the loss in rate due to the -TDMA transmis-
sion of primary cells. The rate of the th active primary cell in
the absence of the secondary network is given by

by setting . Fig. 7 illustrates the worst case
interference from the secondary interferers to the Rx of the th
active primary cell, where the dotted region denotes the preser-
vation region around the primary Rx and the shaded cells denote
the active secondary cells based on the -TDMA. Because of the
preservation region, the minimum distance of can be guar-
anteed from all secondary transmitting interferers to the primary
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Rx. Thus, there exist secondary interferers at a distance of at
least , and secondary interferers at a distance of at least

, and so on. Then, is upper bounded by

(30)

where we use the fact that . Similarly, there
exist primary interferers at a distance of at least , and
primary interferers at a distance of at least , and so on.
Then

(31)

where we use the fact that . Then

(32)

Hence, from the definition of , we obtain

(33)

Notice that is the value of such that the right-hand
side of (33) is equal to . One can easily know that

since . Thus,

if we set . Because the above inequal-
ities holds for any , we obtain if
we set . Lastly, we obtain

(34)

Therefore, Lemma 2 holds.
Proof of Lemma 3: Let denote the number of extended

HDPs that should be delivered by a primary cell. Similarly,
denotes the number of extended VDPs that should be delivered
by a primary cell. When HDPs are extended, the extended HDPs
of all primary sources located in the area of should
be handled by the primary cell. By assuming that all primary

Fig. 7. Amount of interference from the secondary interferers to the Rx of the
th primary pair, where the shaded cells indicate the active secondary cells based
on the -TDMA.

nodes are sources, the resulting upper bound on follows
. Using Lemma 8, we obtain

(35)

Similarly, the extended VDPs of all primary destinations located
in the area of should be also handled by the primary
cell. By assuming that all primary nodes are destinations, we
obtain

(36)

From (35) and (36), we obtain

(37)

where the last inequality comes from the union bound.
Therefore, the probability that there is at least one primary

cell supporting more than extended data paths is upper
bounded by , where the union bound and
the fact that there are at most primary cells are used. Since

as , each primary cell should
deliver the corresponding data of at most extended data
paths w.h.p., where . Note that the above bounds
also hold for the original data paths, which completes the proof.

Proof of Lemma 4: Divide the network into disjoint

regions with area each. Let denote the number of pri-
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mary nodes in the th disjoint region. From the union bound and
Lemma 8, we obtain

(38)

which converges to one as . Hence, the number of pri-
mary nodes in any disjoint region is less than w.h.p. Sup-
pose that there exists a cluster with more than or equal to
preservation regions. Then we can find a sub-cluster of
preservation regions in the original cluster, whose effective area
is less than or equal to . Hence, we can set disjoint
regions with area each such that one of the disjoint re-
gions contains the sub-cluster because
in the limit of large . This means that there would exist a region
with area containing at least primary nodes, a con-
tradiction because such an event occurs with probability zero. In
conclusion, every cluster consists of at most preservation
regions w.h.p., which completes the proof.

Proof of Lemma 5: Let denote the area of all preser-
vation regions, denote the area of all disjoint regions due
to the preservation regions except the biggest region, and

. Define as the number of secondary nodes in
the area of that follows . The number
of secondary S-D pairs not served is clearly upper bounded by
. From Lemma 8, we obtain

(39)

An upper bound on is obtained if we assume none of the
preservation regions overlap. Thus, as each preservation region
has an area of and there are at most such regions
w.h.p., we obtain w.h.p.

(40)

To derive an upper bound on , we assume all preserva-
tion regions form clusters having preservation regions
each (Lemma 4) as shown in Fig. 8(a), where the shaded re-
gions denote . Then the maximum disjoint area that is gen-
erated by a cluster of preservation regions is given in
Fig. 8(b) since a circle maximizes the area of a region for a
given perimeter. Because each preservation region contributes
a length of at most to the circumference of this circle,
the radius is upper bounded by . Thus, is upper
bounded w.h.p. by

(41)

where we use the fact that the total number of clusters having
preservation regions in each cluster is upper bounded

by w.h.p. From (40) and (41), is upper bounded by

Fig. 8. Given that the size of any cluster of preservation regions is limited to
, this figure illustrates the worst-case scenario for the number of sec-

ondary S-D pairs that are not served when their data pathes are disconnected by
the preservation regions.

w.h.p. By substituting for
its upper bound in (39), we obtain

(42)

which converges to zero as . Thus, we obtain w.h.p.

(43)

where . Since the total
number of secondary S-D pairs is lower bounded by
w.h.p., the fraction of unserved S-D pairs is upper bounded by

w.h.p., which completes the proof.
Proof of Lemma 6: Since the same secondary packet is

transmitted three times, the minimum distance of from all
primary interferers to the secondary Rx can be guaranteed for
one out of three transmissions. Then the interference from pri-
mary interferers of that packet is upper bounded by

(44)

where we use the same technique as in Lemma 2. Similarly,
is upper bounded by . Thus, the rate of each secondary cell
is lower bounded by

(45)

where indicates the rate loss due to the -TDMA and
repeated (three times) transmissions of the same secondary
packet. Therefore, Lemma 6 holds.

Proof of Lemma 7: Let and denote the number
of extended HDPs including re-routed paths that should be de-
livered by a secondary regular cell and by a secondary loaded
cell, respectively. Similarly, we can define and for
extended VDPs.
Let us first consider a regular cell. This regular cell delivers

the corresponding data of extended HDPs passing through it.
Then all extended HDPs of the secondary sources located in the
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Fig. 9. Upper bound on the number of re-routed HDPs passing through the
shaded cells.

area of should be handled by the regular cell, where
we ignore the effect of S-D pairs not served, which yields an
upper bound on the total number of HDPs. By assuming that all
secondary nodes are sources, the resulting upper bound on
follows . From Lemma 8, we obtain

(46)

We obtain the same bound for by assuming that all sec-
ondary nodes are destinations and then

(47)

From the union bound and the fact that there are at most sec-
ondary cells, each regular cell should deliver the corresponding
data of at most extended data paths w.h.p., where we
use the fact that as .
Let us now consider a loaded cell. Unlike in the primary data

path which has no obstacles, a secondary data path should cir-
cumvent any preservation regions which lie on its path. There-
fore, the loaded cells should deliver more data paths than the
regular cells w.h.p. Suppose a cluster of preservation regions
located on the boundary of the network in Fig. 9, whose projec-
tion on -axis has a length of . Then consider an upper
bound on such that all extended HDPs of the secondary
sources located in the area of are re-routed through
the shaded cells, where we ignore the effect of S-D pairs not
served (which yields an upper bound on the total number of ex-
tended HDPs). From Lemma 4 and the fact that the length of
each preservation region is , we obtain
w.h.p. The other loaded cells will deliver less HDPs than the
shaded cells w.h.p. Therefore, by assuming that all secondary
nodes are sources, the resulting upper bound on follows

. Note that the upper bound
on is the same as the upper bound on except for a
factor of , where comes from the re-routed
HDPs and 1 comes from the original HDPs. Therefore, we can
apply the same analysis used in the regular case. In conclu-
sion, each loaded cell should deliver the corresponding data of
at most extended data paths w.h.p. Since
the above bounds also hold for the original data paths, Lemma
7 holds.
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