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—xample: GNU Radio+USRP
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Channel capacity

Channel: p(y|x)

Capacity (= Hl(&i( ](X, Y) bits/channel use
p(x
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Mathematical description of capacity
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AWGN channel capacity
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Capacity and capacity regions
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Motivation 1: smart cognitive devices
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Motivation 2: spectral efficiency

UNITED

STATES
FREQUENCY

ALLOCATIONS
THE RADIO SPECTRUM

[ ey P S e A P

— —
-._ e I I'H'I-I'J'

H e = T8 | i

e W= |-
= =} e i i t J : ? : Il:r
Tw— S [P v— ' B 5 r L 4 i N -.'ilr i:l.l.
-— e [ il o M TG . ol | :
= O —— . ' -
= = E-—

m- = W=

Bl = === [l o=

i

B— = -

| e——

i T ] i T T

_;*_H_,:.."'W:H—;.m_

Sunday, May 16, 2010



Spectrum licensing: future
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Secondary spectrum usage
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Secondary spectrum usage
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What can the cognitive link do”
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e Assumptions on primary/secondary models will dictate behavior +
performance

e Cognition boils down to side-information and how to use it

e Use information theory to tell us which techniques are most promising
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2. Just transmit
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4. Simultaneous Cognitive Transmission
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4. Simultaneous Cognitive Transmission

Cognitive Tx may obtain
primary’s message In a fraction of
the time
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Gaussian noise channel capacity
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Since Tx 2 knows message 1,
t can mitigate interference!
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Dirty-paper coding

[Gel’fand, Pinsker,
1980]

[Costa, 1983]
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Dirty-paper coding
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Rate of message 2.

WITHOUT and WITH dirty-paper coding
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Gaussian cognitive channel
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Gaussian broadcast channel, multi-antenna
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Gaussian broadcast channel, multi-antenna
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Gaussian broadcast channel, multi-antenna
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* new inner bound (largest region)

e new outer bound (not tightest, but computable)

e capacity for deterministic channels (also semi-deterministic)

e 1.8 bit gap result for Gaussian channels (preliminary
simulations show smaller gap)
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* new inner bound (largest region)

e new outer bound (not tightest, but computable)

e capacity for deterministic channels (also semi-deterministic)

e 1.8 bit gap result for Gaussian channels (preliminary
simulations show smaller gap)
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e new outer bound (not tightest, but computable)

e capacity for deterministic channels (also semi-deterministic)

* 1.8 bit gap result for Gaussian channels (recently reduced to 1
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Known Gaussian results — (2o
W Tx 2 v - C;)—»
Ny
A
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D
=
0
O
= S
.
| b|

We prove a finite gap regardless of
channel parameters!
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Proving a finite gap (O ()

Outer bound

MISO
strategy Straight line

approximation of

outer bound

Bound this maximum
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Proving a finite gap (o ()
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“Cognitive”

Cognitive channel

What rates (

R4,

<2) are achievable”
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—xtensions of cognition” in multi-user IT

e causal versus non-causal cognition Q
1
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—xtensions of “cognition” INn multi-user T

e cognitive relay: interference, relay channels
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—xtensions of “cognition” in multi-user [T

e causal versus non-causal cognition Q O ®
1 \\\ '/” }\\
: Pl R

e cognitive relay: interference, relay channels ‘

® more cognitive users, more scenarios....

X1(Wh) Q
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X /7 ‘:\
Xo(W1, W) *—)‘-‘ Xa(W1,W3) 0———
> | o 4 4 < N\
V4

’ \
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Degrees of freedom: classical

DOF = # “clean” channels in a multi-stream network

MIMO M Ti<‘a_n~tennas N R)ganj(?nnas

o — Interference

"\ “ ' channel

DOF = min(M,N)=2
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Degrees of freedom: classical

DOF = # “clean” channels in a multi-stream network

MIMO M Ti<‘a_n~tennas N R)ganj(?nnas

— Interference

"\ “ ' channel

DOF = min(M,N)=2

2 Tx antennas

Broadcast
channel

Multiple-access
channel

DOF =2
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Degrees of freedom: cognitive, M antennas
MIMO interference
channel *

*

>%

'
[ 4

DOF=M

Syed A. Jafar, Shiomo Shamai, Degrees of Freedom
Region for the MIMO X Channel , IEEE Transactions on
Information Theory, Vol. 54, No. 1, Jan. 2008, Pages: 151-170.
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Degrees of freedom: cognitive, M antennas

MIMO interference
channel i% ~><
* - DOF=M
Yy >< <
*

MIMO cognitive *

>%
channel, cases a,b,c

DOF=M

\"»
(4

*

Syed A. Jafar, Shiomo Shamai, Degrees of Freedom
Region for the MIMO X Channel , IEEE Transactions on
Information Theory, Vol. 54, No. 1, Jan. 2008, Pages: 151-170.
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Degrees of freedom: cognitive, M antennas
MIMO interference
channel *

*

>%

'
[ 4

DOF=M

MIMO cognitive *
channel, cases a,b,c *

MIMO cognitive i?'

channel, cases d,e,f *

DOF=M

DOF = 2M

Syed A. Jafar, Shiomo Shamai, Degrees of Freedom
Region for the MIMO X Channel , IEEE Transactions on
Information Theory, Vol. 54, No. 1, Jan. 2008, Pages: 151-170.
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Scaling laws

# nodes n = «




Scaling laws  #nodesn — o

o[Gupta+Kumar 2000]: Non-cooperative ad hoc networks
e per-node throughput ~ O(1//n log(n))

eDegradation is due to multi-hop and interference
between nodes
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e per-node throughput ~ O(1/4/n)

e percolation theory

o[Ozgur, Leveque, Tse 2007]: Cooperative ad hoc networks
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Scaling laws  #nodesn — o

o[Gupta+Kumar 2000]: Non-cooperative ad hoc networks
e per-node throughput ~ O(1//n log(n))

eDegradation is due to multi-hop and interference
between nodes

e[Franseschetti et al. 2000]: ad hoc networks

e per-node throughput ~ O(1/4/n)

e percolation theory

o[Ozgur, Leveque, Tse 2007]: Cooperative ad hoc networks
enodes may cooperate as in a MIMO system
eper-node throughput ~ O(1) (constant)

eMany many more...
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Scaling laws: with cognition

¢ \What we guarantee:

Primary nodes act as if cognitive network does not exist
Primary nodes achieve same scaling law as if cognitive network does not exist
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Scaling laws: with cognition

e \What we guarantee:

Primary nodes act as if cognitive network does not exist
Primary nodes achieve same scaling law as if cognitive network does not exist

e \What we prove:

T,(n) = © (\/nlsgn) , Ty(m) =© (\/mljgm)
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—fficient, reliable communications

M Tx antennas N R)g .an:[ennas

O——0

M Tx antennas N Rx antennas
J \J (] -
| )
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—fficient, reliable communications

M Tx antennas N R>5 .an:[ennas

O——0

M Tx antennas
7’ \)

® o

N Rx antennas
, L
| )
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