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[Gel'fand, Pinsker, 1980]
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High-SNR deterministic C-IFC
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e causal versus non-causal cognition Q
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Degrees of freedom: classical

DOF = # “clean” channels in a multi-stream network
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Scaling laws

# nodes n = «
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Scaling laws  #nodesn — o

o[Gupta+Kumar 2000]: Non-cooperative ad hoc networks
e per-node throughput ~ O(1//n log(n))

eDegradation is due to multi-hop and interference
between nodes
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Scaling laws  #nodesn — o

o[Gupta+Kumar 2000]: Non-cooperative ad hoc networks
e per-node throughput ~ O(1//n log(n))

eDegradation is due to multi-hop and interference
between nodes

e[Franseschetti et al. 2000]: ad hoc networks

e per-node throughput ~ O(1/4/n)

e percolation theory

o[Ozgur, Leveque, Tse 2007]: Cooperative ad hoc networks
enodes may cooperate as in a MIMO system
eper-node throughput ~ O(1) (constant)

eMany many more...
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Scaling laws: with cognition

e \What we guarantee:

Primary nodes act as if cognitive network does not exist
Primary nodes achieve same scaling law as if cognitive network does not exist
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Scaling laws: with cognition

e \What we guarantee:

Primary nodes act as if cognitive network does not exist
Primary nodes achieve same scaling law as if cognitive network does not exist

e \What we prove:

T,(n) = © (\/nlsgn) , Ty(m) =© (\/mljgm)
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—fficient, reliable communications
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