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History of (wireless) communications
Smoke signals Maxwell’s equations Marconi Detroit police

FM radio

State of communications ~ 1930s

• mostly analog 
• ad-hoc engineering, tailored to each application 

Big Open Questions

• is there a general methodology for designing 
communication systems?

• can we communicate reliably in noise?

• how fast can we communicate?

?
Information theory - what, why, when

A Mathematical Theory of 
Communication. Bell System Technical 
Journal, 27, 379–423 & 623–656, 1948.

What is 
information?

What is 
communication?

How fast can we 
communicate?

How much can 
we compress 
information?

RANDOMNESS
BITS

Information theory’s claims to fame

Source coding
• Source =  random variable

• Ultimate data compression limit is 

the source’s entropy Hmp3
jpgzip

Channel coding
• Channel =  conditional distributions

• Ultimate transmission rate is the 

channel capacity CGGGO
OOOO

ODDD
Turbo-codes

fading channel

Reliable communication possible ↔ H<C
Technology independent limits!

Information theory’s famous metrics

Entropy H(X)
• quantifies the amount of 

information, or randomness, in a 
source X


• Ultimate data compression limit is 
the source’s entropy H(X)

Source = random variable X, p(x)

Mutual information I(X;Y)
• quantifies how much knowledge of 

one of the random variables X,Y can 
tell you about the other


• Ultimate transmission rate is the 
maximal mutual information

X ➔ Channel p(y|x) ➔Y

Source vs. channel coding
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Source vs. channel coding

``Channel coding’’``Shannon theory’’

Source coding

Compression

Main result in source-coding/compression

• A source X which outputs source symbols i.i.d. according to the probability 
mass function p(x) may be compressed to H(X) bits/source symbol

Definition: The entropy H(X) of a discrete random variable X with pmf pX(x) is
given by

H(X) = �
�

x

pX(x) log pX(x) = �EpX(x)[log pX(X)]

Order these in terms of entropy Order these in terms of entropy



Entropy of a random variable H(X)

H(X) = �
�

x p(x) log2(p(x))

(A) entropy is the measure of average uncertainty in the random variable


(B) entropy is the average number of bits needed to describe the random 
variable


(C) entropy is measured in bits?


(D) 


(E) entropy of a deterministic value is 0
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About Chapter 4

In this chapter we discuss how to measure the information content of the
outcome of a random experiment.

This chapter has some tough bits. If you find the mathematical details
hard, skim through them and keep going – you’ll be able to enjoy Chapters 5
and 6 without this chapter’s tools.

Notation

x ∈ A x is a member of the
set A

S ⊂ A S is a subset of the
set A

S ⊆ A S is a subset of, or
equal to, the set A

V = B ∪A V is the union of the
sets B and A

V = B ∩A V is the intersection
of the sets B and A

|A| number of elements
in set A

Before reading Chapter 4, you should have read Chapter 2 and worked on
exercises 2.21–2.25 and 2.16 (pp.36–37), and exercise 4.1 below.

The following exercise is intended to help you think about how to measure
information content.

Exercise 4.1.[2, p.69] – Please work on this problem before reading Chapter 4.

You are given 12 balls, all equal in weight except for one that is either
heavier or lighter. You are also given a two-pan balance to use. In each
use of the balance you may put any number of the 12 balls on the left
pan, and the same number on the right pan, and push a button to initiate
the weighing; there are three possible outcomes: either the weights are
equal, or the balls on the left are heavier, or the balls on the left are
lighter. Your task is to design a strategy to determine which is the odd
ball and whether it is heavier or lighter than the others in as few uses
of the balance as possible.

While thinking about this problem, you may find it helpful to consider
the following questions:

(a) How can one measure information?

(b) When you have identified the odd ball and whether it is heavy or
light, how much information have you gained?

(c) Once you have designed a strategy, draw a tree showing, for each
of the possible outcomes of a weighing, what weighing you perform
next. At each node in the tree, how much information have the
outcomes so far given you, and how much information remains to
be gained?

(d) How much information is gained when you learn (i) the state of a
flipped coin; (ii) the states of two flipped coins; (iii) the outcome
when a four-sided die is rolled?

(e) How much information is gained on the first step of the weighing
problem if 6 balls are weighed against the other 6? How much is
gained if 4 are weighed against 4 on the first step, leaving out 4
balls?

66

12 balls weighing: 1 lighter or heavier

• Total information contained?


• Each weighing gives you how much information (ideally)?


• Number of weighings needed?


• Strategy?
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4.1: How to measure the information content of a random variable? 69

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ⋆ correspond to impossible outcomes.
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Examples of codes

What is H(X)?

What is the expected codeword length L(C)?

Decode 0110111100110 134213

1.75 bits1
2 log(2) +

1
4 log(4) +

1
8 log 8 +

1
8 log(8)

1.75 bits
1
2 ⇥ 1 + 1

4 ⇥ 2 + 1
8 ⇥ 3 + 1

8 ⇥ 3

Main result 1: data compression

L(C) = 



Main idea

• Code over n symbols (i.e. Xn
) rather than symbol-by-symbol

• as n�⇥ only certain “typical” sequences occur

• count the number of such “typical” sequences, each gets a codeword

• turns out there are about 2

nH(x)
“typical” sequences, each about equally likely,

so we need nH(X) bits to encode Xn
.

Strong versus Weak Typicality
!

• Intuition behind typicality?

Definition: weak typicality The typical set visually
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4.5: Proofs 81

✲

log2 P (x)
−NH(X)

TNβ

✻✻✻✻✻

0000000000000. . . 00000000000

0001000000000. . . 00000000000

0100000001000. . . 00010000000

0000100000010. . . 00001000010

1111111111110. . . 11111110111

Figure 4.12. Schematic diagram
showing all strings in the ensemble
XN ranked by their probability,
and the typical set TNβ.

The ‘asymptotic equipartition’ principle is equivalent to:

Shannon’s source coding theorem (verbal statement). N i.i.d. ran-
dom variables each with entropy H(X) can be compressed into more
than NH(X) bits with negligible risk of information loss, as N → ∞;
conversely if they are compressed into fewer than NH(X) bits it is vir-
tually certain that information will be lost.

These two theorems are equivalent because we can define a compression algo-
rithm that gives a distinct name of length NH(X) bits to each x in the typical
set.

4.5 Proofs

This section may be skipped if found tough going.

The law of large numbers

Our proof of the source coding theorem uses the law of large numbers.

Mean and variance of a real random variable are E [u] = ū =
∑

u P (u)u
and var(u) = σ2

u = E [(u − ū)2] =
∑

u P (u)(u − ū)2.

Technical note: strictly I am assuming here that u is a function u(x)
of a sample x from a finite discrete ensemble X . Then the summations∑

u P (u)f(u) should be written
∑

x P (x)f(u(x)). This means that P (u)
is a finite sum of delta functions. This restriction guarantees that the
mean and variance of u do exist, which is not necessarily the case for
general P (u).

Chebyshev’s inequality 1. Let t be a non-negative real random variable,
and let α be a positive real number. Then

P (t ≥ α) ≤ t̄

α
. (4.30)

Proof: P (t ≥ α) =
∑

t≥α P (t). We multiply each term by t/α ≥ 1 and
obtain: P (t ≥ α) ≤

∑
t≥α P (t)t/α. We add the (non-negative) missing

terms and obtain: P (t ≥ α) ≤
∑

t P (t)t/α = t̄/α. ✷

[Mackay pg. 81]

Bit sequences of length 100, prob(1) = 0.1

Most + least likely sequences 
NOT in typical set!!

How to count the # in the 
typical set?

Weak Law of Large Numbers + the AEP
Counting the # in the typical set

Properties of the typical set

60 ASYMPTOTIC EQUIPARTITION PROPERTY

where the second inequality follows from (3.6). Hence

|A(n)
ϵ | ≤ 2n(H(X)+ϵ). (3.12)

Finally, for sufficiently large n, Pr{A(n)
ϵ } > 1 − ϵ, so that

1 − ϵ < Pr{A(n)
ϵ } (3.13)

≤
∑

x∈A
(n)
ϵ

2−n(H(X)−ϵ) (3.14)

= 2−n(H(X)−ϵ)|A(n)
ϵ |, (3.15)

where the second inequality follows from (3.6). Hence,

|A(n)
ϵ | ≥ (1 − ϵ)2n(H(X)−ϵ), (3.16)

which completes the proof of the properties of A(n)
ϵ . !

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION

Let X1, X2, . . . , Xn be independent, identically distributed random vari-
ables drawn from the probability mass function p(x). We wish to find
short descriptions for such sequences of random variables. We divide all
sequences in Xn into two sets: the typical set A(n)

ϵ and its complement,
as shown in Figure 3.1.

Non-typical set

Typical set

∋
∋

A(n) : 2n(H +   ) elements

n:|    |n elements

FIGURE 3.1. Typical sets and source coding.

[Cover+Thomas pg. 60]
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Typical set contains almost 
all the probability!

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION 61

Non-typical set

Typical set

Description: n log |     | + 2 bits

Description: n(H +   ) + 2 bits∋

FIGURE 3.2. Source code using the typical set.

We order all elements in each set according to some order (e.g., lexi-
cographic order). Then we can represent each sequence of A(n)

ϵ by giving
the index of the sequence in the set. Since there are ≤ 2n(H+ϵ) sequences
in A(n)

ϵ , the indexing requires no more than n(H + ϵ) + 1 bits. [The extra
bit may be necessary because n(H + ϵ) may not be an integer.] We pre-
fix all these sequences by a 0, giving a total length of ≤ n(H + ϵ) + 2
bits to represent each sequence in A(n)

ϵ (see Figure 3.2). Similarly, we can
index each sequence not in A(n)

ϵ by using not more than n log |X| + 1 bits.
Prefixing these indices by 1, we have a code for all the sequences in Xn.

Note the following features of the above coding scheme:

• The code is one-to-one and easily decodable. The initial bit acts as
a flag bit to indicate the length of the codeword that follows.

• We have used a brute-force enumeration of the atypical set A(n)
ϵ

c

without taking into account the fact that the number of elements in
A(n)

ϵ
c is less than the number of elements in Xn. Surprisingly, this is

good enough to yield an efficient description.
• The typical sequences have short descriptions of length ≈ nH .

We use the notation xn to denote a sequence x1, x2, . . . , xn. Let l(xn)
be the length of the codeword corresponding to xn. If n is sufficiently
large so that Pr{A(n)

ϵ } ≥ 1 − ϵ, the expected length of the codeword is

E(l(Xn)) =
∑

xn

p(xn)l(xn) (3.17)

How many are in this set 
useful for source coding 

(compression)! 

Consequences of the AEP

By enumeration!

AEP and data compression

Surely log |X | is enough, but H(X) � log |X |.

Source vs. channel coding

Source Encoder Channel Decoder Destination
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Remove redundancy
Controlled adding of redundancy
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``Source coding’’``Compression’’
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Source vs. channel coding

``Channel coding’’``Shannon theory’’

Channel coding

Error-correcting codes



Communication system model

Source Encoder Channel Decoder Destination

Noise

What is the capacity of this channel?

Source Encoder Channel Decoder Destination

Message
Estimate of message

Intuitively Formally
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Channel capacity: a cute example
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Channel capacity: a cute example

AAA ! AB. 
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Channel capacity: a cute example

How to communicate reliably?
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C = log2(9) 
                    

Channel capacity: a cute example

Use these 9 symbols!



Capacity in general

• Reduce the rate so as to produce

Non-overlapping outputs!
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Inputs Outputs

Mathematical description of capacity

• Can achieve reliable communication for all transmission rates R:

R < C C0
R✓

R > C 

• BUT, probability of decoding error always bounded away from zero if 

C0
RX

Capacity: key ideas

• “non-confusable” inputs


• # ``non-confusable’’ inputs = channel’s capacity


• channel capacity depends on p(y|x)

Source Encoder Channel Decoder Destination

Message
Estimate of message

Point-to-point channel capacity

bits/channel useC = max
p(x)

I(X; Y )

1

“mutual information” !
between X and Y

I(X; Y ) =
∑

x,y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)

6

Source Encoder Channel Decoder Destination

Message
Estimate of message

Mutual information between 2 random variables: 
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2
log
�
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h (Nn(µ, K)) =
1

2
log ((2�e)n|K|)

I(X; Y ) =
↵

p(x, y) log

⌃
p(x, y)

p(x)p(y)

⌥

= H(X)�H(X|Y )

= H(Y )�H(Y |X)

C = max
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I(X; Y )
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X Y
Channel: p(y|x)

Mutual information between 2 random variables: 

(A) I(X;Y) is the reduction in the uncertainty about X due to knowledge of Y


(B) if X, Y are independent I(X;Y) = 0


(C) I(X;Y) is non-negative
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140 8 — Dependent Random Variables

H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 8.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.

8.2 Exercises

◃ Exercise 8.1.[1 ] Consider three independent random variables u, v,w with en-
tropies Hu,Hv,Hw. Let X ≡ (U, V ) and Y ≡ (V,W ). What is H(X,Y )?
What is H(X |Y )? What is I(X;Y )?

◃ Exercise 8.2.[3, p.142] Referring to the definitions of conditional entropy (8.3–
8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

◃ Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2 ] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?



Mathematical description of capacity

• Information channel capacity:

• Channel coding theorem says: information capacity = operational capacity
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• Operational channel capacity:

Highest rate (bits/channel use) that can 
communicate at reliably

What do you really mean by 

Highest rate (bits/channel use)  
that can communicate at reliably

?
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Channel coding theorem
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Key ideas behind channel coding theorem

• Allow for arbitrarily small but nonzero probability of error

• Use channel many times in succession: law of large numbers!

• Probability of error calculated over a random choice of codebooks

• Joint typicality decoders

• NOT constructive! Does NOT tell us how to code to achieve capacity!
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Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.7: Intuitive preview of proof 153

✲Z
-
Z
Y

✏✏✏✶
$$$%

...

✲✏✏✏✶
$$$%

✲✏✏✏✶
$$$%

✲✏✏✏✶
$$$%

I
H H

G
F

E E
D
C

B B
A

-
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -
Figure 9.5. A non-confusable
subset of inputs for the noisy
typewriter.

1
0

0 1

11
01
10
00

0
0
1
0
0
1
1
1

1111
0111
1011
0011
1101
0101
1001
0001
1110
0110
1010
0010
1100
0100
1000
0000

0
0
0
0

1
0
0
0

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

N = 1 N = 2 N = 4

Figure 9.6. Extended channels
obtained from a binary symmetric
channel with transition
probability 0.15.

How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ϵ > 0 and R < C, for large
enough N ,

No matter what ϵ and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ϵ.

the maximal probability of block error is zero, which is less
than the given ϵ.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.

Count the # non-confusable subsets!
[Mackay textbook]

Intuition for the binary symmetric channel
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How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ϵ > 0 and R < C, for large
enough N ,

No matter what ϵ and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ϵ.

the maximal probability of block error is zero, which is less
than the given ϵ.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ϵ > 0 and R < C, for large
enough N ,

No matter what ϵ and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ϵ.

the maximal probability of block error is zero, which is less
than the given ϵ.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ϵ > 0 and R < C, for large
enough N ,

No matter what ϵ and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ϵ.

the maximal probability of block error is zero, which is less
than the given ϵ.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.

x
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0
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P (y =1 |x=0) = f ;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f. 1

0

0 1

Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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P (y =0 |x=0) = 1 − f ;
P (y =? |x=0) = f ;
P (y =1 |x=0) = 0;

P (y =0 |x=1) = 0;
P (y =? |x=1) = f ;
P (y =1 |x=1) = 1 − f.

1
?
0

0 1

Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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P (y =F |x=G) = 1/3;
P (y =G |x=G) = 1/3;
P (y =H |x=G) = 1/3;
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Z channel. AX ={0, 1}. AY ={0, 1}.

x
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0
y P (y =0 |x=0) = 1;

P (y =1 |x=0) = 0;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f. 1

0

0 1

9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

[Mackay textbook]

In general
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Figure 9.7. Extended channels
obtained from a Z channel with
transition probability 0.15. Each
column corresponds to an input,
and each row is a different output.
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Figure 9.8. (a) Some typical
outputs in AN

Y corresponding to
typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
picture can be compared with the
solution to the noisy typewriter in
figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-

[Mackay textbook]

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
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typical inputs x. (b) A subset of
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figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-

Pick subset of typical X such that

➔

The channel coding theorem

Review Examples of Channel Channel Capacity Jointly Typical Sequences

Previous of the channel coding theorem

An average input sequence corresponds to about 2nH(Y |X ) typical output
sequences

There are a total of 2nH(Y ) typical output sequences

For nearly error free transmission, we select a number of input sequences
whose corresponding sets of output sequences hardly overlap

The maximum number of distinct sets of output sequences is
2n(H(Y )−H(Y |X )) = 2nI (Y ;X )
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