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Abstract—Achievable error exponents for two-way parallel
discrete memoryless channels (DMC) using variable block length
coding (VLC) are presented. First, Forney’s erasure decoding
error exponent is shown to be achievable for both directions
simultaneously. Next, for some rate-pairs, it is shown that the
error exponent of the direction with a smaller capacity may be
further increased by allocating feedback resources to it in the
other direction, at the price of a decreased error exponent for the
other terminal. The presented two-way communication scheme
builds upon Draper-Sahai’s one-way DMC achievability scheme
with noisy feedback under VLC. Both achievable error exponent
regions demonstrate that the use of VLC and interaction between
the terminals may benefit both directions’ error exponents over
fixed block length and feedback free transmission.1

I. INTRODUCTION

In one-way communications with feedback, variable length
coding (VLC) techniques where decoding times are not deter-
mined before transmission have been shown to attain better
error exponents than those achieved by fixed block length
schemes, where decoding is done at pre-described times. The
error exponent, or reliability, of a discrete memoryless channel
(DMC) characterized by channel transition probabilities p(y|x)
under VLC for an average transmission rate R̄ is defined as:

E(R̄) = lim
E[∆]→∞

− 1

E[∆]
logPe

(
R̄,∆

)
(1)

where E[·] denotes expectation, ∆ the transmission time (a
random variable), and Pe

(
R̄,∆

)
the probability of error at

average rate R̄ when decoding at time ∆.
Burnashev [1] showed that the error exponent using VLC

coding over a DMC of capacity C with complete output
feedback for an average transmission rate R̄, denoted by
Evl(R̄) is upper bounded by:

Evl(R̄) ≤ EBurn(R̄) := C1

(
1− R̄/C

)
(2)

where, C1 = maxxi,xj

{∑
y p(y | xi) log p(y|xi)

p(y|xj)

}
corre-

sponds to the Kullback-Leibler divergence between the two
most distinguishable symbols. A scheme able to achieve this
bound was presented by Yamamoto and Itoh [2]. The relia-
bility of DMCs can still be improved over the non-feedback
reliability even if complete output feedback is not available,
but at least a single bit of noiseless feedback is, and erasure
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decoding is employed. Forney [3] used this bit to tell the
source whether decoding was successful (source sends a new
message) or resulted in an erasure (source re-transmits the
same message). Forney’s reliability (3) is larger than the sphere
packing upper bound (Esp(R) [4, Section 5.8]) for fixed block
length coding without feedback for rate R̄, given by

EForn(R̄) = Esp(R̄) + C − R̄. (3)

In VLC schemes in general, potential errors may be cor-
rected by retransmissions. Such retransmissions lead to higher
error exponents, at the expense of variable decoding times
and delays, which bring up the issue of synchronization – the
transmitter and receiver must agree upon which message is
currently being transmitted. If noiseless feedback is available
(as in Burnashev, Yamatoto-Itoh, or Forney’s models), then
both terminals may easily stay synchronized. This is not
the case if feedback is noisy: [5], [6] both address this and
show that even in the presence of noisy feedback, reliability
improvements over fixed block length coding are attainable in
the one-way setting.

Here, we consider the non-previously studied two-way sce-
nario where the destination is also interested in transmitting its
own messages to the source. The transmitter and receiver may
be referred to as Terminals 1 and 2. Error exponents for two-
way channels were first studied in [7], using fixed block length
coding over AWGN channels at zero-rate. Here we consider
positive rates, and a parallel two-way DMC, where the channel
transition probability breaks into the product of two one-way
channels. This is a class of two-way channels relevant in time
or frequency division systems, and is one of few classes of
channels for which the two-way capacity region is known. We
consider VLC and note that feedback is automatically noisy
and shares the same channel as the data. This model thus
pinpoints the tradeoff between allocating resources to feedback
to help the other direction’s error exponent versus using them
to transmit one’s own message. We show that interaction –
using feedback – does improve the error exponent regions
achievable, in contrast to the two-way parallel capacity region
which is not improved by interaction [8].

II. PROBLEM STATEMENT AND CONTRIBUTIONS

A two-way DMC (p(y1y2|x1x2),X1,X2,Y1,Y2) is charac-
terized by a set of channel transition probability mass functions
p(y1y2|x1x2), and finite sets of input and output alphabets Xi
and Yi for the i-th terminal, where i = {1, 2} [8].
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Fig. 1. Two-way discrete memoryless channel.

In the two-way parallel DMC p(y1y2|x1x2) = p12(y2|x1) ·
p21(y1|x2). Thus, each communication direction is character-
ized by pi(3−i)(y3−i|xi), and the two directions may be viewed
as independent links operating in parallel. Terminals i and
3− i exchange, respectively, messages Mi, which are chosen
at random uniformly from the sets Wi = {1, 2, ...|Wi|}.

Definition 1: A two-way variable length code used to
exchange messages M1 ∈ W1 and M2 ∈ W2 over a two-
way parallel DMC (p12(y2|x1) · p21(y1|x2),X1,X2,Y1,Y2)
comprises two sets of encoding functions:

xi,n =Wi × Yn−1
i → Xi, (4)

and two sets of decoding functions:

φi,n : Yni →W3−i ∪ {0}, (5)

for n = 1, 2, · · · , and where 0 corresponds to an erasure.
Eq. (4) shows how channel inputs at time n may depend on
previously received channel outputs. We will refer to this as
interaction / adaptation.

Random variable ∆ corresponds to the time required to
transmit and successfully decode both messages. Following
[5], ∆ is the first n for which messages in both directions are
successfully decoded and not declared as an erasure

∆ = n, s.t.

{
(φ1n(yn1 ) · φ2n(yn2 )) > 0,

(φ1n
(yn

′

1 ) · φ2n
(yn

′

2 )) = 0, ∀n′ < n
. (6)

Denote the average communication rate for each
direction as R̄i(3−i). Then, let (Pe12

((
R̄12, R̄21

)
,∆
)
,

Pe21

((
R̄12, R̄21

)
,∆
)
) be the probability of error pair

simultaneously attained for messages M1,M2, where:

Pei(3−i)

((
R̄12, R̄21

)
,∆
)

=

max
m∈Wi

P
(
φ3−i

(
Y ∆

3−i
)
6= m |Mi = m was sent

)
. (7)

A rate pair
(
R̄12, R̄21

)
is called achievable if there exists

a sequence of two-way variable length codes for which
Pei(3−i)

((
R̄12, R̄21

)
,∆
)
→ 0 and

R̄i(3−i) ≤ lim
E[∆]→∞

log |Wi|
E[∆]

. (8)

The capacity region C of the two-way parallel DMC is the
convex hull of the set of achievable rate pairs (R̄12, R̄21). For
the parallel two-way channel, this corresponds to a rectangular
region determined by the capacity of each link [8] – interaction
does not increase the capacity region over the two one-way
capacities. As shown in Fig. 2, the capacity of the 1→ 2 and
1← 2 directions are denoted as C12 and C21, respectively.

Our goal is to characterize the achievable error exponents
for the probability of error pairs attained for a given average
transmission rate pair and transmission time ∆ as:

Definition 2: A pair of error exponents
(Evl12

(
R̄12, R̄21

)
, Evl21

(
R̄12, R̄21

)
) is called achievable

for a corresponding average rate pair
(
R̄12, R̄21

)
over a

two-way parallel DMC, if there exists a two-way VLC code
such that for large ∆, simultaneously:

− 1

E [∆]
logPe12

((
R̄12, R̄21

)
,∆
)
≥ Evl12

(
R̄12, R̄21

)
(9)

− 1

E [∆]
logPe21

((
R̄12, R̄21

)
,∆
)
≥ Evl21

(
R̄12, R̄21

)
. (10)

We note that each achievable average rate-pair is associated
with an error exponent region, formed by the union over all
the achievable error exponent pairs. We will show that the
capacity region can be divided into regimes where different
error exponents are achievable.

A. Contributions

We present an initial characterization of error exponents of
the two-way parallel DMC under VLC. First, we apply results
for the one-way channel under fixed block length coding
(FLC) for each direction without feedback, as comparison
points for the benefits of VLC and interaction / adaptation.
Let the random coding error exponent without feedback at
rate R be denoted as Er(R) [4, Section 5.6]. Then,

Proposition 1: An achievable error exponent pair, for a
communication rate pair (R̄12, R̄21), is:

Evl12(R̄12, R̄21) ≥ Er(R̄12), (11)
Evl21(R̄12, R̄21) ≥ Er(R̄21), (12)

for C012
< R̄12 < C12 and C021

< R̄21 < C21, where C0i(3−i)

is the zero-error capacity for each direction without feedback.
At rates R̄12 < C012 and R̄21 < C021 , zero error is achievable
and the error exponents are infinite.

The error exponents attainable at each terminal under VLC
may be upper bounded by Burnashev’s exponent [1] by
providing perfect output feedback to each terminal:

Proposition 2: The error exponent region of a two-way
parallel DMC operating at an average communication rate pair
(R̄12, R̄21) under VLC is bounded by:

Evl12
(R̄12, R̄21) ≤ EBurn(R̄12) (13)

Evl21
(R̄12, R̄21) ≤ EBurn(R̄21). (14)

The next proposition – our main contribution – is based on
the techniques proposed by Draper and Sahai in [5] for the
one-way DMC with noisy feedback. We will show how this
scheme may be adapted to support two-way communications, a
scenario for which the achievable error exponents have not yet
been studied. Draper and Sahai’s “Basic+Erasure” (BE) in [5]
is most suited to the two-way setting, since the backward link
can be tweaked to transmit messages in addition to feedback,
as we describe in Section III. Moreover, this scheme can
always achieve an error exponent that performs at least as well
as Forney’s (3), and that improves upon it when the feedback
channel is stronger than the forward channel. We assume, as
Draper and Sahai do, that the forward and backward links have
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fixed block length and variable length zero-error capacity with
and without feedback equal to zero2. The reliability function
of the scheme is presented in [5, Section 4.2, Eq. (19)] and
depends upon a parameter γ, defined in [5, Eq. (15)], which
establishes “high-rate” and “low-rate” regimes split by the
critical rate R̄∗ defined in [5, Eq. (16)].

In the two-way scenario, we characterize error exponents for
two average rate-pair regimes. The small constant parameter
δ > 0 characterizes the length of a synchronization anytime
code, as explained soon, see Fig. 3.
Rate pair regime (i): the complete capacity region

0 ≤ R̄12 ≤ (1− δ)C12 (15)
0 ≤ R̄21 ≤ (1− δ)C21 (16)

where terminals cooperate to achieve Forney’s error exponent
in each direction, as the rate of the anytime code used in
Draper and Sahai’s scheme that achieves the Forney error
exponent for noisy feedback may be made arbitrarily small;
Rate-pair regime (ii): the shaded area in Fig. 2, where the
(assumed to be weaker) 1→ 2 direction attains the BE scheme
error exponent, while the (assumed to be stronger) 1 ← 2
direction is able to send its own messages using Forney’s
technique with a decreased error exponent. This region is

R̄21 ≤ C21

(
1− δ − R̄12

R∗data12

+ (1− γ)
R̄12

R∗data12

)
,

for 0 ≤ R̄∗12 ≤ (1− δ)C12, (17)

where γ is adapted from [5, Eq. (15)] and is given by

γ = min

{
1,

(
(1− δ)

R∗data12

R̄12
− 1

)
C1

C21

}
, (18)

R̄∗12 is adapted from [5, Eq. (16)] and given by R̄∗12 =
C12(1−δ)
1+

C21
C1

and R∗data12
, as we will show later, is optimized for

each operation regime of the BE scheme (low and high rate
in the 1→ 2 direction) and given by

R∗data12
=

{
Eq. (25), 0 ≤ R̄12 ≤ R̄∗12

C12, R̄∗12 < R̄12 ≤ (1− δ)C12

. (19)

This leads to our main contribution:
Proposition 3: An achievable error exponent pair for the

two-way parallel DMC under VLC for an average rate-pair
(R̄12, R̄21) is:
Under rate-pair regime (i):

Evl12
≥ EForn

(
R̄12

1− δ

)
(20)

Evl21
≥ EForn

(
R̄21

1− δ

)
(21)

2The VLC zero-error capacity region of the two-way parallel is open to the
best of our knowledge. For rates inside this region the error exponents are
infinite. From [9, Theorem 3] note that the variable-length zero-error capacity
of a forward DMC with noisy feedback, CV L−NF

0 , is lower bounded by the
zero-undetected-error capacity [3] of the forward channel if both the forward
and backward channels have positive zero-undetected-error capacities.

Fig. 2. Two-way parallel DMC error exponent regimes, for C21 = 4C12.
Points Si for i = 0, ..., 10, denote rate pairs (R̄12, R̄21) along the diagonal
of the capacity region which are used in the numerical simulation of Fig. 4.

Under rate-pair regime (ii):

Evl12 ≥
Eforn

(
R∗

data12

)
+ min

{(
1 − δ − R̄12

R∗data12

)
C1, γ

R̄12
R∗data12

C21

}
1 + γ R̄12

R∗data12

+

(
1 − δ − R̄12

R∗data12

)
(22)

Evl21 ≥

Eforn

 R̄21

1−δ− R̄12
R∗data12

+(1−γ)
R̄12

R∗data12


1 + γ R̄12

R∗data12

+

(
1 − δ − R̄12

R∗data12

) . (23)

The error exponent in the weaker (1 → 2) direction
corresponds to that attained by the BE scheme for the one-
way channel in [5] and is thus greater than the sphere packing
upper bound determined by fixed block length coding. This
improvement comes at the price of a reduction in the error
exponent of the stronger direction (1 ← 2). This decrease
originates from 1) a large delay imposed by the other direction,
see Eq. (6); and 2) a reduced number of channel uses destined
for message transmission in the 1← 2 direction (as feedback
uses the rest). Thus, the instantaneous data rate Rdata21

is
higher than the average rate R̄21 yielding a smaller value when
(3) is evaluated.

III. TWO-WAY ACHIEVABILITY SCHEME CONSTRUCTION

We now present the scheme that achieves Proposition 3. Our
scheme extends Draper-Sahai’s one-way, with noisy feedback
scheme to support two-way communication. This involves
resolving two-way synchronization issues and how forward
and feedback resources may be effectively shared.

To address synchronization, we replicate their approach and
use anytime codes in both directions. Each terminal has a finite
number L distinct stacks of messages, which are sent from
one at a time in round-robin scheme using slots of N channel
uses. A round-robin scheduling of time slots of length N as
in [5, Fig. 3] is depicted in Fig. 3. A new transmission or
retransmission of the message may happen only after (L−1)N
channel uses. An anytime code is fed back to each terminal
during each message transmission, carrying an L bit message
of decoding decisions of the L stacks [5].

This code allows transmitters to receive an updated deci-
sions vector of all L stacks every time a message is trans-
mitted, and hence the reliability increases with L. Draper and
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Fig. 3. Two-way DMC achievability scheme block diagram for average rate-pair regimes (i) and (ii).

Sahai demonstrated that for L large enough [5, Eq. (31)], and
not a function of N , synchronization may be guaranteed. In
our scheme, each bit communicated using this anytime code
utilizes δN channel uses, thus, the rate of the anytime is zero
as long as δ is chosen to satisfy limN→∞

1
δN = 0.

A. Error Exponents for Rate-pair Regime (i)

In this regime, Forney’s error exponent (3) can be achieved
in each direction, transmitting 2βNRdata12 and 2βNRdata21 mes-
sages respectively, by using the block diagram on the left side
of Fig. 3. Note first that the transmission time ∆ = (1− δ)N ,
thus lim

N→∞
E[∆]
N ≈ 1. Each direction allocates an arbitrarily

small fraction δ of the time slot length N to the anytime
synchronization code. The remaining (1 − δ)N channel uses
are used for message transmission. This setting enables each
direction to achieve (3) since both sources learn the decoding
status of each message with increasing reliability that depends
on the choice of L, see [5, Section 4.2]. Finally, Eq.s (20)
and (21) in Proposition 3 result from direct application of (3),
evaluated at the instantaneous transmission rates.

B. Error Exponents for Rate-pair Regime (ii)

In this regime, we use the block diagram on the right side
of Fig. 3, which extends the BE scheme in [5] to support
two-way communication. Here, the weaker 1 → 2 direction
uses the BE scheme for 2λβNRdata12 messages , whereas the
stronger 1← 2 direction communicates using Forney’s erasure
decoding technique for 2[(1−λ)βN+(1−γ)λβN ]Rdata21 messages.
Only the weaker direction is suitable for the BE scheme as the
BE scheme requires a strong feedback channel (relative to the
forward channel) to operate, which is only possible for one of
the two directions. The scheme adaptation for two-way results
by noting that in [5, Sections 4.1-2, Figs. 2-3] we can allocate
up to (1 − λ)(1 − δ)N + (1 − γ)λ(1 − δ)N channel uses to
message transmission in the feedback direction (1← 2 in this
work): the first (1− λ)(1− δ)N using the time the feedback
channel remains idle, and the remaining (1 − γ)λ(1 − δ)N ,
by shortening the synchronization anytime code sent over the
feedback channel to an arbitrarily small fraction of length δN .

Since the BE scheme is directly applied for the 1→ 2 link
(see Fig. 3), the asymptotically approachable expected delay
is shown in Eq. (24), [5, Eq. (11) and Appendix].

lim
N→∞

E[∆]

N
= 1 + [γλ+ (1− λ)] (1− δ) . (24)

Also, note that a message from terminal 1, transmitted at
a given time u in this direction (m1u ) is divided into two
chunks, denoted by ma

1u
and mb

1u
, and that the hash message

returned from terminal 2 refers to the complete message m1u
.

1) Error exponent for the 1 → 2 direction: Assuming
this direction is weaker that the other, its error exponent is
determined by the BE scheme, [5, Section 4.2, Eq. (18)]
which we have adapted to Eq. (22). There are λβNRdata12

bits of data transmitted per time slot. Since the probability of
retransmission tends to zero as N becomes large, the average
rate limN→∞ R̄12 = λRdata12(1− δ), since β = 1− δ.

As [5] indicates, the denominator of (22) is determined
by (24), and the numerator comprises the contribution to
the probability of error of erasure decoding EForn(R∗data12

)
(“Erasure” part of the scheme), and a term related to the
contributions of a missed NACK, and one of a hash message
collision (“Basic” part of the scheme). Then, the BE scheme
is determined by finding the optimal value of R∗data12

such that
the largest Error exponent is obtained in each regime:

(i) The “High-rate” regime: R̄∗12 ≤ R̄12 ≤ (1 − δ)C12,
corresponds to the use of the Basic scheme [5, Eq. (14)]; The
largest error exponent is obtained setting R∗data12

= C12.
(ii) The “Low-rate” regime: 0 < R̄12 ≤ R̄∗12, attains the

largest error exponent for R∗data12
(R̄12) determined by:

R∗
data12

(R̄12) = argmax
R̄12≤Rdata12

≤(1−δ)C12

Eforn(Rdata12) + min
{

(1 − δ − R̄12
Rdata12

)C1, γ
R̄12
Rdata12

C21

}
1 + γ R̄12

Rdata12
+
(

1 − δ − R̄12
Rdata12

) . (25)

Note from (18) and λ = R̄12

(1−δ)Rdata12
, that both γ and λ

are optimized in (25) since they are functions of Rdata12 . This
optimization sets λ and γ to maximize the error exponent in
the weaker direction, and dictates the number of channel uses
remaining for message transmission in the opposite direction.

2) Error exponent for the 1← 2 direction: is characterized
by Forney’s erasure decoding [3]; Eq. (23) is obtained from ∆,
and EForn from (3). The latter is evaluated at an instantaneous
rate that is higher than the average communication rate R̄21,
as messages in the 1← 2 direction are transmitted using block
length (1− λ)(1− δ)N + (1− γ)λ(1− δ)N < N .
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IV. NUMERICAL SIMULATION

Fig. 4 presents a numerical evaluation of the error exponent
regions simultaneously achieved in both directions for the set
of rate-pairs S0 – S10 in the capacity region, as shown in Fig.
2. We evaluated a two-way parallel DMC consisting of two
BSC(pi) channels (each with a zero-error capacity of zero),
with parameters p1 = 0.215 and p2 = 0.000011 for directions
1 → 2 and 1 ← 2 respectively. Note C21 is about four times
the capacity of the C12. The rate axis in the three dimensional
plot has been normalized for both directions. For Rate-pair
Regime (i), Forney’s error exponent can be achieved in both
directions as illustrated in dark dotted blue. The solid magenta
line shows the BE error exponent for the Evl12

as in [5].

Fig. 4. Achievable error exponents in both directions. x-axis shows the
normalized channel capacity, and the y and z axes the error exponents of the
two directions. The black line above each line of Proposition 1 is the sphere
packing upper bound for each direction that lies below Forney’s bound. The
red circles indicate rate-pairs Si taken as shown in Fig. 2.

Note that for points S0 to S4, the 1 → 2 direction is able
to achieve the BE error exponent, while the 1← 2 direction’s
error exponent corresponds to Forney’s error exponent evalu-
ated at a higher instantaneous rate, therefore smaller than that
when both directions operate in regime (i), as is the case for
points S5 to S10. Thus, the 1→ 2 direction does not achieve
the BE exponent, and both achieve Forney’s error exponent.

The solid red line indicates all the simultaneously achieved
error exponent pairs for rate pairs on the diagonal from (0, 0)
to (C12, C21). These may be compared with the inner bounds
from Proposition 1 and the outer bounds from Proposition 2.

V. CONCLUSIONS

We have derived error exponent regions for the two-way
parallel DMC, which demonstrate that the use of VLC benefits
the error exponents of both directions, as they can simultane-
ously achieve Forney’s error exponent, thus beating fixed block
coding schemes at all rates. The error exponents achieved
by rate pairs in Rate-pair Regime (ii) show that under VLC,
the operating rate-pair determines whether interaction could

benefit the error exponent of the weaker direction at the cost
of a decreased error exponent for the stronger direction.

We note that Sato-Yamamoto’s scheme under VLC for
the one-way DMC with noisy feedback [6] exhibits a sig-
nificantly better performance than the Draper-Sahai scheme
under equivalent channels conditions. However, the Sato-
Yamamoto feedback coding strategy leaves no explicit room in
the feedback direction for message transmission in a two-way
scheme. Whether it can be adapted to the two-way scenario
successfully requires further research.

APPENDIX

Eq. (17) characterizes the average rate-pair regime (ii)
shaded area in Fig. 2. The shape of this sub-region can be
derived by noting that the error exponents for each direction
are connected through the number of channel uses assigned to
message transmission and feedback in the stronger direction.
This allocation depends upon the choice of parameters λ and
γ (see Fig. 3) and determined by R̄12 and R∗data. Observe that
R̄21 is constrained by R̄12 when the BE is used, since in the
numerator of (23), the argument of Eforn(R) cannot exceed
the channel’s capacity C21:

R̄21

1− δ − R̄12

R∗data12

+ (1− γ) R̄12

R∗data12

≤ C21. (26)

Solving this for R̄21 yields Eq. (17). This result implies that
the BE scheme can operate at rate R̄12 in the 1→ 2 direction,
only if the desired operation rate in the 1 ← 2 direction R̄21

satisfies (26). In the alternate case, Forney’s scheme must be
used in both directions, and the system would operate in Rate-
pair Regime (i). Fig. 2 was obtained by evaluating Eq. (17)
for 0 ≤ R̄12 ≤ (1 − δ)C12, by setting R∗data12

= C12 in the
high-rate regime, and using Eq. (25) (numerically evaluated)
for the low-rate regime.
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