
820 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012

Inner and Outer Bounds for the Gaussian Cognitive
Interference Channel and New Capacity Results

Stefano Rini, Daniela Tuninetti, and Natasha Devroye

Abstract—The capacity of the Gaussian cognitive interference
channel, a variation of the classical two-user interference channel
where one of the transmitters (referred to as cognitive) has knowl-
edge of both messages, is known in several parameter regimes but
remains unknown in general. This paper provides a comparative
overview of this channel model as it proceeds through the following
contributions. First, several outer bounds are presented: a) a new
outer bound based on the idea of a broadcast channel with de-
graded message sets, and b) an outer bound obtained by trans-
forming the channel into channels with known capacity. Next, a
compact Fourier–Motzkin eliminated version of the largest known
inner bound derived for the discrete memoryless cognitive inter-
ference channel is presented and specialized to the Gaussian noise
case, where several simplified schemes with jointly Gaussian input
are evaluated in closed form and later used to prove a number of
results. These include a new set of capacity results for: a) the “pri-
mary decodes cognitive” regime, a subset of the “strong interfer-
ence” regime that is not included in the “very strong interference”
regime for which capacity was known, and b) the “S-channel in
strong interference” in which the primary transmitter does not in-
terfere with the cognitive receiver and the primary receiver expe-
riences strong interference. Next, for a general Gaussian channel
the capacity is determined to within one bit/s/Hz and to within a
factor two regardless of the channel parameters, thus establishing
rate performance guarantees at high and low SNR, respectively.
The paper concludes with numerical evaluations and comparisons
of the various simplified achievable rate regions and outer bounds
in parameter regimes where capacity is unknown, leading to fur-
ther insight on the capacity region.

Index Terms—Broadcast channel with degraded message sets,
capacity in the primary decodes cognitive regime, capacity for the
Z-channel in strong interference, capacity to within one bit, ca-
pacity to within a factor of two, cognitive interference channel,
inner bound, outer bound.

I. INTRODUCTION

A well studied channel model inspired by the newfound
abilities of cognitive radio technology and its poten-

tial impact on spectral efficiency in wireless networks is the
cognitive radio channel [4]. The cognitive radio channel is
also referred to as the interference channel with unidirectional
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cooperation [5], the interference channel with degraded mes-
sage sets [6], or the cognitive interference channel [7]. This
channel consists of a two-user interference channel [8] where
one transmitter-receiver pair is referred to as the primary user
and the other as the cognitive user. The primary transmitter has
knowledge of one of the two independent messages to be sent,
while the cognitive transmitter has full, non-causal knowledge
of both messages, thus idealizing the cognitive user’s ability
to detect transmissions taking place in the network.1 Since
the cognitive transmitter can “broadcast” information to both
receivers, the capacity of the cognitive interference channel
contains features of both the interference and the broadcast
channel [10].

A. Past Work

Capacity results. The cognitive interference channel was
first posed in an information theoretic framework in [4], where
an achievable rate region (for general discrete memoryless
channels) and a outer bound based on a broadcast channel idea
(in Gaussian noise) were proposed. The first capacity results
were determined in [11], [6] for a class of channels with “weak
interference” at the primary receiver. In this regime, capacity is
achieved by having the cognitive transmitter pre-code against
the interference created at its receiver, while the primary re-
ceiver treats the interference from the cognitive transmitter as
noise. Capacity is also known in the “very strong interference”
regime [12]. In this regime, capacity is achieved by having both
receivers decode both messages as in a compound multiple
access channel. In [13, Th. 7.1], we showed that the outer
bound of [6] is achievable in the “better cognitive decoding”
regime, which includes both the “very weak interference” and
the “very strong interference” regimes.
Outer bounds. An outer bound for a general cognitive in-

terference channel was derived in [14, Th. 4] using a technique
developed for the general broadcast channel in [15]. Both the
“weak interference” outer bound of [6] and the “strong inter-
ference” outer bound of [12] may be derived by loosening [14,
Th. 4]. Although the outer bound in [14, Th. 4] is the tightest
known, it is difficult to evaluate because it contains three
auxiliary random variables for which no cardinality bounds
are given on the corresponding alphabets. Moreover, for the
Gaussian channel, the “Gaussian maximizes entropy” property

1Although the assumption of full, non-causal knowledge of the primary user’s
message at the cognitive transmitter might not be practical, the simplicity of the
resulting model leads to closed form results and provides powerful insight on
the role of unilateral cooperation among the users. The more practical scenario
of causal unilateral cooperation may be studied in the framework of the inter-
ference channel with generalized feedback (see [9] and references therein), but
is outside the scope of this work.
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[16] alone does not suffice to show that jointly Gaussian inputs
exhaust the outer bound. For these reasons, in [13, Th. 4.1] we
proposed an outer bound that exploits the fact that the capacity
region only depends on the conditional marginal distributions
of the outputs given the inputs (as for broadcast channels [17])
since the receivers do not cooperate. The resulting outer bound
does not include auxiliary random variables and every mutual
information term involves all the inputs (like in the cut-set
bound [16]) and thus may be evaluated for general channels
including the Gaussian channel. The bound in [13, Th. 4.1] was
shown to be tight for a class of semi-deterministic cognitive
interference channels with a noiseless output at the primary
receiver.
Achievable rate regions. Different achievable schemes have

been proposed for the cognitive interference channel which in-
clude features originally devised for the interference channel
and for the broadcast channel, such as rate splitting, superpo-
sition coding, binning and simultaneous decoding. The scheme
of [18] generalized the “weak interference” capacity achieving
scheme of [6] bymaking part of the cognitive message common.
The same rate splitting idea was used in [14] along with a more
elaborated binning operation. The region in [19] introduced a
binning scheme inspired by Marton’s achievable rate region for
a general broadcast channel [20]. This feature was further gen-
eralized in [21] and in [1] where more refined binning and su-
perposition steps were added in the cognitive encoding process.
Given the different encoding choices, a comparison of the dif-
ferent achievable schemes is often not straightforward. In par-
ticular, despite possible simplifications of the original scheme
in [4] as described in [22], no region was shown to conclusively
encompass [4], or the larger region of [23], until recently. A
comparison of all the transmission schemes proposed in the lit-
erature was presented in [13], in which we showed that our re-
gion in [13, Th. 5.1] is provably the largest known achievable
rate region to date.
Capacity to within a constant gap. While the capacity re-

gion remains unknown for a general channel, in [7] we demon-
strated achievable rate regions which lie within 1.87 bits/s/Hz
for any real-valued Gaussian cognitive interference channel.We
derived this constant gap result by using insights from the high
SNR deterministic approximation of the Gaussian cognitive in-
terference channel [24], a deterministic model that captures the
behavior of a Gaussian network for large transmit powers [25].
Z-channel. The special case where the cognitive transmitter

does not create interference to the primary receiver is called the
Z cognitive interference channel; inner and outer bounds when
the cognitive-primary link is noiseless are obtained in [26], [19].
The Gaussian causal case is considered in [19], and is related to
the general causal cognitive [27], [9]. For the case where the
primary transmitter does not create interference to the cogni-
tive receiver (also known as the S-channel) capacity is known
in “weak interference” [11], [6]. For the “strong interference”
regime, independently and concurrently to the submission of
the authors’ conference papers [2], [28] on the capacity of the
Gaussian Z-cognitive interference channel, similar results ap-
peared in the online work [29], [30].

B. Contributions

In this work, we focus on theGaussian cognitive interference
channel in a comprehensive and comparative manner. In partic-
ular, our main contributions are:
1) We evaluate the outer bound of [13, Th. 4.1] for the
Gaussian channel. We show that it unifies the previously
proposed outer bounds for the “weak interference” and the
“strong interference” regimes of [6] and [14], respectively.

2) We derive a new outer bound based on the broadcast
channel with degradedmessage sets. The capacity region
of the Gaussian MIMO (multiple-input multiple-output)
broadcast channel with degraded message sets is an outer
bound for the cognitive interference channel in “strong in-
terference”. We show that the new bound may be strictly
tighter than the “strong interference” outer bound of [14].

3) Derive a new outer bound by transformation or in-
clusion into channels with known capacity. We deter-
mine the conditions under which the capacity region of a
Gaussian channel is contained in that of a channel with
known capacity. The capacity of the latter channel thus
provides an outer bound for the former.

4) We specialize the largest known inner bound of [13,
Th. 5.1] to the Gaussian channel. We first present a
compact Fourier–Motzkin eliminated version of our orig-
inal achievable rate region (provably the largest known to
date). We utilize this as a unified framework to derive and
compare various achievable schemes for specific jointly
Gaussian input. These schemes are used to show achiev-
ability in our capacity results and numerical comparisons
with outer bounds.

5) We prove a new capacity result for the “primary de-
codes cognitive” regime. This regime is a subset of the
“strong interference” regime that is not included in the
“very strong interference” regime for which capacity was
known [12]. In this regime capacity is achieved by having
the primary receiver decode the message of the cognitive
user in addition to its own message, as the name suggests.

6) We prove a new capacity result for the S-channel in
strong interference. In the S-channel the primary trans-
mission does not interfere at the cognitive receiver. For
this channel we show the achievability of our outer bound
based on the capacity of the broadcast channel with de-
graded message sets.

7) We show capacity to within one bit/s/Hz and to within a
factor two. These two results characterize the capacity re-
gion of the Gaussian channel at high and low SNR, respec-
tively. To this end, we use a transmission scheme inspired
by the capacity achieving scheme for the semi-determin-
istic cognitive interference channel of [13, Th. 8.1]. The
multiplicative gap is shown by using a simple time sharing
argument between achievable rate pairs.

8) We provide insights on the capacity region of the
Gaussian channel for the regimes in which capacity
is still unknown. We do so by showing that very simple
transmission strategies can achieve capacity to within a
constant gap for large sets of parameters. We conclude by
showing that a constant gap result may alternatively be
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proved by trading off interference pre-coding at the cog-
nitive encoder and interference decoding at the primary
receiver.

C. Paper Organization

The rest of the paper is organized as follows. Section II
formally defines the cognitive interference channel model
and summarizes known results for the Gaussian channel.
Section III presents new outer bounds for the Gaussian channel.
Section IV gives a compact Fourier–Motzkin eliminated ver-
sion of the largest known achievable region and specialize it to
the Gaussian noise case, where several simplified schemes with
jointly Gaussian input are evaluated in closed form. Section V
proves the two new capacity results. Section VI characterizes
the capacity of the Gaussian channel to within one bit/s/Hz
and to within a factor two. Section VII shows some relevant
numerical results. Section VIII concludes the paper. Most of
the proofs may be found in the Appendixes.

II. GAUSSIAN CHANNEL MODEL AND KNOWN RESULTS

A. Notation

We use the following convention:
• The symbol indicates that the random
variable (RV) is a complex-valued proper Gaussian RV
with mean and covariance .

• We define for .
• We define for .
• We define for .
• We use to denote the set of natural numbers from
to .

• The notation to indicate that the expression is
obtained from with the assignment of variables given in
equation number .

• The notation indicates that the expression (usu-
ally on the right hand side of) equation number is smaller
or equal than the expression (usually on the right hand side
of) equation number .

• For an integer , the symbol indicates the length-
vector .

• For the plots, the logarithms are in base 2, i.e., rates are
expressed in bits/s/Hz.

B. General Memoryless Cognitive Interference Channel

A two-user InterFerence Channel (IFC) is a multiterminal
network with two input alphabets and , two output
alphabets and , and a channel transition probability

for all
. Each transmitter , wishes

to communicate a message , uniformly distributed on
, to receiver in channel uses at rate . The two

messages are independent. In the classical IFC, the two trans-
mitters operate independently having no knowledge of each
others’ messages. Here we consider a variation of this setup
assuming that transmitter 1, in addition to its own message, also
knows the message of transmitter 2 prior to transmission. We

Fig. 1. Gaussian cognitive interference channel (G-CIFC).

refer to transmitter/receiver 1 as the cognitive pair and to trans-
mitter/receiver 2 as the primary pair. This model is commonly
known as the Cognitive InterFerence Channel (CIFC).
The CIFC is an idealized model for the unilateral source

cooperation of transmitter 1 with transmitter 2. The receivers
however do not cooperate. This implies that the capacity re-
gion of the CIFC, similar to the broadcast channel (BC) [17],
only depends on the output conditional marginal distributions

and , and not on the output joint marginal
distribution .
A non-negative rate pair is achievable if there exist

a sequence of encoding functions

and a sequence of decoding functions

such that the probability of error satisfies

The capacity region is defined as the convex closure of the re-
gion of achievable -pairs [16].

C. Gaussian CIFC

A Gaussian CIFC (G-CIFC) in standard form (see
Appendix A) is described by the input/output relationship

(1a)

(1b)

where the channel gains and are complex-valued, constant,
and known to all terminals, the channel inputs are subject to the
average power constraint

(1c)

and the channel noise . Since the
capacity only depends on the output conditional marginal dis-
tributions, the correlation coefficient among and is irrel-
evant. The capacity of the channel in (1) is indicated in the rest
of the paper by . A graphical representation of
a G-CIFC is found in Fig. 1.
A G-CIFC is said to be a
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• Z-channel if and referred to as the Z-G-CIFC. In
this case the primary decoder does not experience interfer-
ence from the cognitive transmitter. Capacity is given by

The Z-G-CIFC is a channel with “weak interference”
for which capacity is known [11], [6].

• S-channel if and referred to as the S-G-CIFC. In
this channel the cognitive decoder does not experience in-
terference from the primary transmitter. For this channel
capacity is only known in “weak interference”
[11], [6].

• Degraded channel if . In this case one channel
output is a degraded version of the other. In particular, in
“strong interference” is a degraded version of
since

for independent of everything else.
Similarly, in “weak interference” is a de-
graded version of . Capacity is known in “weak inter-
ference” [11], [6].

D. Known Results for the G-CIFC

The capacity of the G-CIFC is not known in general. However
some capacity results exist, as summarized next.
Theorem II.1: “Weak interference” capacity of [6, Lemma

3.6] and [11, Th. 4.1]. If

“ ”

(2)

the capacity is

(3a)

(3b)

taken over the union of all .
Theorem II.2: “Strong interference” outer bound of [14,

Th. 4]. When

“ ”

(4)

the capacity is included into the region
defined as

(5a)

(5b)

taken over the union of all .
Theorem II.3: “Very strong interference” capacity of

[12, Th. 6] extended to complex-valued channels (see
Appendix B). When

“ ”

(6)

the capacity coincides with the outer bound
in (5) of Theorem II.2.

A plot of the capacity results of Theorem II.1 and Theorem
II.3 for and is depicted in Fig. 2. The channel
gains and for which capacity is known are shaded, while
those for which capacity is unknown are white; in these cases
capacity is known to within a constant gap [7] as further elabo-
rated on in Section VI.
Remark on naming convention. We note that our naming

convention is not entirely consistent with past uses of the term
“strong/weak interference”. Here, as in our previous work on the
CIFC [13], we use “strong/weak interference” to denote regimes
inspired by similar results for the IFC under which we may
obtain either a tighter or simpler outer bound for the channel
of interest, and use the terms “very strong/very weak” to de-
note regimes in which additional conditions (therefore forming
subsets of the “strong/weak” regimes) are imposed on top of
the “strong/weak” conditions that allow these outer bounds to
be achieved. We note that this distinction between “weak” and
“very weak” is not needed at this point for the G-CIFC.

III. OUTER BOUNDS

In this section we prove several outer bounds.
1) First we evaluate the outer bound of [13, Th. 4.1] for the
Gaussian channel and show that it coincides with the outer
bounds of Theorem II.1 and Theorem II.2 in “weak”
and “strong interference” , respectively.

2) Then we tighten it by using the observation of [4] that the
capacity region of a G-CIFC is included into the capacity
region of the Gaussian MIMO BC obtained by allowing
full cooperation among the transmitters. We further tighten
the outer bound in “strong interference” , where
we show that the capacity region of a Gaussian broadcast
channel with degraded message sets forms an outer bound
to the capacity of the G-CIFC.

3) Finally, we propose an outer bound based on enhancing
the original channel so as to transform it into a channel for
which capacity is known.

A. A Unifying Framework for Theorem II.1 and Theorem II.2

Our objective is to obtain an outer bound for
in the “strong interference” regime that improves on
the “strong interference” outer bound in (5) of Theorem
II.2. Although the following theorem does not result in such a
bound, it is of interest because it provides a simple unifying
framework for Theorem II.1 and Theorem II.2, whose proof
techniques are quite different. On the one hand, the bound in
Theorem II.1 is valid for a general channel under the “weak in-
terference” condition in [6, Th. 3.7] and is inspired by the con-
verse for “more capable BC” [31]. On the other hand, the bound
in Theorem II.2 is valid for Gaussian channels with “strong
interference” only and is inspired by the converse of IFC in
“strong interference” [32]–[34]. We will show next that both
results may be derived within the framework proposed in [13].
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Fig. 2. Representation of known results on the capacity of the G-CIFC prior to this work for and . The set of channel
parameters for which capacity is known are shaded (corresponding to Theorem II.1 and Theorem II.3), while those for which capacity is still unknown are white
(in these cases capacity is known to within 1.87 bits [7]).

The proof of [13, Th. 4.1] uses the argument originally devised
by Sato for the BC [17] that, for channels without receiver co-
operation, the capacity only depends on the output conditional
marginal distributions. The bound in [13, Th. 4.1] is valid for a
general CIFC.
Theorem III.1: Unifying outer bound. The capacity region

is contained into the region

(7a)

(7b)

(7c)

taken over the union of all . In “strong interference”
the region in (7) reduces to Theorem II.2, and in “weak

interference” to Theorem II.1.
Proof: In [13, Th. 4.1], we showed that the capacity of a

general CIFC is contained in the region defined as

(8a)

(8b)

(8c)

taken over the union of all joint distributions and
where the sum-rate bound in (8c) can be tightened by choosing
the worst conditional joint distribution with
the correct conditional marginal distributions and

. For the G-CIFC this latter “same marginals” con-
dition amounts to optimizing the sum-rate with respect to the
correlation coefficient between the Gaussian additive noises,
that is, with respect to such that .
First we show that a proper-complex jointly Gaussian input

exhausts the region in (8). It is clear that the optimal input must
be zero-mean and meet the power constraint with equality. Let

parameterize the correlation coefficient between the inputs, that
is, such that . Let
be a zero-mean jointly Gaussian input with covariance matrix

(9)

By using the “Gaussian maximizes entropy” principle (see [16]
and also [35, Eq. (3.29)]), we conclude that, for a given input
covariance in (9), the region in (8) is outer bounded
by

(10)

This shows that a jointly Gaussian input is optimal in (8). Note
that the minimizing in (10) is

that is, the worst conditional marginal distribution is such that
one of or is the degraded version of the other when con-
ditioned on .
Finally, in “strong interference” the region in (7)

reduces to Theorem II.2 because the bound in (7b) is redundant
due to (7c), while in “weak interference” it reduces to
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Theorem II.1 because the closure of the region is determined by
the rates pairs for which (7a) and (7c) are met with equality as
argued in [36, Ex. 4.3].

B. BC-Based Outer Bounds

In this subsection we propose an outer bound that is tighter
than the “strong interference” outer bound in (5) in the
“strong interference” regime . The following observa-
tion is key: if we provide the primary transmitter with the cogni-
tive message, the G-CIFC becomes a Gaussian MIMO BC with
private rates (BC-PR), with two antennas at the transmitter and
one antenna at each receiver and where the input is subject to a
per-antenna power constraint, as originally used in [4, p. 1819].

Theorem III.2: BC-PR-based outer bound for the gen-
eral CIFC. The capacity of a general CIFC (not necessarily
Gaussian) is contained into the region

(11)

where is the capacity region (or an outer bound) for
the BC with private rates only obtained by allowing the trans-
mitters of the CIFC to fully cooperate and where is the
outer bound in [13, Th. 4.1] given in (8).

Proof: The theorem follows from the fact that allowing
transmitter cooperation enlarges the capacity region of the CIFC
and results in a BC.

For the G-CIFC, the closed form expression of is
given in [37] and is reported in Appendix C for completeness,
while is given in (7). The BC-based outer bound of
Theorem III.2 may not only be completely inside in (5) but
it can actually be capacity. As an example of this, consider the
G-CIFC with “strong interference” and with ;
this channel is equivalent to a (degraded) BC with input
whose capacity is [38]; thus we have

Theorem III.2 is valid for a general CIFC. It may be fur-
ther tightened for the Gaussian channel in “strong interference”

. As previously noted in [14, Sec. 6.1], in the “strong
interference” regime there is no loss of optimality in
having the primary receiver decode the cognitive message in ad-
dition to its own message. Indeed, after decoding , receiver
2 can reconstruct and compute the following estimate
of the receiver 1 output

(12)

where and independent of everything else.
Hence, if receiver 1 can decode from , so can receiver

2 from . For this reason the capacity region of the G-CIFC
for is unchanged if receiver 2 is required to decode both
messages. If we further allow the two transmitters to fully co-
operate, the resulting channel is a Gaussian MIMO BC with de-
graded message sets (BC-DMS), with per-antenna power con-
straint, where message is to be decoded at receiver 2 only
and message at both receivers.2 This implies that the bound
in Theorem III.2 may be tightened for the G-CIFC in “strong
interference” by using the capacity of the Gaussian
MIMOBC-DMS instead of the capacity of the Gaussian MIMO
BC-PR:

Theorem III.3: BC-DMS-based outer bound for the
Gaussian CIFC in strong interference. The capacity of a
G-CIFC in “strong interference” satisfies

(13)

where is the capacity of the Gaussian MIMO BC
with degraded message sets determined in [39] and is the
“strong interference” outer bound given in (5).
The analytical evaluation of the outer bound region in (11)

of Theorem III.2 and in (13) of Theorem III.3 is quite involved
in general. Our contribution here is to determine an expression
for the capacity region of the Gaussian MIMO BC-DMS that is
simpler than the one in [39]. In particular, in Appendix D we
prove the optimality of Gaussian inputs by directly using the
region of [40]. We further simplify the BC-DMS-based outer
bound so as to have only one free parameter and obtain closed
form expressions for the degraded G-CIFC and for the S-G-
CIFC.

Corollary III.4: BC-DMS-based outer bound for the
degraded G-CIFC in strong interference. For a degraded
G-CIFC with , the outer bounds of Theorem III.2
and of Theorem III.3 coincide and reduce to

(14a)

(14b)

(14c)

for . Moreover, the -bound from the MIMO
BC-DMS capacity region (in (14b)) is more stringent than the
-bound from the “strong interference” outer bound (from the

difference of (14c) and (14a)) if

(15)

Proof: See Appendix D.

Corollary III.5: BC-DMS-based outer bound for the S-G-
CIFC in strong interference. For a S-G-CIFC with and

the outer bound of Theorem III.3 is contained into the
region

2That the capacity of the general BC-DMS is an outer bound for the capacity
of the general CIFC in “strong interference” was also pointed out in the inde-
pendent work [29]. An alternative way to derive the outer bound of [29] for a
general CIFC is by loosening the outer bound in [14, Th. 4] by dropping [14,
eq. (33)] and letting in [14, Th. 4].
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(16a)

(16b)

(16c)

for . Moreover, the -bound from the MIMO
BC-DMS capacity region (from (16b)) is more stringent than
the -bound from the “strong interference” outer bound (from
the difference of (16c) and (16a)) if

(17)

Proof: See Appendix D.

C. Outer Bounds by Transformation

Further outer bounds for the G-CIFC may be obtained by
transforming the original G-CIFC into a different channel
for which capacity is known. In the transformed channel the
transmitters can reproduce the channel outputs of the original
channel: this ensures that the transformation enlarges the ca-
pacity region thus providing an outer bound for the original
channel.

Theorem III.6: Outer bound by channel transformation
or inclusion. The capacity region is contained
into the region

Proof: See Appendix E.

The outer bound in Theorem III.6 may be used to transform
the given G-CIFC into channels with known capacity regions.
In particular, through careful choice of the parameters
one may show that is included into those of
1) a S-G-CIFC: by imposing ,

2) a G-IFC in “weak interference”: by imposing ,
and

3) a G-CIFC in “very strong interference”: by imposing

and ,
since the “very strong interference” condition in (6) is
trivially verified by and .

This observation will be used in the numerical evaluations later
on, where we see that this outer bound is tighter than some of
the other individual bounds such as the “strong interference”
and BC-based outer bounds for certain rate pairs.

IV. INNER BOUNDS

In [13, Th. 4.1], we introduced the largest known achievable
rate region to date for the general CIFC, which employed new

transmission features that were crucial in proving capacity for
the semi-deterministic DM-CIFC [13, Sec. VIII]. The rate re-
gion of [13, Th. 4.1] is expressed before Fourier–Motzkin elim-
ination. The contribution here is to show that a specific choice
of a rate-split in [13, Th. 4.1] is without loss of generality (see
Appendix F); with this choice certain rate-bounds become re-
dundant which results in a manageable number of rate bounds
after Fourier–Motzkin elimination. We present our simplified
region in Theorem IV.1. We then use this as a unified frame-
work from which we derive few simple schemes that will be
used in the following sections to prove capacity results, con-
stant gap results as well as numerical evaluations.
As the Gaussian CIFC encompasses classical interference,

multiple-access and broadcast channels as special cases, the
achievable rate region of [13] incorporates a combination of
the transmission techniques devised for these channels. In
particular:
• Rate splitting. Both the primary and the cognitivemessage
are split into private and common parts, as in the Han and
Kobayashi scheme [41] for the IFC. Although rate-splitting
was shown to be unnecessary in the “weak interference”
[6] and “very strong interference” [5] regimes of (2) and
(6), respectively, it allows significant rate improvement in
the “strong interference” regime.

• Superposition coding. The cognitive common message
is superposed to the primary common message and parts
of the cognitive message are superposed to parts of the
primary message. A simple superposition of the primary
and cognitive messages (all common) is capacity achieving
in the “very strong interference” regime [5].

• Binning. Gel’fand–Pinsker coding [42], often referred to
as pre-coding or Dirty Paper Coding (DPC) for Gaussian
channels [44], allows a transmitter to “pre-cancel” portions
of the interference known to be experienced at the receiver.
In [13], binning is performed at the cognitive encoder for
both the common and the private message and it allows
for the cancellation of interference from the primary trans-
mitter.

• Broadcasting. In [13] we introduced the idea of having
the cognitive encoder transmit part of the primary private
message not transmitted by the primary encoder. The ad-
ditional primary message is superposed to the cognitive
common message and also pre-coded against the cognitive
private message. The incorporation of the broadcast fea-
ture at the cognitive transmitter was initially motivated by
the fact that in certain regimes, this strategy was shown to
be capacity achieving for the high-SNR linear determin-
istic approximation of the CIFC [24].

The achievable scheme may be described as follows:
• Rate splitting. The independent messages
and are rate split into the messages

, all independent and uniformly
distributed on , each encoded into the RV
(notice the same subscript), such that

.
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Fig. 3. Graphical representation of the coding scheme for the inner bound re-
gion in Theorem IV.1. The RVs for message 1 are in blue diamond boxes while
the RVs for message 2 are in red square boxes. A solid line among RVs indicates
that the RVs are superposed while a dashed line that the RVs are binned against
each other.

Fig. 4. Bound for in (29a) (bottom) and the bound for in (29b) (top) as
a function of , for .

• Primary encoder. Transmitter 2 sends that carries the
private message (“p” for private, “a” for alone) su-
perposed to the common message carried by (“c”
for common).

• Cognitive encoder. The common message of transmitter
1, encoded by , is binned against conditioned on
. The private message of transmitter 2, , encoded

by (“b” for broadcast) and a portion of the private
message of transmitter 1, , encoded as , are

binned against each other as in Marton’s region [20] con-
ditioned on . Transmitter 1 sends , which
is a function of all the RVs.

• Primary decoder. Receiver 2 jointly decodes (car-
rying (carrying (carrying ),
and (carrying ).

• Cognitive decoder. Receiver 1 jointly decodes (car-
rying ), (carrying ), and (carrying ).

• Analysis. The codebook generation, encoding, decoding
and the error analysis are provided in [13].

We now present a compact, Fourier–Motzkin eliminated version
of the achievable rate region in [13, Th. 4.1], whose graphical
representation is given in Fig. 3. In Fig. 3 the RVs for message
1 are in blue diamond boxes while the RVs for message 2 are
in red square boxes; a solid line among RVs indicates that the
RVs are superposed, while a dashed line that the RVs are binned
against each other.

Theorem IV.1: The achievable region [13, Th. 4.1] in com-
pact form. A non-negative rate pair that satisfies the
inequalities in (19) , shown at the bottom of the page, for some
input distribution is achievable for a
general CIFC.

Proof: The proof may be found in Appendix F.

An achievable rate region for the G-CIFC could
be obtained by considering a jointly Gaussian input

; however, this approach would
require the specification of a 6 6 covariance matrix, that is,
of 15 complex-valued correlation coefficients; such a region
is not tractable analytically because of the large number of
free parameters. For the sake of analytical tractability, we now
present few different subschemes obtained from the achievable
rate region in (19) by reducing the number of auxiliary RVs
to at most three. The resulting transmission schemes are used
in the rest of the paper for achievability proofs (for capacity
and constant gap results) and numerical evaluations. Table I
helps illustrate the different subschemes. It indicates, for each
subscheme, which auxiliary RVs are retained (by a in the
corresponding column), and where this subscheme is used in
the remainder of the paper.

A. Scheme (A). Achievable Scheme With and :
Capacity Achieving for the Degraded Broadcast Channel

Motivation: Achieve the capacity to within a finite gap in
some parameter regime by having transmitter 2 silent.

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)
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TABLE I
ROLE OF THE DIFFERENT ACHIEVABLE SCHEMES IN THE FOLLOWING SECTIONS

Consider the case where transmitter 2 is silent and transmitter
1 broadcasts to both receivers. In this case, the G-CIFC with

reduces to a degraded BC with input whose capacity
was determined in [43]. In particular, in “strong interference”

is a degraded version of and the maximum
achievable rate region when transmitter 2 is silent is

(20a)

(20b)

taken over the union of all , obtained from Theorem
IV.1 with (by recalling that for a SISO
BC, both superposition coding and Costa’s DPC are optimal).

B. Scheme (B). Achievable Scheme With and :
Capacity Achieving in the “Weak Interference” Regime

Motivation: Completeness.
In this scheme both messages are private and receiver 2 treats

the interference from transmitter 1 as noise while transmitter 1
performs Costa’s DPC [44] against the interference from trans-
mitter 2. This scheme achieves capacity in “weak interference”

, see Theorem II.1.

C. Scheme (C). Achievable Scheme With and :
Capacity Achieving in the Semi-Deterministic DM-CIFC

Motivation: Achieve the “strong interference” outer bound to
within a constant gap in the whole “strong interference” regime.
This achievable strategy is obtained by combining the pre-

vious two transmission schemes, scheme (A) and (B), and it
corresponds to the capacity achieving scheme for the semi-de-
terministic G-CIFC [13]. The achievable rate region is

(21a)

(21b)

(21c)

where Var indicates the variance of the RV and where the
region in (21) is obtained from Theorem IV.1 with
and

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

for . The assignment in (22) is inspired by the ca-
pacity achieving scheme for the semi-deterministic CIFC of
[13] where and are set to be equal to and , re-
spectively. The inequality in (21) is obtained by optimizing over

as detailed in Theorem VI.1.

D. Scheme (D). Achievable Scheme With and :
Capacity Achieving in the “Very Strong Interference” Regime

Motivation: Completeness.
This scheme achieves the “strong interference” outer bound

of Theorem II.2 under the “very strong interference” condition
of Theorem II.3 [12]. The achievable rate region is

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

obtained from Theorem IV.1 with and

(24a)

(24b)

(24c)



RINI et al.: INNER AND OUTER BOUNDS FOR THE GAUSSIAN COGNITIVE INTERFERENCE CHANNEL 829

(24d)

for some , as originally proposed in [12] for real-valued
G-CIFC.

E. Scheme (E). Achievable Scheme With and : Capacity
Achieving in the “Primary Decodes Cognitive” Regime

Motivation: Achieve capacity in the “primary decodes cog-
nitive” regime.
In this scheme the primary message is private while the cog-

nitive message is public and binned against the interference cre-
ated by the primary user at the cognitive decoder. The achiev-
able rate region is

(25a)

(25b)

(25c)

for

(26)

with

(27)

and where the region in (29) is obtained from Theorem IV.1
with and

(28a)

(28b)

(28c)

(28d)

Note that in (26) is non-negative if

.
It is easily shown that the region in (25) is equivalent to

(29a)

(29b)

(29c)

although the region in (29) appears to be smaller than (25). In the
following we refer to the formulation in (29) because the bound
in (29b) provides important insights on the capacity result of
Section V and the role of binning at the cognitive receiver in
the “strong interference” regime .

F. Scheme (F). Achievable Scheme With , , and

Motivation: Achieve capacity in the largest subset of the
"strong interference” regime.
This scheme is obtained by combining the previous two

schemes, scheme (D) and (E), and will be used for numerical
evalutions later on.

V. NEW CAPACITY RESULTS

We now present two new capacity results for the G-CIFC. The
first capacity result uses scheme (E) of Section IV-E to achieve
the “strong interference” outer bound in (5) in what we
term the “primary decodes cognitive” regime, a subset of the
“strong interference” regime that is not included in the “very
strong interference” regime of Theorem II.3, for which capacity
is already known. The second capacity result focuses on the
S-G-CIFC where we show that the BC-DMS-based outer bound
of Corollary III.5 is achieved by scheme (E) for a large set of
parameters where capacity was previously unknown.

A. Intermezzo

Although the two capacity results involve the same achiev-
able scheme (E), in the first result the cognitive transmitter per-
forms Costa’s DPC of the interference from the primary receiver
while, in the second result, no DPC is necessary. In scheme (E)
the pre-coding operation has an interesting effect on the rate re-
gion that we investigate in detail in Section V-B. Before pre-
senting the new results, we describe scheme (E) in more detail.
The achievable rate region in (25) is expressed as a function

of two parameters: and .
The parameter denotes the fraction of power that the cog-

nitive encoder employs to transmit its own message versus the
power to broadcast the primary message. For , transmitter
1 uses all its power to broadcast as in a virtual Multiple Input
Single Output (MISO) channel. When , transmitter 1 uti-
lizes all its power to transmit its common message .
The parameter controls the amount of interference (created

by at receiver 1) “pre-cancelation” achievable using DPC at
transmitter 1. With , no DPC is performed at transmitter 1
and the interference due to is treated as noise. On the other
hand, with for

with defined in (27), the interference due to at re-
ceiver 1 is completely “pre-canceled”, thus achieving the max-
imum possible rate . Different values of are not usually
investigated because, as long as the interference is a nuisance
(i.e., no node in the network has information to extract from the
interference), the best is to completely “pre-cancel” it by using
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Fig. 5. Representation of the capacity result of Theorem V.1 for a G-CIFC with and .

. However, influences not only the rate in
(29a), but also the rate in (29b). An interesting question is
whether , although it does not achieve the largest
possible , would improve the achievable rate region by suffi-
ciently boosting the rate . We comment on this question later
on in Section VII-D. At this point we make the following obser-
vation: is a concave function in , symmetric around

and with a global maximum at , while
is a convex function in , symmetric around and
with a global minimum at , where

Fig. 4 shows in (29a) and in (29b) as a function of ,
for , and . For
the chosen parameters, we observe a trade-off among the rates:

achieves the maximum for , but it achieves
close to the minimum for . This observation will help in un-
derstanding why scheme (E) does not perform well in certain
parameter regimes as will be pointed out in Section V-B.

B. New Capacity Results for the G-CIFC

Theorem V.1: Capacity in the “primary decodes cogni-
tive” regime. When and

(30a)

(30b)

the “strong interference” outer bound in (5) of Theorem
II.2 is achieved by scheme (E) in Section IV-E.
The “primary decodes cognitive” regime, illustrated in Fig. 5

in the -plane for and , covers parts

of the “strong interference” regime where capacity
was not known. It also shows that the scheme (E) is capacity
achieving for part of the “very strong interference” region in
(6), thus providing an alternative capacity achieving scheme to
superposition coding [12] [i.e., scheme (D)].

Proof: We compare the achievable rate with scheme (E) in
Section IV-E with the “strong interference” outer bound
in (5) of Theorem II.2. Scheme (E) for
and the assignment in (28) achieves and

(and (7b) is redundant). Therefore the “strong interfer-
ence” outer bound in (5) is achievable when

, that is, when

(31)

(32)

(33)

where the function in (33) is defined as

Clearly the condition in (33) is verified if for all we
have . is a quadratic function in
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Fig. 6. Condition (34) for different values of for a G-CIFC with and .

of the form with ,
which implies that is concave in . Hence, the inequality
in (33) is verified for every if it is verified for
and . The condition corresponds to (30b) while
the condition corresponds to (30a).

We conclude the section with the following remark. Pre-
vious capacity results for the G-CIFC imposed conditions on
the channel parameters that lent themselves well to “natural”
interpretations. For example, the “weak interference” condi-
tion of [6] in (2) suggests
that decoding at receiver 2, even after having decoded
the intended message in , would constrain the rate
too much, thus preventing it from achieving the interfer-
ence-free rate in (7a). The “very strong interference” condition

of [12] in (4) suggests that re-
quiring receiver 1 to decode both messages should not prevent
achieving the maximum sum-rate at receiver 2 given by (7c).
A similar intuition about the new “primary decodes cognitive”
capacity condition in (30) unfortunately does not emerge from
the proof of Theorem V.1.
To provide some insight on the achievability conditions of

Theorem V.1, we focus on the condition in (30a). When (30a) is
verified, scheme (E) of Section IV-E achieves the “strong inter-
ference” outer bound at the point corresponding to in (5);
to achieve more points on the “strong interference” outer bound
stricter conditions than (30a) alone are necessary; to achieve all
the points on the outer bound, both conditions (30a) and (30b)
must be verified. A representation of the region where the con-
dition in (30a) holds is depicted in Fig. 6 for the case and

with increasing , in which case (30a) becomes

(34)

We observe that, as increases, the region where the condition
in (34) is not verified shrinks. Indeed, as , the condition
in (34) is always verified unless the channel is degraded (i.e.,

). For a degraded channel with “strong interference”,
the primary receiver is able to reconstruct from once
has been decoded, as seen in (12). This means that may be

decoded at the primary receiver with no rate penalty for the cog-
nitive user. Under this condition, the scheme with a common
cognitive message and a private primary one seems a natural
choice, reminiscent of the capacity achieving scheme in the de-
graded BC. Despite this intuition, in a degraded channel with
large power approaches (similarly to the
case depicted in Fig. 4) and thus the maximum of the rate
in (29a) approaches the minimum of the rate in (29b). This
rate penalty for the -bound prevents us from achieving the
“strong interference” outer bound point for in (5) when

.
Another consideration provides further insight on the condi-

tion in (30a): take a channel where

(35)

Then, as in (35) and for , this condition
approaches the degraded condition . For this choice
of may be rewritten as so that the
-bound of (29b) for becomes

This observation reveals an interesting aspect of the RV .
is DPC-ed against with the objective to remove (some

of) the interference created by at . However, decoder 2 is
not interested in removing from (it must decode !).
Hence, for decoder 2, acts as “side information” when de-
coding . Now, both and contain , but for this spe-
cific choice of parameters is a noisy version of . This
shows why the scheme performs poorly close to the degraded
line: there is no gain for receiver 2 from having two observa-
tions (i.e., and of the intended message as they are
noisy versions of each other.

C. New Capacity Results for the S-G-CIFC

Theorem V.2: Capacity for S-G-CIFC. For an S-G-CIFC
(i.e., with



832 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012

(36)

or with

(37)

the BC-DMS-based outer bound of Corollary III.5 is achieved
by scheme (E) of Section IV-E.

Proof: When , capacity is known so we focus only
on the case . By setting in Theorem V.1 we
obtain that scheme (E) with achieves the “strong
interference” outer bound for

which is equivalent to (36).
Scheme (E) with achieves

(38a)

(38b)

(38c)

In this case the the BC-DMS-based outer bound of Corollary
III.5 may be achieved when the sum-rate bound in (16c) and
(38c) are both redundant. As pointed out in Corollary III.5, the
bound in (16c) is redundant when the condition in (15) holds.
Similarly, the sum-rate bound in (38c) can be dropped when (see
the equations at the bottom of the page), which corresponds to
(37).

Wewould like to conclude the section we a couple of remarks.
On extensions of Theorem V.2. The range of the parameter
for which the BC-DMS-based outer bound of Corollary III.5 is
achieved may be numerically shown to be strictly larger than
the range in Theorem V.2, as follows.
The outer bound of Corollary III.5 in (16) was derived by

outer bounding the actual MIMO BC-DMS capacity region in
(67) so as to have one free parameter only instead of two. For
notation convenience let denote the outer bound in (16)
and denote the outer bound in (67), where

.
One sees immediately by comparing with the achiev-

able rate region in (38), that the points on the closure of
for which is optimal are achievable, thus they are on the
closure of the capacity region. Corollary III.5 gives conditions
under which is optimal for all points on the closure of

. By imposing that is optimal for all points on
the closure of one can improve on Theorem V.2. One
possible way to do so is: the outer bound is optimal for
the S-G-CIFC in “strong interference” if

(39)

In fact, if the condition in (39) holds, the sum-rate in (67c) can be
dropped and the -bound in (67b) is maximum when ,
and the resulting region is therefore achievable by scheme (E)
in (38). Unfortunately, we have not been able to solve in closed
form the problem in (39).
The condition in (39) is an implicit characterization (no ex-

plicit, closed form result) for a class of S-G-CIFC which, as nu-
merically may be verified, holds for a larger range of the param-
eter than the one stated (in closed form) in (37).
On S-channels excluded by Theorem V.2. Theorem V.2 im-
plies that the capacity of the S-G-CIFC remains (analytically)
unknown for

As mentioned above, we were able to tighten this somewhat, but
not to the whole set of parameters given in (17) for which the
BC-DMS-based outer bound outperforms the “strong interfer-
ence” outer bound. The work [30] claims that a BC-based ap-
proach similar to the one of this paper suffices to prove capacity
in the whole set of parameters given in (17). We remind the
reader that our outer bound in Corollary III.5 was derived by
outer bounding the MIMO BC-DMS capacity region so as to
have one free parameter only. We have not attempted here to
work with the MIMO BC-DMS capacity region itself, besides
for (39), because it is defined as function of two free parameters
and it is therefore quite complicated to manipulate analytically.

VI. CAPACITY TO WITHIN A CONSTANT GAP

In the last couple of years a novel approach to the difficult
task of determining the capacity region of a multiuser Gaussian
network has been suggested. Rather than proving an equality
between inner and outer bounds, the authors of [45] (and ref-
erences therein) advocate a powerful new method for obtaining
achievable rate regions that lie within a bounded distance from
capacity region outer bounds, thereby determining the capacity
region to within a constant gap for any channel configuration.
Two measures are used to determine the distance between inner
and outer bounds: the additive gap and the multiplicative gap.
An additive gap corresponds to a finite difference between inner
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and outer bound, while a multiplicative gap corresponds to a fi-
nite ratio. The additive gap is useful at high SNR, where the dif-
ference between inner and outer bound is small in comparison
to the magnitude of the capacity region, while the multiplica-
tive gap is useful at low SNR, where the ratio between inner
and outer bounds is a more indicative measure of their distance.
In this section we show the capacity to within an additive gap

of one bit/s/Hz and to within a multiplicative gap of a factor
two. We also determine additional additive constant gap results
that suggest which strategies approach the “strong interference”
outer bound in different parameter regimes. Since the expres-
sions of the BC-PR-based outer bound of Theorem III.2 and
of the BC-DMS-based outer bound of Theorem III.3 involve
many parameters over which to optimize, it is not analytically
straightforward to determine conditions for achievability. For
this reason we restrict our attention to the “strong interference”
outer bound in (5) of Theorem II.2. These results are de-
rived for the complex-valued channel and rather than for the
real-valued channel as done in [7].

A. Additive Gap

Theorem VI.1: Additive gap. Capacity is known to within
one bit/s/Hz.

Proof: The capacity for weak interference was
determined in [6], so we only need to concentrate on the strong
interference regime . We show the achievability of the
“strong interference” outer bound in (5) to within a con-
stant additive gap using the scheme (C) of Section IV-C with the
assignment in (22). The assignment proposed in (22) is inspired
by the capacity achieving scheme for the deterministic CIFC in
[13], where we showed that setting , is op-
timal. In a noisy channel, it is not possible to choose .
We mimic this by setting . To the best
of the authors’ knowledge, this is the first gap result that uses a
binning-based achievable scheme.
Consider the achievable rate region in (21) and note that

The inequality in (21) follows by choosing

With and in (21) we have

(40a)

(40b)

with bounded as

as claimed. Notice that with , the -bound in (21b)
is equivalent to the sum-rate outer bound in (5b) and it is thus
redundant.

B. Multiplicative Gap

To prove the multiplicative gap result, we utilize a looser ver-
sion of Theorem III.1 that we present in the next lemma.

Lemma VI.2: “Piecewise linear strong interference” outer
bound. The outer bound of Theorem III.1 for is con-
tained in the region defined as

(41a)

(41b)

Proof: The bound in (41a) (respectively (41b)) is obtained
by considering the maximum value of (7a) (respectively (7c))
over .

The region in (41) has two Pareto optimal points:

(42)

(43)

The point A in (42) is on the boundary of the “strong interfer-
ence” outer bound region of Theorem II.2 while point B
in (43) has the same -coordinate as the point for in

, given by

(44)

but lies outside . However, it is easy to see that the two
points are no more than one bit away, i.e.,

.

Theorem VI.3: Multiplicative gap. For a Gaussian C-IFC,
the capacity is known to within a factor two.

Proof: The capacity for weak interference was
determined in [6], thus we only need to concentrate on the strong
interference regime .
For outer bound, we rewrite in (41) as

(45)

for . For achievability, we consider the
following TDMA strategy. The rate-point

(46)

is achievable by silencing the primary transmitter, while the
rate-point A in (42) is achievable by beam-forming. Hence, the
following region is achievable by time sharing
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TABLE II
FURTHER ADDITIVE GAP RESULTS

Fig. 7. Graphical representation of Theorem VI.3.

(47)

Themultiplicative gap is given by the smallest for which

that is

(48)

The left-hand-side of (48) is a linear function of and thus
has at most one zero. From this, it follows that the inequality in
(48) is verified for every if it is verified at
the boundary points of the interval. For , the inequality
is verified for while for it is verified
if ; thus the smallest for which (48) is verified for all
channels is .

A schematic plot of the proofs of Theorem VI.3 and Lemma
VI.2 is provided in Fig. 7. The green solid area represents the
achievable rate region with scheme (E) in (21), which lies to
within one bit/s/Hz from the “strong interference” outer bound
in (5) and illustrated by a solid blue line. The green striped area
represents the achievable rate region with time sharing in (47),
while the blue dotted line is the region in (47) multiplied by a
factor two, which contains the “piecewise linear strong interfer-
ence outer bound” in (41).

C. Additional Additive Gap Results

In this section, we provide additional additive gap results for
specific subsets of the parameter region. Our aim is to provide
insights on the relationship between inner and outer bounds for
the region where capacity is still unknown. In particular, this
shows that finite gap results may be guaranteed with a variety
of simple achievability schemes.

Corollary VI.4: The additive gaps between inner and outer
bound in Table II are achievable under the prescribed condi-
tions.

Proof: All the details are provided in Appendix G. In par-
ticular we consider four transmission strategies and show where
they achieve capacity to within a constant gap.
• Perfect interference cancelation. Scheme (E) with
Costa’s DPC achieves the “strong interference” outer
bound to within a constant gap in a larger parameter re-
gion than the “primary decodes cognitive” regime, where
it achieves capacity.

• Non-perfect interference cancelation. The scheme (E)
with a specific DPC strategy achieves the “strong interfer-
ence” outer bound to within a constant gap when

, i.e., the SNR is larger than the INR at the primary
receiver. The choice of the DPC’s coefficient differs from
Costa’s and it favors the decoding of the common cog-
nitive message at the primary decoder and enhances the
performance for channel parameters close to the degraded
G-CIFC.

• Cognitive broadcasting. When scheme
(A) achieves a constant gap from the outer bound in both
the “weak” and the “strong interference” regime. In this
scheme, the primary transmitter is silent and the cognitive
transmitter acts as a broadcast transmitter.

• Interference stripping. Scheme (D) achieves the “strong
interference” outer bound to within a constant gap in a
larger parameter region than the “very strong interference”
regime, where it achieves capacity. In this scheme both
decoders decode both messages as in a compound MAC.

VII. NUMERICAL RESULTS

We now revisit each of the previous sections and provide nu-
merical examples of the results therein. In the following we re-
strict ourselves to real-valued input/output G-CIFC so as to re-
duce the dimensionality of the search space for the optimal pa-
rameter values. For simplicity, in the figures “BC-based outer
bound” refers to the MIMO BC-DBS outer bound in Theorem
III.3.
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Fig. 8. The “strong interference” outer bound and the BC-based outer bound for the degraded G-CIFC.

Fig. 9. The “strong interference” outer bound and the BC-based outer bound for the S-G-CIFC.

A. Section III: Outer Bounds

In Section III, we introduced the tightest known outer bound
for a G-CIFC in “strong interference”, obtained as the intersec-
tion of the “strong interference” outer bound of Theorem II.2
and the BC-based outer bound of Theorem III.2. This outer
bound has a simple closed form expression for the degraded
G-CIFC and the S-G-CIFC: Figs. 8 and 9 present the result of
Corollaries III.4 and III.5, respectively, where the intersection
of the “strong interference” outer bound and the BC-based outer
bound for the degraded G-CIFC and the S-G-CIFC is derived.
Note that we chose two channels where the two bounds intersect
for some and neither bound strictly includes the
other. The maximum rate in the “strong interference” outer
bound and the BC-based outer bound for the S-G-CIFC are the
same: in this channel transmitter 2 does not influence the output
at receiver 1 and hence full receiver cooperation does not in-
crease the maximum attainable rate .
For a general G-CIFC the intersection between the “strong in-

terference” and the BC-based outer bound has no simple closed

form expression. Consequently, it is difficult to determine where
one dominates and find their intersection analytically. In Fig. 10
we show that the two bounds can intersect up to two times.
The outer bounds of Theorem III.6 are presented in Fig. 11

which shows that these outer bounds may be tighter than
either the “strong interference” or the BC-based outer bounds.
Unfortunately, in the examples we considered, we did not find
an instance where the outer bounds of Theorem III.6 were
tighter than the intersection of the “strong interference” and
the BC-based outer bound. Despite this, we believe that our
approach in transforming the channel provides a general, useful
tool to derive outer bounds for channels with cognition.

B. Section IV: Inner Bounds

In Section IV, we introduced the achievable rate re-
gion and derived five subschemes from this general inner bound:
in the following we plot these subschemes for the degraded
channel, the S-channel and a general G-CIFC. The “strong in-
terference” and the BC-based outer bounds are provided for
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Fig. 10. The “strong interference” outer bound and the BC-based outer bound for a general G-CIFC.

Fig. 11. Outer bounds of Theorem III.6 for special choices of transformations alongside the “strong interference” outer bound and the BC-based outer bound.

Fig. 12. Achievable schemes of Section IV for the degraded G-CIFC.

reference. Note that both the achievable rate regions and the
outer bounds are expressed as a function of one parameter only,

, that controls the amount of cooperation between the
cognitive and the primary transmitters.
We begin by considering the degradedG-CIFC in Fig. 12. The

scheme that yields the largest achievable rate region is scheme
(E) with the choice . Despite its superior perfor-
mance (to other presented schemes) we may analytically show

that this scheme cannot achieve either the “strong interference”
or the BC-based outer bound. Both schemes (A) and (B) treat
the interference as noise at receiver 1 and thus the maximum
may be achieved only by silencing transmitter 2. For this reason

as for these two schemes.
We next consider the S-G-CIFC in Fig. 13. The channel pa-

rameters are chosen to show that scheme (E), with the choice
, achieves the “strong interference” outer bound
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Fig. 13. Achievable schemes of Section IV for the S-G-CIFC.

Fig. 14. Achievable schemes of Section IV for a general G-CIFC.

for a subset of where the inequality in (33)
holds. The figure also shows how, in the S-channel, it is pos-
sible to achieve the outer bound for with scheme
(E) without DPC. This is possible only in this channel, since
does not influence and no rate loss occurs at the cognitive re-
ceiver by treating the interference as noise. Note that scheme
(D) performs the worst among all the achievable schemes: in
this scheme the cognitive receiver is required to decode both
messages—a very stringent constraint since does not contain
. In particular, when as in schemes (A)

and (B): this is so because may be achieved with
scheme (D) only for independent of .
A general G-CIFC is considered in Fig. 14. In this example,

scheme (E) with performs better than the scheme with
for small while the opposite is true for large

. This is the first instance in which we see that a single choice
of does not yield the largest inner bound: for small INR,
it is better for the cognitive user to treat the interference as
noise, while for large INR it is more advantageous to perform
Costa’s DPC. From Section III-B we know that, for ,
the primary receiver can decode the cognitive message with no
additional rate penalties; this may be observed by comparing
scheme (E) with Costa’s DPC and scheme (B). The primary
message is private in both schemes while the cognitive mes-
sage is common in scheme (E) and private in scheme (B). Since
the primary receiver can decode the cognitive message at no

cost, scheme (E) with Costa’s DPC achieves larger rates than
scheme (B). When no DPC is used in scheme (E),
the cognitive receiver observes an equivalent additive Gaussian
noise noise of variance : for this region rate is al-
ways bounded by and thus scheme
(B) outperforms scheme (E) with no DPC in the interval

.
Finally, in Fig. 15 we consider scheme (F) (not previously de-

fined but listed in Table I) which takes and to be
non-zero. As for scheme (C), this scheme is obtained by com-
bining the schemes (D) and (E). The achievable rate region we
consider is obtained from Theorem IV.1 with
and

(49a)

(49b)

(49c)

(49d)

(49e)

where and . This scheme unifies the
two schemes that achieve capacity in two different parameter
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Fig. 15. Achievable rate region of schemes (D), (E) and (F) for a general G-CIFC.

Fig. 16. The “primary decodes cognitive” region for different powers for a G-CIFC with and .

regimes of and hence is the scheme that achieves ca-
pacity in the largest subset of the “strong interference” regime

. The rate expressions with the assignment in (49)
are quite complex and are omitted here for sake of space. This
scheme unifies capacity achieving schemes in the “very strong
interference” and the “primary decodes cognitive” regimes. It
is possible that by unifying the two schemes, we may show ca-
pacity in a larger region than the union of the two regimes. Un-
fortunately determining the achievability conditions in closed
form is not straightforward as it requires the optimization of the
four parameters in (49). In Fig. 15, we show through numer-
ical evaluation that scheme (F) indeed achieves a larger region
than the union of the schemes (E) and (D). Whether this scheme
achieves capacity for a larger parameter region remains an open
question.

C. Section V: New Capacity Results

In Section V we determined new capacity results for the “pri-
mary decodes cognitive” regime both for a general G-CIFC and
the S-G-CIFC. In Fig. 16 we plot the “primary decodes cogni-
tive” regime in (30) for different transmitter powers
. Note that the “weak interference” and the “very strong inter-

ference” regimes do not depend on so their plot does not vary.

As the power increases, the “primary decodes cognitive” re-
gion expands from the line to cover a larger region
around the degraded line. Interestingly the “primary decodes
cognitive” regime intersects with the “very strong interference”
regime, thus showing that the “strong interference” outer bound
may be achieved with two different transmission schemes for
some channels.
In a similar fashion, Fig. 17 shows the capacity results of

Theorem V.2 for the case on the plane .
For equal transmitter powers, the conditions in (36) and in (37)
become

(50a)

(50b)

and these two asymptotic behaviors are clearly visible in Fig. 17.

D. Section VI: Capacity to Within a Constant Gap

In Theorem VI.1 we established the capacity of a general
G-CIFC to within one bit/s/Hz with a specific assignment in the
region of (21). This specific assignment was chosen tomimic the
capacity achieving scheme in the deterministic CIFC of [13] and
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Fig. 17. Capacity results for the S-G-CIFC for the case for .

Fig. 18. Achievable rate region of scheme (C) with the assignment of RVs in (22) and in (51).

partially optimized to yield the smallest gap. A larger achiev-
able rate region could be obtained by considering the scheme
(C) with the assignment of random variables

(51a)

(51b)

in (22). The region in (21) considers only the case
while the assignment in (51) parameterizes any covariance

matrix . Unfortunately, this scheme is
parametrized by five coefficients and the algebraic optimiza-
tion of the additional parameters is quite involved. Instead, in
Fig. 18, we may use numerical evaluations to investigate the
rate improvements that may be obtained with the more general
achievable scheme of (51).We consider a degraded G-CIFC and
show that this choice of RVs greatly improves on the result in
Theorem VI.1. With the assignment in (21) it is not possible to
approach the outer bound of Theorem III.4 for large . On the

other hand, with the more general formulation of the auxiliary
RVs in (51), it is possible to greatly reduce the distance between
inner and outer bounds.
Although the scheme (E) in Section IV-E does not achieve ca-

pacity outside the “primary decodes cognitive” regime, we next
show by numerical evaluation that scheme (E) is close to op-
timal for a general channel in “strong interference”, especially
when considering the union over all instead of the choice

. Fig. 19 shows the position of point

in the range , for a fixed , together with
the outer bound point C for . Under the “primary
decodes cognitive” condition, for every

. However, here we show a channel where the condition
in (30a) is not satisfied. In this case the choice
minimizes the distance of the -coordinate between D and C,



840 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012

Fig. 19. Plot of points and for , together with the “strong
interference” bound for the G-CIFC with parameters
and .

Fig. 20. Achievable rate region in (29) for and any
for the G-CIFC with parameters

and .

but it does not minimize the Euclidean distance between the two
points.
The rate improvements that may be obtained with any

are exemplified in Fig. 20. In this figure we plot the achiev-
able rate regions of (29) obtained for
and any . Unlike Fig. 14, the scheme for

strictly outperforms the scheme for ; the
choice not only includes the previous re-
gions but improves on the case as well. The inner
bound point for corresponds to point A in (42) and is
always achievable; the inner bound point for may
be achieved only for .

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented outer bounds, inner bounds, and
new capacity results for the Gaussian cognitive interference
channel. We derived the tightest known outer bound for the
cognitive interference channel in “strong interference,” which
is based on the capacity of the MIMO BC with degraded
message sets. We showed the achievability of this outer bound
in the subset of the channel parameter space which we term the
“primary decodes cognitive” regime and for some “S-channels

in strong interference.” We also proved capacity to within
both an additive and a multiplicative gap, thus providing an
approximate characterization of the capacity region in both
high and low SNR.
Despite the new results presented, the capacity of the

Gaussian cognitive interference channel remains unknown
in general. The achievable rate region of [13], which is
Fourier-Motzkin eliminated here, resulting in an easier to
understand region, provides a comprehensive inner bound that
may yield new capacity results: only some specific choices of
parameters for this region have been considered so far and we
expect that new results may be derived from this region. We
have shown that the tightest outer bound for the Gaussian cog-
nitive interference channel in “strong interference” is obtained
as the intersection of different bounds. The expression of this
outer bound does not have a simple closed form expression
except in some special cases such as the S and the degraded
channels. Even in these two subcases, capacity is not known
in general. Another interesting open question is how much
rate improvement is attainable with binning at the cognitive
encoder: we have shown how dirty paper coding may be used
to boost the rate of both the primary and the cognitive user;
whether non perfect interference cancellation achieves capacity
is still unknown.

APPENDIX A
THE G-CIFC IN STANDARD FORM

A general G-CIFC has outputs

where

and the inputs are subject to the power constraint

When and , we may scale the channel outputs
and redefine the inputs as follows:

(52a)

(52b)

(52c)

(52d)

(52e)
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(52f)

to obtain the equivalent channel outputs that have additive noise
of unit variance and unit gain on the direct link, as in (1). To
remind the reader that as defined in (52f) is always real-valued
and non-negative we use the notation .
When , transmitter 2 can only create interference

at receiver 1 and thus the channel reduces to a BC where the
cognitive transmitter is sending a message to each receiver. The
case in the general channel is equivalent to in
the channel in standard form.
The same in not true when . When , receiver

1 only receives interference and noise, hence the rate for user
1 is zero; this is possible in the channel in standard form with

. However, receiver 2 can get information from both
transmitters as in a MISO point-to-point channel and therefore
its rate depends on both and in the channel in standard
form. This means that one cannot set in the channel
in standard form and recover the case in the general
channel. In [11, Sec. II-B]], this fact is overlooked and the trans-
formation in (52) is claimed to be without loss of generality.

APPENDIX B
PROOF OF THEOREM II.3

For a complex-valued G-CIFC with , the
outer bound of Theorem II.2 is achievable by the su-
perposition coding only (scheme (D) of Section IV-D) if

for all input distributions [12],
that is, if

(53)

Let and . We have

for some angle . The condition in (53) is thus verified for all
if it is verified for as

claimed in Theorem II.3.

.

APPENDIX C
CLOSED FORM EXPRESSION FOR

FOR THE GAUSSIAN MIMO BC

The closed form expression of was obtained in
[37] and is presented here for completeness.

Consider an input covariance matrix defined as follows

(54)

The capacity region of a Gaussian MIMO BC with private
rates only with a per-antenna power constraint is given by [37]

where denotes the convex-hull operation, denotes the
union over all input covariance matrices in (54),

where is the DPC region for the encoding order
where user is pre-coded against the interference created by
the other user at its intended receiver, which is given by

and where, for

(55a)

(55b)

with

(56)
the region is given by

(57a)

(57b)

and is given by

(58a)

(58b)

The quantity , represents the fraction of power
used to send the cognitive message on antenna . The

requirement guarantees that the per-antenna
power constraints are verified.

APPENDIX D
PROOF OF COROLLARIES III.4 AND III.5
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A. Proof of Corollary III.4

When allowing full transmitter cooperation for a channel with
and , we obtain an equivalent degraded BC with

input and outputs

with and independent of everything else. The
input of the equivalent BC is subject to the power constraint

For this order of degradedness among the users, the capacity
region of the degraded BC with private rates equals the ca-
pacity with degraded message sets. In general

, but since here is a degraded version of , de-
coder 2 can decode the message of decoder 1 without imposing
any rate penalty to user 1, thus is achievable. This
implies .
The capacity region of the equivalent BC is [38]

(59a)

(59b)

taken over the union of all , i.e., that is
and in (58).

To intersect the region in (59) with the “strong interfer-
ence” outer bound in (5) of Theorem II.2 we equate the
-bounds in (59a) and (5a) to obtain

(60)

Notice that in (60) satisfies (the maximum value of
1 is obtained for and . By substituting from
(60) in (59b), we obtain the bound in (14b).
Let denote the right-hand-side of (5b) as a function

of . The BC-DMS-based outer bound is more stringent than
the “strong interference” outer bound if

as claimed in (15).
The capacity of the equivalent degraded BC may be achieved

both by using superposition coding and binning. An achievable
scheme inspired by the degraded BC and employing superposi-
tion coding is scheme (E) with . An achievable scheme
inspired by the degraded BC and employing binning coding is
scheme (B). Both schemes achieve the outer bound only in point
A in (42). The capacity region of the degraded CIFC in therefore
unknown in general it remains an interesting open problem.

B. Proof of Corollary III.5

To establish the result in Corollary III.5 we proceed as fol-
lows. Firstly, we prove that the capacity region of the Gaussian
MIMO BC-DMS may be obtained from the region in [40] by
considering jointly Gaussian inputs and auxiliary RV. Secondly,
we perform a partial optimization of the region in [40] in the
Gaussian case and obtain a looser outer bound that may be ex-
pressed as a function of a single free parameter. Finally, we
intersect this outer bound with the “strong interference” outer
bound in (5) to obtain the expression in (16).
The capacity region of the general BC-DMS is found in [40]

and is expressed as the union over all possible distributions of
the input and one auxiliary RV. A closed form expression of the
capacity region of the Gaussian MIMO BC-DMS is derived in
[39] and is expressed as the intersection of the capacity region
of a general BC-PR and an additional sum-rate constraint. Here,
we derive a simpler expression of the capacity region of the
Gaussian MIMO BC-DMS than [39]; we do so by showing that
we may restrict the union in [40] over all jointly Gaussian inputs
and auxiliary RV.
Consider the Gaussian MIMO BC-DMS defined as

(61)

where
• is a real-valued input vector of size subject to the
second moment constraint for some

,
• is a real-valued output vector of size received by
user ,

• is a fixed real-valued gain matrix imposed on user
. This is a matrix of size ,

• is a length- real-valued Gaussian random vector with
zero mean and covariance matrix .

As for the Gaussian MIMO BC-PR of [39], we consider real-
valued channels first. The extension to complex-valued chan-
nels is easily obtained by doubling the number of real dimen-
sions. Also, as for the Gaussian MIMO BC-PR of [39], we first
derive the capacity of a Gaussian MIMO BC-DMS for the case
where is square and invertible. We then argue that the case
for a general may be obtained by the series of channel trans-
formations in [37].
Theorem D.1: The capacity region of the Gaussian

MIMO BC-DMS in (61) with input covariance constraint
is

(62a)

(62b)



RINI et al.: INNER AND OUTER BOUNDS FOR THE GAUSSIAN COGNITIVE INTERFERENCE CHANNEL 843

(62c)

taken over the union of all jointly Gaussian and vectors of
size such that the input covariance constraint is satisfied.

Proof: The region in (62) was originally obtained in [40]
for a general BC-DMS and is expressed as the union over all
distribution . To prove the theorem we need to show that
only jointly Gaussian and need to be considered. First, we
notice that (62c) is always maximized by having Gaussian
with covariance by the “Gaussian maximizes entropy” prin-
ciple [16]. Since (62c) is maximized by Gaussian input, we have
to show that the region obtained by considering (62a) and (62b)
only is optimized by a jointly Gaussian and . To this end,
the points on the convex closure of the region with (62a) and
(62b) satisfy for some and

(63)

where indicates a zero-mean jointly Gaussian vector with
covariance . In (63), the notation indicates the differen-
tial entropy of the RV .
Next we show that it suffices to consider in (63)

rather than . The region in (62) is contained in the
triangular region

(64)

whose boundary point

is also in (62). Since (62) is convex and intersects (64) in , the
region in (62) cannot contain any rate point with tangent greater
than . Hence, there is no loss of generality in restricting in
(63) to the interval .
We now show that solution of the optimization problem in

(63), for , must be a jointly Gaussian by
using the extremal inequality of [46]. We first focus on chan-
nels where is square and invertible, then show
how this result may be extended to a general channel using the
perturbation techniques of [37]. With , square and
invertible, let denote the (non-zero) determinant of and
write

(65)

The result in [46, Th. 8] grants that the optimal solution of the
optimization problem in (65) is a Gaussian conditioned on
with , since for ; this is
possible if and are jointly Gaussian.We therefore conclude
that the region in (62) is exhausted by jointly Gaussian and
. Note that has the same dimension of the input .
Finally, the perturbation technique in [37, Section V-B] al-

lows us to extend this result to a general channel where in
not square or invertible. The derivation in [37, Sec. V-B] was
originally devised for the general BC-PR but it extends in a
straightforward manner to the BC-DMS since it solely relies on
the channel matrix and the covariance of the noise and not on
the message set.

Theorem D.1 shows that for the G-CIFC in (1) the Gaussian
MIMO BC-DMS , with the parameterization given
in (55), is

(66 )

(66b)

(66c)

taken over the union of all that satisfy (56).
For the S-G-CIFC , it is straightforward to see that

is optimal in (66), and the the outer bound simpli-
fies to

(67a)

(67b)

(67c)

taken over the union of all . Since the region
in (67) is still expressed as a function of two free parameters, we
further upper bound it by dropping the sum-rate bound in (67c)
and by choosing the that maximizes the -bound in (67b),
that is, ; we thus obtain that the region for
the S-G-CIFC is included into

(68a)

(68b)

taken over the union of all . By setting
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we have that the region in (68) may be rewritten as

(69a)

(69b)

taken over the union of all .
The BC-DMS-based outer bound of (69) is more stringent

than the “strong interference” outer bound in (5) if

as claimed in (17).

APPENDIX E
PROOF OF LEMMA III.6

Let be a good code for the channel
with parameters , where we note that we have left
complex but note that only its magnitude affects the capacity
region. Consider now the inputs

on a channel with parameters resulting in the out-
puts

(70a)

(70b)

for some . If we impose

(71a)

(71b)

(71c)

(71d)

(71e)

(71f)

the output of the channel may be reconstructed in
the channel since the latter is less noisy than the
former. This implies the relationship claimed in (18).

APPENDIX F
PROOF OF THEOREM IV.1

In [13, Th. 4.1] we showed that a non-negative rate pair
such that

(72a)

(72b)

is achievable for a general CIFC if

satisfies the inequalities in (73a–k), shown at the bottom of the
page, for some input distribution . Note
that we have used notation reminiscent of
that of [47].We first show that without loss of generality one can
take in (73). For notational convenience, let
indicate the region in (73), indicate the region in (73)
after dropping the rate constraints in (73g) and in (73h), and

indicate the region in (73) with . Note that
and are achievable while might

not be. In general .

(73a)

(73b)

(73c)

(73d)

(73e)

(73f)

(73g)

(73h)

(73i)

(73j)

(73k)
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The key observation here is that depends on
and only through their sum . By Fourier-
Motzkin elimination of the region on the subspace

for fixed binning rates we obtain

(74a)

(74b)

(74c)

(74d)

Next, we note that in the rate constraints in (73g)
and in (73h) with can be dropped without loss of
generality because they correspond to an error at receiver 2 on
the common message of user 1 and on a bin index, respectively.
However, in either case all the intended message indices at re-
ceiver 2 are correct. This means that in the rate con-
straints in (73g) and in (73h) with are not needed to
drive the probability of error to zero. By Fourier–Motzkin elim-
ination of the region on the subspace

for fixed binning rates we obtain the same
region as in (74). This shows that , that
is, that is without loss of generality in and
that the Fourier-Motzkin elimination of the region for
fixed binning rates is given by (74).
As a final step, we express the region in (74) as function of

and only by Fourier-Motzkin elimination of the binning rates
. We next parameterize the bounds in (73a),

(73b), and (73c) as

so that in (74) we can substitute

By eliminating from (74) we obtain

(75a)

(75b)

(75c)

(75d)

together with two redundant sum-rate constraints

The region in (75) is the same as the region in (19).

APPENDIX G
PROOF OF COROLLARY VI.4

In the following we use the fact that point in (43) is to
within one bits/s/Hz and a factor two from point C in (44). This
is the case as, for the additive gap, and

(76)

where we use the fact that has a maximum in
.

A representation of the “strong interference” outer bound and
the “piecewise linear strong interference” outer bound is shown
in Fig. 21. The “strong interference” outer bound coincides with
the “piecewise linear strong interference” outer bound at point A
and the largest distance between the two outer bounds is attained
between points B and C. This figure also introduces a new corner
point of the inner bound: point D, the inner bound point with
the largest rate when where will be
defined later on (see next page).
1) Perfect Interference Cancelation: In the proof of The-

orem V.1 we have seen that under condition (30a) it is possible
achieve point C in (44) with scheme (E) with Costa’s DPC. This
result may be used to show achievability of the “strong interfer-
ence” outer bound to within half a bit/s/Hz per real dimension.

Theorem G.1: If condition in (30a) holds, the “strong inter-
ference” outer bound of Theorem II.2 is achievable to within
half a bit/s/Hz per real dimension.

Proof: Under the condition in (30a), point C is achievable.
This point lies to within half a bit/s/Hz per real dimension from
the outer bound.

2) Non-Perfect Interference Cancelation: Although it is not
possible to achieve point C using scheme (E) and perfect in-
terference cancellation, it is possible to achieve this point to
within a bounded distance using non perfect interference can-
cellation in the strong interference and strong signal

regimes.

Theorem G.2: When and , the outer
bound of Theorem II.2 may be achieved to within 1.87 bits/s/Hz
per real dimension.

Proof: To prove this theorem we show the achievability
of point D in Fig. 21 which lies at a bounded distance from
point C using scheme (E) in (29) for . Fig. 21 shows the
different additive gaps between inner and outer bound points
in the following proof. If (29a) is tight there are two possible
scenarios: the corner point D is determined by 1) the intersection
between (29c) and (29a) or by 2) the intersection of (29b) and
(29a). We choose so that both (29a) and (29b) lie within a
finite distance from and respectively. The sum rate
bound (29c) does not depend on the choice of . We divide the
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Fig. 21. Graphical representation of the relationship between inner and outer bound for Theorem G.2, G.5 and G.5.

proof in two subcases .
Sub-case : When a gap of 1 bit per
dimension is achievable by having both transmitters transmit to
receiver 2 at rate , which we recall is given in (44). In this
case the distance along the rate is zero and on the rate is

. For let in
(29). The distance between inner and outer bound for is

where we have used the inequality . Similarly let-
ting (29b) hold with equality, we obtain

where we have used that the expression has a global maximum
in . The largest gap between the inner bound and point
B is thus bounded by and so
the overall gap between the specified achievable scheme of (29)
and the outer bound is within bits/s/Hz for a complex
valued channel.
Subcase : When a gap of 1 bit per

dimension is achievable by having transmitter 1 remain silent
(rate since in this case . When

let in (29). The gap for may be
bounded as

while that for the rate of transmitter 2 may be bounded as

(77a)

(77b)

(77c)

(77d)

(77e)

(77f)

where (77c) follows since the expression has a global maximum
for and (77d) follows since
for . Finally (77e) and (77f) follow since the
expression is monotonically increasing in and de-
creasing in . As in the subcase , the
maximum distance between points C and D is bounded by

so that the overall gap is
bounded by bits/s/Hz for a complex valued
channel.

3) Cognitive Broadcasting: The outer bound Thm II.1
is achievable in “weak interference”: the capacity achieving
scheme in this regime is scheme (B) in Section IV-B and it em-
ploys Costa’s DPC at the cognitive transmitter to “pre-cancel”
the known interference generated by the primary user. While
capacity is known in this regime, we show that the very simple
broadcast strategy of scheme (A) in Section IV-A achieves
capacity to within a constant gap from the outer bound when
the INR is larger than the SNR at the primary receiver (i.e.,

. When the INR is larger than the SNR at the
primary receiver, scheme (A) achieves a constant gap from
the outer bound in “strong interference” as well. Although the
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resulting gap does not improve on the result of Theorem VI.1,
this result suggests that, in a general scheme, rate improvement
may be obtained by having the cognitive transmitter send part
of the primary message.

Theorem G.3: When and , the outer
bound of Theorem II.1 may be achieved within 1 bit/s/Hz per
real dimension.

Proof: Consider the scheme (A) in Section IV-A for
. With , the channel reduces to a degraded BC with
input [43] and is a degraded version of , therefore

(78a)

(78b)

taken over the union over of all , is achievable. Then
since (3a) and (78a) are the same for every there is zero gap
for the rate . By considering the difference between (3b) and
(78b), the gap for the rate is bounded as

Theorem G.4: When and , the outer
bound of Theorem II.2 may be achieved within 1.5 bits/s/Hz
per real dimension.

Proof: Consider scheme (A) in Section IV-A for
and in (20). Then the gap for user 1 is

while the gap for user 2 (using and is

As shown in Fig. 21, the achievable point C in (44) is at most at
bits from the outer bound. By time sharing

between points A and C, we have an achievable rate region that
is at most at bits/Hz/s from the outer bound for
complex valued channels.

4) Interference Stripping: With interference stripping we
have:

Theorem G.5: When and ,
the outer bound of Theorem II.2 may be achieved within 1.5
bits/s/Hz per real dimension.

Proof: We consider scheme (D)’s performance in the
“strong interference” regime when . When
we set , it achieves the rate

Referring again to Fig. 21, the gap between points B and C may
be bounded as

We thus achieve a rate pair that lies within
bits/s/Hz of the outer bound for complex valued channel.
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