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History of (wireless) communications

Smoke signals

T

State of communications ~ 1930s

* mostly analog

Maxwell's equations Marconi
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* ad-hoc engineering, tailored to each application

Information theory - what, why, when

A Mathematical Theory of

Communication. Bell System Technical
Journal, 27, 379-423 & 623-656, 1948.
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Information theory’s famous metrics

~

Entropy H(X)

* quantifies the amount of
information, or randomness, in a
source X

+ Ultimate data compression limit is
the source’s entropy H(X)

Source = random variable X, p(x)

N

Mutual information I(X;Y)

« quantifies how much knowledge of

one of the random variables X,Y can
tell you about the other

« Ultimate transmission rate is the

maximal mutual information

X = Channel p(y|x) 2Y

Big Open Questions

* is there a general methodology for designing
communication systems?

* can we communicate reliably in noise?

* how fast can we communicate?

Information theory’s claims to fame

<~ N

Source coding Channel coding

* Source = random variable + Channel'=(gpnditional distributions
« Ultimate transmission rate is the

channel capacity C

« Ultimate data compression‘limit is
the source’s entropy H

Reliable communication possible <> H<C

Technology independent limits!

Source vs. channel coding
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Source vs. channel coding

Noise
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Decode signals, detect/correct errors
Remove redundancy

Controlled adding of redundancy Restore source

“Compression” “Source coding”

Source coding

Compression

Order these in terms of entropy
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Source vs. channel coding
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“Shannon theory” “Channel coding”

Main result in source-coding/compression

+ A source X which outputs source symbols i.i.d. according to the probability

mass function p(x) may be compressed to H(X) bits/source symbol

Definition: The entropy H(X) of a discrete random variable X with pmf py () is
given by

= px(@)logpx (x) = —Epy () [log px (X)]

Order these in terms of entropy
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Entropy of a random variable H(X)

(A) entropy is the measure of average uncertainty in the random variable

(B) entropy is the average number of bits needed to describe the random
variable

(C) entropy is measured in bits?

0 H(X) ==, p(z)logy(p(z))

(E) entropy of a deterministic value is 0

12 balls weighing: 1 lighter or heavier

+ Total information contained?
+ Each weighing gives you how much information (ideally)?
» Number of weighings needed?

+ Strategy?

Examples of codes

Ezample: (pg.104) Let X be a random variable with the following distribution and
codeword assignment:

Symbol  Probability Codeword
1 Pr(1) =05  C(1) =

2 Pr(2) =025 C(2) =10
3 Pr(3)=0.125 C(3) = 110
4 Pr(4)=0.125 C(4) =111

[Decode 0110111100110| 134213

What is H(X)?| ls®+ilos) +5less+3loe®) 1 75 Dits

| What is the expected codeword length L(C)?| 1.75 bits

You are given 12 balls, all equal in weight except for one that is either
heavier or lighter. You are also given a two-pan balance to use. In each
use of the balance you may put any number of the 12 balls on the left
pan, and the same number on the right pan, and push a button to initiate
the weighing; there are three possible outcomes: either the weights are
equal, or the balls on the left are heavier, or the balls on the left are
lighter. Your task is to design a strategy to determine which is the odd
ball and whether it is heavier or lighter than the others in as few uses
of the balance as possible.
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[Mackay textbook pg. 69]

Main result 1: data compression

Theorem: Data Compression Let X" “ p(x) and let € > 0. Then there exists a

code that maps sequences z™ of length n into binary strings such that the mapping
is one-to-one (and therefore invertible) and

n

LC) = [11()(")] < H(X) 4

for n sufficiently large.



Main idea

e Code over n symbols (i.e. X™) rather than symbol-by-symbol

e as n — oo only certain “typical” sequences occur

e count the number of such “typical” sequences, each gets a codeword

e turns out there are about 2"(*) “typical” sequences, each about equally likely,
so we need nH(X) bits to encode X™.

Definition: weak typicality

e Definition: The typical set A™ with respect to p(x) is the set of sequences
(z1,29,...,2,) € X™ with the property

2—n(H(X)+e) < P(II,I% . 727”) < 2—7L(H(X)—e)'

o If (x1,22,...,2,) € AE"), then

1
H(X)—e<—=logp(z1,22,...,2,) < H(X) +e.
n

Counting the # in the typical set
Weak Law of Large Numbers + the AEP

o Let Xy, Xo,..., be iid distributed with mean y and variance o < co. Let

1
SnéE[X1+X2+...+Xn]

e Theorem: Weak Law of Large Numbers

Sp — p in probability

o Theorem: Asymptotic Equipartition Property (AEP):
If X1, X,,... iiip(z) then

1
——logp(X1,Xo,..., X,) — H(X) in probability.
n

Strong versus Weak Typicality

« Intuition behind typicality?

o X ={%, O, 0, &} with pmf px = [0.5; 0.25; 0.125; 0.125]
= H(X)=1.75 bits.
e Sample sequences consisting of eight i.i.d samples

e strongly typical = correct proportions

SIIHOOVM  —logp(z) =14 =8 x 1.75

e weakly typical = logp(z) = nH(X)
SHOOOOOO  —logp(x) =14 =8 x 1.75

e not typical at all = log p(z) # nH(X)
AAAAAAANA  —logp(z) =24 #£8 X 175

The typical set visually

log, P(x)
Bit sequences of length 100, prob(1) = 0.1 NH(X)
|

Tng
m— TN ‘ ‘

1111111111110, .. 11111110111

0000100000010 . . 00001000010
0100000001000. . . 00010000000

0001000000000 . . 00000000000
0000000000000. . . 00000000000

Figure 4.12. Schematic diagram

How to count the # in the XVt byt probettty,
typical set?

ra
and the typical set Ty,

[Mackay pg. 81]

Most + least likely sequences
NOT in typical set!!

Properties of the typical set

L If (21,72, ,7) € AM then H(X)—€ < —Llogp(zy, x2, -+ ,7,) < H(X)+e
2. Pr{A™} > 1 — ¢ for n sufficiently large.

3. (1— €)2nHX)=9) < |AM| < 9n(H(X0)+9) for p, sufficiently large.

#".21" elements

Non-typical set

Typical set
A 2mH+ ) glements

FIGURE 3.1 Typical sets and source coding.

[Cover+Thomas pg. 60]



Consequences of the AEP

#"1" elements

Typical set contains almost
Non-ypica o all the probability!
Typical set
Al 2mH+6) elements

FIGURE 3.1. Typical sets and source coding.

Non-typical set
Description: n log L +2 bits

How many are in this set
useful for source coding
(compression)!

Typical set
Description: n(H -+ ¢) + 2 bits

FIGURE 3.2. Source code using the typical set

AEP and data compression

iid

Theorem: Data Compnsawn Let X™ ~ p(x) and let € > 0. Then there exists a
code that maps sequences z™ of length n into binary strings such that the mapping
is one-to-one (and therefore invertible) and

B [%1()(”)] <H(X) +e

for n sufficiently large.

Surely log |X| is enough, but H(X) < log|X]|.

Source vs. channel coding

Noise

Source

. Noise
Encoder " Decoder

Source Source Channel Channel
coder coder

Channel Source Destination
decoder || decoder
’

Decode signals, detect/correct erro&

Remove redundancy

Controlled adding of redundancy

“Shannon theory”

Restore source

“Channel coding”

Consequences of the AEP

Let 2™ denote (z1,z2,...,
sponding to a".

zy,), and let I(z™) be the length of the codeword corre-

Coding Scheme: By enumeration!

e if 27 € AM™: 0" + at most|1 + n(H(X) +

o if 27 ¢ AM™: 1 4 at most 1 + nlog|X|

If n is sufficiently large so that Pr{AE")} > 1 — ¢, the expected codeword length is

> pla")i(")

n(H + €) + en(log |X|) + 2
= n(H+¢€)

EQ(X™)]

Source vs. channel coding

Noise

Source

. Noise
Encoder " Decoder

Source Source Channel Channel
coder coder

Channel Source Destination
decoder || decoder
’

Decode signals, detect/correct errors\

Remove redundancy

Controlled adding of redundancy Restore source

“Compression” “Source coding”

Channel coding

Error-correcting codes




Communication system model
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What is the capacity of this channel?

Intuitively Formally

Channel capacity: a cute example

A,B,C,D
Source ———> | Encoder
A —
A

= AAA?

Channel capacity: a cute example

AIBICID A = AAA?
Source ——> | Encoder | —» | Channel

APA > AB.

Channel capacity: a cute example

Source

Channel capacity: a cute example

AIBICID A = AAA?
Source ——> | Encoder | —>» | Channel

|
....% 1AB.
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.........;

Channel capacity: a cute example
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‘Use these 9 symbols!
‘.‘ ‘/ E’D | C =log(9)
0 |




Mathematical description of capacity

Capacity in general
* Reduce the rate so as to produce » Can achieve reliable communication for all transmission rates R:
0 C
©090g, 02208 R<C
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@ s | Non-overlapping outputs! I ® %
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@8 » BUT, probability of decoding error always bounded away from zero if
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Point-to-point channel capacity
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C = max [(X, Y) bits/channel use
p(m) \
“mutual information”

» “non-confusable” inputs
between X andY

I(X;Y) =) pla,y)log <p]<(>p‘<’;>>

# “non-confusable” inputs = channel’s capacity

- channel capacity depends on p(y|x)

Channel: p(y|x)

Channel: p(y|x)

Mutual information between 2 random variables:

Mutual information between 2 random variables:
P(z,y) ) ( P(z,y) )
I1(X;Y) = 5, y) 1 I(X;Y) = 5, y) 1
6) = o otevos (7520 () = pe s |
= H(X) - H(X[Y) = H(X)— H(X[|Y)
=H(Y) - H(Y|X) =H(Y) - H(Y|X)
(A) 10X;Y) is the reduction in the uncertainty about X due to knowledge of Y
(B) if X, Y are independent I(X;Y) = 0
(C) I(X;Y) is non-negative [ H(X,Y) |
H(X) |

H(Y)
[1&:Y) ] HYIX) |

| HX|Y)




Mathematical description of capacity

« Information channel capacity:

C =max[(X;Y)

p(z)

+ Operational channel capacity:

Highest rate (bits/channel use) that can
communicate at reliably

+ Channel coding theorem says: information capacity = operational capacity

Definitions

Definition: Discrete channel. A discrete channel is the (physical or abstract) link
connecting input X € X and the output Y € )Y, described by the conditional
probability p(y|z) that the output is y when the input z.

Memoryless: p(yn|T1, T2, Tn, Y1, Y25+ Yn) = P(YnlTn)

X" y”n
—| p(ylz)

Estimate of message

Message

Definitions [ == }— == (T

Definition: The mazimal probability of error of an (M,n) code is defined as

A = max  Pr{g(Y") #i{X" = 2" (i)}
ie{1,2,-m

Definition: Rate. The rate R of an (M, n) code is R = % bits per transmission.

What do you really mean by

Highest rate (bits/channel use)
that can communicate at reliably

Estimate of message
Message —

Definitions |[_== J== = —{

Definition: Channel code. An (M, n) code for the channel (X, p(y|z),)) consists of
the following:

1. An index set {1,2,..., M} over messages W.
2. Anencoding function X™ : {1,2,..., M} —X ", yielding codewords z" (1), 2"(2), ...
(This set is called the codebook C.)
(W) passes through the channel and is received as a random sequence
Y™ ~p(y™|2").
3. A (deterministic) decoding function
g: " —{1,2,.,, .M},
which is an estimator W = g(Y™) of W € {1,2,...,M}. It declares an error

W £ W,

Send 1 of M messages over n channel uses

Estimate of message

Message

Definitions (== J=/ = (i J~

Definition: Achievability. A rate R is called achievable if there exists a sequence
of ([2"%] ,n) codes such that A™ (i.e., maximal Pr{Error}) tends to 0 as n — oo.
Note (2%, n) codes mean ([2"%],n) codes.

Definition: Capacity. The capacity of a channel is the supremum of all achievable
rates.



C =maxI(X;Y)
Channel coding theorem p(z)

Theorem: Channel coding theorem For a DMC, all rates below capacity C are
achievable.

e Specifically, for every rate R < C, there exists a sequence of (]—Q”R] ,n) codes
with maximum probability of error A — 0.

o Conversely, any sequence of ((Q"RW ,n) codes with A" — 0
must have R < C.

A very counterintuitive result! Despite channel errors you can get arbitrarily low
bit error rates provided that R < C.

Intuition for the noisy typewriter channel

A

C
D

F
G

I

Y
z Z -

Count the # non-confusable subsets!

[Mackay textbook]

In general

Pick subset of typical X such that

AN Ay
Typical y Typical y

Typical y for a given typical x

(a) (b)

[Mackay textbook]

Key ideas behind channel coding theorem

+ Allow for arbitrarily small but nonzero probability of error

» Use channel many times in succession: law of large numbers!

« Probability of error calculated over a random choice of codebooks

« Joint typicality decoders

» NOT constructive! Does NOT tell us how to code to achieve capacity!

Intuition for the binary symmetric channel

Binary symmetric channel. Ay ={0,1}. Ay ={0,1}.

" 020 y P(y=0]z=0) = 1—f; Py=0|z=1) = 0@
EETAY Ply=1|z=0) = f; Py=1lz=1) = 1—f !
cococcoo M an
2888325533835 44+4
g853s5--885S38354a+
g2sngssn8s3=833H
0000
1000
0100 | =
1100
0010
1010
0110
1110
0001
gs3=x 1001
0101
01 1101
0 bond
0 1011
01 0111
1 11
1111
N=1

[Mackay textbook]

The channel coding theorem

)P

e For large n, subsets of inputs to channel produce essentially disjoint subsets
of outputs

e For each typical input sequence (how many are there?) there are about
2nH(YIX) hossible Y sequences, all equally likely.

e Want to ensure that no two typical X sequences produce the same Y sequence.

e There are 2"#(Y) typical Y sequences. Dividing, we get 27H(Y) janHYIX) —
271(X3Y) (distinguishable input sequences.



Channel coding theorem Use of information theory / channel capacity?

Theorem: Channel coding theorem For a DMC, all rates below capacity C are
achievable. « Benchmark for performance of practical systems
e Specifically, for every rate R < C, there exists a sequence of (]—2”1‘1'] ,n) codes
with maximum probability of error A — 0.
+ Guideline in designing systems - what’s worth shooting for?

e Conversely, any sequence of ((Q"RW ,n) codes with A(") — 0

must have R < C.

+ Theoretical insights can lead to practical insights

A very counterintuitive result! Despite channel errors you can get arbitrarily low

bit error rates provided that R < C.
* Pretty!

Point-to-point

My research: FXWX)
Multi-user Shannon theory Wireless channel

(determine capacity regions of networks)

+ Channel capacity J

+ How to approach it for memoryless Gaussian noise channels J

Is that the end of the story?

NO! what about networks (multi-user information theory)? CapaCity and CapaCity regions

N Rx antennas + Point to point capacity
O O 0 C 0 C
1A H— e
\
@O

x

O O M Tx antennas N Rx antennas + Multi-user capacity region 4
R C
¢ =0,

® g O 8>:<8 B

Od N i
R

M Tx antennas

Rl



O—-®
Capacity regions Achievable rate region .?:.

R- R-
Outer bound — Outer bound —
Capacity region Capacity region
Achievable region Achievable reaion] '
R: R:
D,
ooy « Propose a coding scheme (random codes!) R < I(X1;Y|X9)
//' 2N + Prove that as long as = holds, Ry < I(X2§ Yle)
R reliable communication possible

Rl + R2 S I(Xl,XQ;Y)

Outer bound .?:. Capacity regions .?:.
R R
Outer bound i—» Outer bound —
Capacity region Capacitv region_|
Achievable region™ [~ Achievable region™ [~
R R R R
Ry < I(X1:Y[X5)

Ry < I(X2;Y|X1)
Ry + Ry < I(X1,X5;Y)

+ Limit of communication, NOT necessarily how to achieve it in practice!
« Prove that error is bounded away from 0 when *

* not satisfied

» However, benchmark and guidance in practical designs
* Find a more capable channel whose capacity is known

Ultimate goal Key multi-user channels

Capacity of arbitrary network where

FrOx
zn (1) = f(ws, y7 ™ (4)) %.<. *HD*
00}

Broadcast channel Relay channel
VERY difficult -- start slow
° 0P Yok Kook
- #®

. . Multiple-access
and arbitrarily correlated messages 0

channel Interference channel



Other areas of information theory

+ Shannon theory INFORMATION

THEORY

Questions!?

+ Coding theory

» Coding techniques

» Complexity and cryptograph
piexity yprograpny Natasha Devroye
+ Pattern recognition, Statistical learning and inference p Assistant Professor
s 5 University of lllinois at Chicago
+ Source coding ..
SEO 1039 -- come for a visit!
+ Detection and Estimation http://www.ece.uic.edu/Devroye
» Communications
+ Sequences “m‘ ISIT 2012 - IEEE Infernational < University of lllinois at Chicago
BOSTON | Symposium on Information Theory : L
July 1-6, 2012 + Cambridge, MA, USA, .o |
+ At large ] - T |
| | - a = 1 . 4 b sl iRl



