Cognitive radios to reduce, reuse and recycle unused spectrum.

Natasha Devroye Harvard University

Unused spectrum?

Unused spectrum?

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

NOC SERVICES	DAM JUNC		
100 m			
123 STILL		122 227	
-	100 A.S.		
m			-
			2
	-		
-	E ****		
The second second	EE 555°**		
-	E3	-	-
		100 2222	225.4
100 million			
	. .		56
4100/10/16/	I OTRONITON		
And the second	Trans Labor		

PROVIDE ALTONOM

9

NOT STATE TO A LINE OF A L
and the second second
III
III II [] 100"
10 117" I Same 10
ACTIVITY DOOR
and a second state and a second state and
and an and a second second
ALCORTON (BAGE ORDOW/YOR
ENGRAPSION RESIDENCE.
where a property of the compared

Contraction of the

Avoid interference

Avoid interference

\$\$\$\$\$\$\$\$\$\$

Avoid interference

\$\$\$\$\$\$\$\$\$

Unlicensed bands

- Industrial, Scientific and Medical band (ISM band)
- 915 MHz, 2450 MHz, and 5800 MHz

Unlicensed bands

- Industrial, Scientific and Medical band (ISM band)
- 915 MHz, 2450 MHz, and 5800 MHz

Enormous success, filling up fast!

Licensed bands

Licensed bands

Spectrum licensing

frequency

Spectrum licensing: future

Primary users/ primary license holders

Spectrum licensing: future

Primary users/ primary license holders

Secondary users

Spectrum licensing: future

Primary users/ primary license holders

Secondary users \leftrightarrow Cognitive radios

Cognitive Radio

Use information theory to determine fundamental limits of cognitive networks

Wireless channels: my notation

Encoder

Transmitter, Tx

Decoder

Receiver, Rx

Encoder

Transmitter, Tx

X: transmitted signal

Decoder

Receiver, Rx

Y: received signal

Encoder

Transmitter, Tx

Decoder

Receiver, Rx

X: transmitted signal

Y: received signal

Wireless channel: p(y|x)

Capacity II highest rate, in (bits/channel use) at which information can be sent with arbitrarily low probability of error

"Achievable rate" ≤ Capacity ≤ "Outer bound"

any rate at which information can be sent with arbitrarily low probability of error

Continuous alphabet channel

The channel: p(y|x)

Capacity
$$C = \max_{p(x):E[|X|^{2}] \le P} I(X;Y)$$

$$= \frac{1}{2} \log_{2} \left(\frac{|h|^{2}P + P_{N}}{P_{N}} \right)$$

$$= \frac{1}{2} \log_{2} (1 + \text{SNR}) \quad \text{(bits/channel use)}$$

Capacity

Fundamental limits of communication in networks of primary users and secondary/cognitive users.

Cognitive radio channels

achievable rate regions

multiplexing gains, MIMO X channel

Cognitive networks

scaling laws of ad-hoc cognitive networks

parameter design to guarantee performance

Cooperative relaying

bi-directional relaying rate regions

asymmetric cooperation in downlink cellular systems

Cognitive radio channels

achievable rate regions

multiplexing gains, MIMO X channel

Cognitive networks

scaling laws of ad-hoc cognitive networks

parameter design to guarantee performance

Cooperative relaying

bi-directional relaying rate regions

asymmetric cooperation in downlink cellular systems

Cognitive radio channels

achievable rate regions

multiplexing gains, MIMO X channel

Cognitive networks

scaling laws of ad-hoc cognitive networks

parameter design to guarantee performance

Cooperative relaying

bi-directional relaying rate regions

asymmetric cooperation in downlink cellular systems

What can the cognitive link do?

2. Just transmit

Interfere with each other!

2. Just transmit

 $R_2 \le \frac{1}{2} \log_2 \left(1 + \frac{\text{Power of signal } 2}{\text{Interference from signal } 1 + \text{Noise}} \right)$

3. Opportunistic "cognitive" decoding

[Popovski, Devroye 2008]*

3. Opportunistic "cognitive" decoding

[Popovski, Devroye 2008]*

4. Cognitive transmission

Interference!

4. Cognitive transmission

Interference can be reduced

[Devroye, Mitran, Tarokh 2006]

Our proposal:

Simultaneous Cognitive Transmission

Assumption: Tx 2 knows message encoded by X1 a-priori

Our proposal: Simultaneous Cognitive Transmission

Cognitive Tx may obtain primary's message in a fraction of the time

Our proposal: Simultaneous Cognitive Transmission

Cognitive Tx may overhear primary's message

"Competitive"

Interference channel

"Cooperative"

Broadcast channel

"Cognitive"

Cognitive channel

"Cognitive"

Cognitive channel

What rates (R₁, R₂) are achievable?

Capacity
$$C = \max_{p(x):E[|X|^2] \le P} I(X;Y)$$

$$= \frac{1}{2} \log_2 \left(\frac{|h|^2 P + P_N}{P_N} \right)$$

$$= \frac{1}{2} \log_2 (1 + \text{SNR}) \quad \text{(bits/channel use)}$$

Gaussian cognitive channel

Gaussian cognitive channel

What rates are achievable?

A priori message knowledge

A priori message knowledge aid transmission SELFLESS

A priori message knowledge aid mitigate transmission SELFLESS SELFISH

Message 1: encoded by a codeword which is generated jointly Gaussian according to $\mathcal{N}(0,B_1)$

 $P'_1 \quad z$

message 1

Message 1: encoded by a codeword which is generated jointly Gaussian according to $\mathcal{N}(0,B_1)$

Message 2 📩

Message 2: encoded by a codeword which is generated as jointly Gaussian according to $\mathcal{N}(0,B_2)$

message 2

Send the superposition

 $B_1 + B_2$ Overall transmit covariance matrix

Send the superposition

$Y_1 = H_1 X + N_1$

Signal power at Y1 $\frac{H_1(B_1 + B_2)H_1^{\dagger} + P_{N_1}}{H_1(B_2)H_1^{\dagger} + P_{N_1}}$ $R_1 \le \frac{1}{2}\log_2$

Interference + noise power

$$R_{1} \leq \frac{1}{2} \log_{2} \begin{pmatrix} H_{1}(B_{1} + B_{2})H_{1}^{\dagger} + P_{N_{1}} \\ H_{1}(B_{2})H_{1}^{\dagger} + P_{N_{1}} \end{pmatrix}$$

$$B_{2} = \begin{bmatrix} 0 & 0 \\ 0 & P_{2}'' \end{bmatrix} \qquad \text{Interference + noise power}$$

Since Tx 2 knows message 1, we can do better!

Since Tx 2 knows message 1, we can do better!

[Costa, 1983] [Gel'fand, Pinsker, 1980]

write in black ink?

adjust your ink \checkmark

Do NOT have enough power to subtract off the interference!

Example of dirty-paper coding

Example of dirty-paper coding

NO power penalty! NOT subtracting off interference!

Rate of message 2: WITHOUT and WITH dirty-paper coding

WITHOUT

$$R_2 \leq \frac{1}{2} \log_2 \begin{pmatrix} Signal power at Y_2 \\ H_2(B_1 + B_2)H_2^{\dagger} + P_{N_2} \\ H_2(B_1)H_2^{\dagger} + P_{N_2} \end{pmatrix}$$

Interference + noise power

Rate of message 2: WITHOUT and WITH dirty-paper coding

WITHOUT $R_2 \le \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2)H_2^{\dagger} + P_{N_2}}{H_2(B_1)H_2^{\dagger} + P_{N_2}} \right)$

Gaussian cognitive channel

Cognitive region = Convex hull of

$$(R_{1}, R_{2}):$$

$$R_{1} \leq \frac{1}{2} \log_{2} \left(\frac{H_{1}(B_{1}+B_{2})H_{1}^{\dagger}+Q_{1}}{H_{1}(B_{2})H_{1}^{\dagger}+Q_{1}} \right) = R_{1}(\pi_{12})$$

$$R_{2} \leq \frac{1}{2} \log_{2} \left(\frac{H_{2}(B_{2})H_{2}^{\dagger}+Q_{2}}{Q_{2}} \right) = R_{2}(\pi_{12})$$

$$B_{1}, B_{2} \succeq 0, \quad B_{1} = \begin{bmatrix} P_{1}' & z \\ z & P_{2}' \end{bmatrix}, \quad B_{2} = \begin{bmatrix} 0 & 0 \\ 0 & P_{2}'' \end{bmatrix}, \quad B_{1} + B_{2} \preceq \begin{bmatrix} P_{1} & z \\ z & P_{2} \end{bmatrix}, \quad z^{2} \leq P_{1}P_{2}$$
Matrices with zeros

Cognitive permutation

$$MIMO BC region = Convex hull of
\begin{pmatrix}
(R_1, R_2): \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2)H_1^{\dagger} + Q_1}{H_1(B_2)H_1^{\dagger} + Q_1} \right) = R_1(\pi_{12}) \\
R_2 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_2)H_2^{\dagger} + Q_2}{Q_2} \right) = R_2(\pi_{12}) \\
\end{pmatrix} = R_2(\pi_{12}) \\
H_1(B_2 \succeq 0, B_1 = \begin{bmatrix} P_1' & z' \\ z' & P_2' \end{bmatrix}, B_2 = \begin{bmatrix} P_1'' & z'' \\ z'' & P_2'' \end{bmatrix}, B_1 + B_2 \preceq \begin{bmatrix} P_1 & z \\ z & P_2 \end{bmatrix}, z^2 \leq P_1 P_2$$

MIMO BC region = Convex hull of

$$\begin{pmatrix}
(R_1, R_2) \\
(R_1, R_2) \\
(R_1, R_2) \\
(R_1, R_2) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_1^{\dagger} + Q_1}{H_1(B_2) H_1^{\dagger} + Q_1} \right) = R_1(\pi_{12}) \\
(R_2 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_2) H_2^{\dagger} + Q_2}{Q_2} \right) = R_2(\pi_{12}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1) H_1^{\dagger} + Q_1}{Q_1} \right) = R_1(\pi_{21}) \\
(R_2 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_2(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) = R_2(\pi_{21}) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2}{H_2(B_1) H_2^{\dagger} + Q_2} \right) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2 \right) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2 \right) \right) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2 \right) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q_2 \right) \right) \\
(R_1 \leq \frac{1}{2} \log_2 \left(\frac{H_1(B_1 + B_2) H_2^{\dagger} + Q$$

MIMO BC region = Convex hull of

$$(R_{1}, R_{2}):$$

$$R_{1} \leq \frac{1}{2} \log_{2} \left(\frac{H_{1}(B_{1}+B_{2})H_{1}^{\dagger}+Q_{1}}{H_{1}(B_{2})H_{1}^{\dagger}+Q_{1}} \right) = R_{1}(\pi_{12}) \qquad \qquad R_{1} \leq \frac{1}{2} \log_{2} \left(\frac{H_{1}(B_{1})H_{1}^{\dagger}+Q_{1}}{Q_{1}} \right) = R_{1}(\pi_{21})$$

$$R_{2} \leq \frac{1}{2} \log_{2} \left(\frac{H_{2}(B_{2})H_{2}^{\dagger}+Q_{2}}{Q_{2}} \right) = R_{2}(\pi_{12}) \qquad \qquad R_{2} \leq \frac{1}{2} \log_{2} \left(\frac{H_{2}(B_{1}+B_{2})H_{2}^{\dagger}+Q_{2}}{H_{2}(B_{1})H_{2}^{\dagger}+Q_{2}} \right) = R_{2}(\pi_{21})$$

$$B_{1}, B_{2} \geq 0, \qquad B_{1} = \begin{bmatrix} P_{1}' & z' \\ z' & P_{2}' \end{bmatrix}, B_{2} = \begin{bmatrix} P_{1}'' & z'' \\ z''' & P_{2}'' \end{bmatrix} \qquad B_{1} + B_{2} \leq \begin{bmatrix} P_{1} & z \\ z & P_{2} \end{bmatrix}, z^{2} \leq P_{1}P_{2}$$
Full matrices

Strongest result

The discrete memoryless cognitive radio channel

Largest to date known general region

Cognitive channel: Achievable rate region

 $(R_{1\alpha}, R_{1\beta}, R_{2\alpha}, R_{2\beta})$ such that, for $\gamma = \alpha, \beta$:

$$R_{1\gamma} = L_{1\gamma}$$

$$R_{2\gamma} \leq L_{2\gamma} - I(V_{2\gamma}; V_{1\alpha}, V_{1\beta})$$

$$\bigcap_{T \subset T_1} \left(\sum_{t_1 \in T} L_{t_1} \right) \leq I(Y_1, \mathbf{V}_{\overline{\mathbf{T}}}; \mathbf{V}_{\overline{\mathbf{T}}}) + f(\mathbf{V}_{\overline{\mathbf{T}}})$$

$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} L_{t_2} \right) \leq I(Y_2, \mathbf{V}_{\overline{\mathbf{T}}}; \mathbf{V}_{\overline{\mathbf{T}}}) + f(\mathbf{V}_{\overline{\mathbf{T}}})$$

$$M_{1\alpha} M_{1\beta}$$

$$M_{1\alpha} M_{1\beta} M_{2\alpha} M_{2\beta}$$

 $V_{1\alpha} V_{1\beta} = V_{2\alpha} V_{2\beta}$

Cognitive channel: Achievable rate region

 $(R_{1\alpha}, R_{1\beta}, R_{2\alpha}, R_{2\beta})$ such that, for $\gamma = \alpha, \beta$:

$$R_{1\gamma} = L_{1\gamma}$$

$$R_{2\gamma} \leq L_{2\gamma} - I(V_{2\gamma}; V_{1\alpha}, V_{1\beta})$$

interference mitigation

$$\bigcap_{T \subset T_1} \left(\sum_{t_1 \in T} L_{t_1} \right) \leq I(Y_1, \mathbf{V}_{\overline{\mathbf{T}}}; \mathbf{V}_{\mathbf{T}}) + f(\mathbf{V}_{\mathbf{T}})$$
$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} L_{t_2} \right) \leq I(Y_2, \mathbf{V}_{\overline{\mathbf{T}}}; \mathbf{V}_{\mathbf{T}}) + f(\mathbf{V}_{\mathbf{T}})$$

$$M_{1\alpha} M_{1\beta}$$

$$M_{1\alpha}^{*} M_{1\beta}^{*} M_{2\alpha} M_{2\beta}$$

$$V_{1\alpha} V_{1\beta} V_{2\alpha} V_{2\beta}$$

$$V_{2\alpha} V_{2\beta}$$

Cognitive channel: Achievable rate region

 $(R_{1\alpha}, R_{1\beta}, R_{2\alpha}, R_{2\beta})$ such that, for $\gamma = \alpha, \beta$:

$$R_{1\gamma} = L_{1\gamma}$$

$$R_{2\gamma} \leq L_{2\gamma} - I(V_{2\gamma}; V_{1\alpha}, V_{1\beta})$$

Impact?

meets

meets

meets

Quantitative, fundamental analysis in infant field

The Multiplexing Gain of MIMO X-Channels with Partial Transmit Side-Information

Natasha Devroye, Masoud Sharif

Side-information increases the achievable rates

Side-information increases the achievable rates

What about the multiplexing gains (degrees of freedom)?

Degrees of freedom (DOF)

Capacity of a single input, single output Gaussian noise channel:

$$C = \frac{1}{2}\log_2\left(1 + \text{SNR}\right)$$

Scales like log(SNR) as $SNR \rightarrow \infty$

 Multiple-input multiple-output (MIMO) channels may have many information streams

- Multiple-input multiple-output (MIMO) channels may have many information streams
- As SNR →∞ interference, rather than noise becomes the limiting factor

Degrees of freedom (DOF) measures the number of point-to-point Gaussian channels contained in a MIMO channel as $SNR \rightarrow \infty$

How does asymmetric side-information affect the degrees of freedom?

Side-information: Gaussian noise channels

Side-information: Gaussian noise channels

Side-information: Gaussian noise channels

[Costa's "Writing on Dirty Paper" 1983]

• Assume $M_2 = X_2 + \gamma X_1$ • Optimize Υ to obtain $\gamma = \frac{P_2}{P_2 + Q_2}$ • Capacity is that of interference-free channel! $C = \frac{1}{2} \log_2 \left(1 + \frac{P_2}{Q_2}\right)$

Degrees of freedom in the cognitive channel

Interference channel with degraded message sets Interference channel with partially-cognitive transmitter Interference channel with unidirectional cooperation

- Capacity region is known in Gaussian noise in the weak interference regime $(a_{21} < I)$
- Sum-rate capacity is known for $a_{21} > I$

- Capacity region is known in Gaussian noise in the weak interference regime $(a_{21} < I)$
- Sum-rate capacity is known for $a_{21} > I$

- Capacity region is known in Gaussian noise in the weak interference regime $(a_{21} < I)$
- Sum-rate capacity is known for $a_{21} > I$

- Capacity region is known in Gaussian noise in the weak interference regime $(a_{21} < I)$
- Sum-rate capacity is known for $a_{21} > I$

Degrees of freedom in cognitive channels

Interference channel

Degrees of freedom in cognitive channels

 $\mathsf{DOF} = 1$

Interference channel

DOF = 2

2 Tx antenna broadcast channel

Degrees of freedom in cognitive channels

DOF = 2

2 Tx antenna broadcast channel

Interference channel

Cognitive channel

Degrees of freedom in the cognitive X channel

The X channel

Interference channel 2 messages

The X channel

Interference channel 2 messages

X channel 4 messages

Degrees of freedom in cognitive X channels

 $I \leq DOF \leq 4/3$

[Maddah-Ali, Motahari, Khandani 2006] [Jafar, Shamai 2007]

DOF = 2

Degrees of freedom in cognitive X channels

[Maddah-Ali, Motahari, Khandani 2006] [Jafar, Shamai 2007]

Cognitive X channel

Several possibilities for the side-information S at the cognitive Tx 2:

I.Tx 2 knows message 112.Tx 2 knows message 11 and message 12

3.Tx 2 knows codeword which encodes message 11

Cognitive X channel

Several possibilities for the side-information S at the cognitive Tx 2:

I.Tx 2 knows message 11 2.Tx 2 knows message 11 and message 12 This talk

3.Tx 2 knows codeword which encodes message 11

Cognitive X channel

Several possibilities for the side-information S at the cognitive Tx 2:

Encode message 12 as codeword M12 Encode message 11 as codeword M11 by dirty-paper coding against M12 Tx I

Encode message 21 as codeword M21

Tx 2

Encode message 22 as codeword M22 by dirty-paper coding against M11 and M21

Achievable rate region for a cognitive X channel

 $(R_{11}, R_{12}, R_{21}, R_{22})$ such that:

 $R_{11} \leq I(M_{11}; Y_1 | M_{21}) - I(M_{11}; M_{12})$ $R_{21} \leq I(M_{21}; Y_1 | M_{11})$ $R_{11} + R_{21} \leq I(M_{11}, M_{21}; Y_1) + I(M_{11}; M_{21}) - I(M_{11}; M_{12})$

 $R_{12} \leq I(M_{12}; Y_2 | M_{22})$ $R_{22} \leq I(M_{22}; Y_2 | M_{12}) - I(M_{22}; M_{11}, M_{21})$ $R_{12} + R_{22} \leq I(M_{12}, M_{22}; Y_2) + I(M_{12}; M_{22}) - I(M_{22}; M_{11}, M_{21})$

Achievable rate region for a cognitive X channel

 $(R_{11}, R_{12}, R_{21}, R_{22})$ such that:

MAC+Gel'fand-Pinsker to Rx I $R_{11} \leq I(M_{11}; Y_1 | M_{21}) - I(M_{11}; M_{12})$ $R_{21} \leq I(M_{21}; Y_1 | M_{11})$ $R_{11} + R_{21} \leq I(M_{11}, M_{21}; Y_1) + I(M_{11}; M_{21}) - I(M_{11}; M_{12})$

 $R_{12} \leq I(M_{12}; Y_2 | M_{22})$ $R_{22} \leq I(M_{22}; Y_2 | M_{12}) - I(M_{22}; M_{11}, M_{21})$ $R_{12} + R_{22} \leq I(M_{12}, M_{22}; Y_2) + I(M_{12}; M_{22}) - I(M_{22}; M_{11}, M_{21})$

Achievable rate region for a cognitive X channel

 $(R_{11}, R_{12}, R_{21}, R_{22})$ such that:

MAC+Gel'fand-Pinsker to Rx I $R_{11} \leq I(M_{11}; Y_1 | M_{21}) - I(M_{11}; M_{12})$ $R_{21} \leq I(M_{21}; Y_1 | M_{11})$ $R_{11} + R_{21} \leq I(M_{11}, M_{21}; Y_1) + I(M_{11}; M_{21}) - I(M_{11}; M_{12})$

 $\begin{aligned} & \mathsf{MAC+Gel'fand-Pinsker to Rx 2} \\ & R_{12} \leq I(M_{12};Y_2|M_{22}) \\ & R_{22} \leq I(M_{22};Y_2|M_{12}) - I(M_{22};M_{11},M_{21}) \\ & R_{12} + R_{22} \leq I(M_{12},M_{22};Y_2) + I(M_{12};M_{22}) - I(M_{22};M_{11},M_{21}) \end{aligned}$

Approach

[Costa's "Writing on Dirty Paper" 1980]

$$C = \max_{p(m_2, x_2 | x_1)} I(M_2; Y_2) - I(M_2; X_1)$$

- Assume M_2 to be $M_2 = X_2 + \gamma X_1$ (Gaussian), and one dirtypaper coding parameter Υ
- Optimize Υ
- Evaluate capacity

Approach

[Costa's "Writing on Dirty Paper" 1980]

$$C = \max_{p(m_2, x_2 | x_1)} I(M_2; Y_2) - I(M_2; X_1)$$

- Assume M_2 to be $M_2 = X_2 + \gamma X_1$ (Gaussian), and one dirty-paper coding parameter Υ
- Optimize Ύ
- Evaluate capacity

[This talk]

 $R_{11} \leq I(M_{11}; Y_1 | M_{21}) - I(M_{11}; M_{12})$ $R_{21} \leq I(M_{21}; Y_1 | M_{11})$ $R_{11} + R_{21} \leq I(M_{11}, M_{21}; Y_1) + I(M_{11}; M_{21}) - I(M_{11}; M_{12})$

 $\begin{aligned} R_{12} &\leq I(M_{12}; Y_2 | M_{22}) \\ R_{22} &\leq I(M_{22}; Y_2 | M_{12}) - I(M_{22}; M_{11}, M_{21}) \\ R_{12} + R_{22} &\leq I(M_{12}, M_{22}; Y_2) + I(M_{12}; M_{22}) - I(M_{22}; M_{11}, M_{21}) \end{aligned}$

• Assume M_{11} , M_{12} , M_{21} , M_{22} Gaussian and 2 dirty paper coding parameters Υ_{1} , Υ_{2}

- Optimize $\Upsilon_{1}, \Upsilon_{2}$
- Evaluate achievable sum-rate

Assumed input variables

$M_{11} = U_{11} + \gamma_1 U_{12}$	$U_{11} \sim \mathcal{N}(0, P_{11})$	D = D + D
$M_{12} = U_{12},$	$U_{12} \sim \mathcal{N}(0, P_{12})$	$\Gamma_1 = \Gamma_{11} + \Gamma_{12}$
$M_{21} = U_{21},$	$U_{21} \sim \mathcal{N}(0, P_{21})$	$\beta P_2 = P_{21} + P_{22}$
$M_{22} = U_{22} + \gamma_2 (U_{21} + a_{12}U_{11})$	$U_{22} \sim \mathcal{N}(0, P_{22})$	

$$\begin{aligned} X_1 &= U_{11} + U_{12} \\ X_2 &= U_{21} + U_{22} + \sqrt{\frac{(1-\beta)P_2}{P_{11}}} U_{11} \\ Y_1 &= \left(1 + a_{21}\sqrt{\frac{(1-\beta)P_2}{P_{11}}}\right) U_{11} + U_{12} + a_{21}(U_{21} + U_{22}) + N_1 \\ Y_2 &= \left(a_{12} + \sqrt{\frac{(1-\beta)P_2}{P_{11}}}\right) U_{11} + a_{12}U_{12} + (U_{21} + U_{22}) + N_2. \end{aligned}$$

Results

DOF of this cognitive X channel is 2

• Power allocation that achieves this is

$$P_{11} = P_{12} = P_{21} = P \to \infty$$
$$P_{22} = \text{constant}$$

Power limited to P₂

Rate regions

Conclusion

Cognitive X channel Side-information is one of Tx I's codewords

Extra

DOF=I

• They prove that for a < 1 (weak interference) the capacity region when both nodes are power limited to P is the set of all rate pairs (R₁, R₂) such that, for all $0 \le \alpha \le 1$,

$$R_1 \le \log\left(1 + \frac{(\sqrt{P} + a\sqrt{\alpha P})^2}{1 + a^2(1 - \alpha)P}\right)$$
$$R_2 \le \log_2\left(1 + (1 - \alpha)P\right)$$

DOF=I

- For any $0 \le \alpha \le 1$ the cognitive radio spends αP of its power amplifying the primary message, and $(1-\alpha)P$ of its power dirty-paper coding its own message

$$R_{1} \leq \log \left(1 + \frac{(\sqrt{P} + a\sqrt{\alpha P})^{2}}{1 + a^{2}(1 - \alpha)P} \right)$$
$$R_{2} \leq \log_{2} \left(1 + (1 - \alpha)P \right)$$

Interference at primary receiver due to cognitive transmission

DOF=I

 Moreover, they find the maximum rate the cognitive user may transmit at such that the primary user suffers no loss in rate (compared to cognitive-free transmission)

• This determines the optimal
$$\alpha^*$$

as:
 $\alpha^* = \left(\frac{\sqrt{P}\left(\sqrt{1+a^2P(1+P)}-1\right)}{a\sqrt{P}(1+P)}\right)^{\frac{1}{2}}$

Selected DPC parameters

- Υ_1 selected so as to maximize the sumrate to Rx I
- Υ_2 selected so as to minimize the denominator of the sum-rate to Rx 2

$$\gamma_1 = \frac{P_{11}(1 + a_{21}\theta)}{P_{11}(1 + a_{21}\theta)^2 + \alpha_{21}^2 P_{22} + N_1}, \quad \gamma_2 = \frac{P_{22}}{P_{22} + N_2}$$
$$\theta \stackrel{\triangle}{=} \sqrt{\frac{(1 - \beta)P_2}{P_{11}}},$$
Sum-rates

$$R_{11} + R_{21} \le \frac{1}{2} \log_2 \left(\frac{(P_{11})(P_{11}(1 + a_{21}\theta)^2 + P_{12} + \alpha_{21}^2(P_{21} + P_{22}) + N_1)}{\gamma_1^2 P_{12}(P_{11}(1 + a_{21}\theta)^2 + \alpha_{21}^2 P_{22} + N_1) - 2\gamma_1 P_{11} P_{12}(1 + a_{21}\theta) + P_{11}(P_{12} + \alpha_{21}^2 P_{22} + N_1)} \right)$$
(5)

$$R_{12} + R_{22} \leq \frac{1}{2} \log_2 \left(\frac{(P_{11}(a_{12} + \theta)^2 + a_{12}^2 P_{12} + P_{21} + P_{22} + N_2)(\gamma_1^2 P_{12}(P_{22} + \gamma_2^2 (a_{12} + \theta)^2 P_{11}) + P_{11} P_{22})}{(P_{11} + \gamma_1^2 P_{12})(\gamma_2^2 ((P_{22} + N_2)(P_{21} + a_{12}^2) + P_{11} P_{21} \theta^2) + \gamma_2 (-2P_{22}(P_{11}(a_{12} + \theta)^2 + P_{21})) + P_{22}(P_{11}(a_{12} + \theta)^2 + P_{21} + N_2))} \right)$$

$$(6)$$

$$R_{11} + R_{21} \le \frac{1}{2} \log_2 \left(\frac{(P_{11}(1 + a_{21}\theta)^2 + P_{12} + \alpha_{21}^2(P_{21} + P_{22}) + N_1)(P_{11}(1 + a_{21}\theta)^2 + \alpha_{21}^2P_{22} + N_1)}{(\alpha_{21}^2P_{22} + N_1)(P_{11}(1 + a_{21}\theta)^2 + P_{12} + \alpha_{21}^2P_{22} + N_1)} \right)$$
(7)

after substituting $\Upsilon_{^{\rm I}}$

$$\theta \stackrel{\triangle}{=} \sqrt{\frac{(1-\beta)P_2}{P_{11}}}$$

Marton's Region

• Used in [Caire, Shamai 2003]

$$\begin{array}{c} \operatorname{co} \bigcup_{P_{U_1, U_2, X, Y_1, Y_2 \in \mathcal{P}} \left\{ \begin{array}{l} 0 \leq R_1 \leq I(U_1; Y_1) \\ 0 \leq R_2 \leq I(U_2; Y_2) \\ R_1 + R_2 \leq I(U_1; Y_1) \\ + I(U_2; Y_2) - I(U_1, U_2) \end{array} \right\} \end{array}$$

Side-information: discrete memoryless channels

[Gel'fand, Pinsker 1980]

Formal Theorem 1

Theorem 1: Let $Z \stackrel{\triangle}{=} (Y_1, Y_2, X_1, X_2, M_{11}, M_{12}, M_{21}, M_{22})$, and let \mathcal{P} be the set of distributions on Z that can be decomposed into the form

$$p(m_{11}|m_{12})p(m_{12})p(m_{21})p(m_{22}|m_{11},m_{21}) p(x_1|m_{11},m_{12})p(x_2|m_{11},m_{21},m_{22}) p(y_1|x_1,x_2)p(y_2|x_1,x_2),$$
(3)

where we additionally require $p(m_{12}, m_{22}) = p(m_{12})p(m_{22})$. For any $Z \in \mathcal{P}$, let S(Z) be the set of all tuples $(R_{11}, R_{12}, R_{21}, R_{22})$ of non-negative real numbers such that:

$$R_{11} \leq I(M_{11}; Y_1 | M_{21}) - I(M_{11}; M_{12})$$

$$R_{21} \leq I(M_{21}; Y_1 | M_{11})$$

$$R_{11} + R_{21} \leq I(M_{11}, M_{21}; Y_1) - I(M_{11}; M_{12})$$

$$R_{12} \leq I(M_{12}; Y_2 | M_{22})$$

$$R_{22} \leq I(M_{22}; Y_2 | M_{12}) - I(M_{22}; M_{11}, M_{21})$$

$$R_{12} + R_{22} \leq I(M_{12}, M_{22}; Y_2) - I(M_{22}; M_{11}, M_{21})$$

Any element in the closure of $\bigcup_{Z \in \mathcal{P}} S(Z)$ is achievable.

$DOF = min(M_T, N_R)$

Broadcast channel

Broadcast channel

Multiple access channel

 $\min(M_{T1} + M_{T2}, N_R)$

Cognitive networks

Wireless networks

Wireless networks

Wireless networks

Throughput(number of nodes)

Scaling laws

• [Gupta+Kumar 2000]: Non-cooperative ad hoc networks

- per-node throughput ~ $O(1/\sqrt{n})$
- •Degradation is due to multi-hop and interference between nodes

Scaling laws

• [Gupta+Kumar 2000]: Non-cooperative ad hoc networks

- per-node throughput ~ $O(1/\sqrt{n})$
- Degradation is due to multi-hop and interference between nodes
- [Ozgur, Leveque, Tse 2007]: Cooperative ad hoc networks
 - nodes may cooperate as in a MIMO system

•per-node throughput ~ O(I) (constant)

Scaling laws

• [Gupta+Kumar 2000]: Non-cooperative ad hoc networks

- per-node throughput ~ $O(1/\sqrt{n})$
- Degradation is due to multi-hop and interference between nodes
- [Ozgur, Leveque, Tse 2007]: Cooperative ad hoc networks
 - nodes may cooperate as in a MIMO system
 - •per-node throughput ~ O(I) (constant)

What about cognitive networks?

Primary transmitterPrimary receiver

[Vu, Devroye, Tarokh 2007]

Single hop

Primary nodes

Single hop

Primary nodes

Secondary nodes

Model I

What we guarantee

Model I

[Vu, Devroye, Tarokh 2007]

What we guarantee

Primary nodes don't suffer too much Pr [primary user's rate $\leq C_0$] $\leq \beta$

[Vu, Devroye, Tarokh 2007]

What we guarantee

Primary nodes don't suffer too much Pr [primary user's rate $\leq C_0$] $\leq \beta$

What we prove

Sum-throughput per cognitive user scale as

O(1) as $n \rightarrow \infty$

while guaranteeing $\Pr[\text{primary user's rate} \leq C_0] \leq \beta$

[Vu, Devroye, Tarokh 2007]

Model

$$E[I_0]_{\alpha=4} = \lambda \pi P \left[-\frac{R^2}{(R^2 - R_0^2)^2} + \frac{(R_0 + \epsilon_p)^2}{\epsilon_p^2 (2R_0 + \epsilon_p)^2} \right]$$

Exact calculation of interference

Lower bound on interference I

Lower bound on interference 2

Outer bound on interference

 $\alpha = 3$

Lower and upper bounds on the expected interference power versus R_0

 $\alpha = 4$

α =5

How to pick parameters

What Ro and ϵ will guarantee Pr [primary user's rate $\leq C_0 \leq \beta$?

Model I

How to pick parameters

How to pick parameters

Model I

Model 2

Ad hoc cognitive networks

Ad hoc cognitive networks

What we guarantee

Primary nodes act as if cognitive network does not exist

Model 2

Primary nodes achieve same scaling law as if cognitive network does not exist

[Jeon, Devroye, Vu, Chung, Tarokh 2008]*

What we guarantee

Primary nodes act as if cognitive network does not exist

Primary nodes achieve same scaling law as if cognitive network does not exist

What we prove

$$T_p(n) = \Theta\left(\sqrt{\frac{1}{n\log n}}\right), \ T_s(m) = \Theta\left(\sqrt{\frac{1}{m\log m}}\right)$$

Model 2

[Jeon, Devroye, Vu, Chung, Tarokh 2008]*

How

Improving Cellular Downlink Capacity

practical application of asymmetric cooperation

Motivation

- Cellular providers are introducing relays to
 - extend cell coverage
 - boost transmission rates
 - improve spectral efficiency

All at lower costs than building new full-fledged base stations

Downlink cellular system

Downlink cellular system

Problem setup: phase I

Problem setup: phase 2

Phase I may result in asymmetry

 $R_1^{(1)}, R_2^{(1)}$ relative to C_1, C_2 Ø determine which relays have which messages!

Time

Phase I may result in asymmetry

 $R_1^{(1)}, R_2^{(1)}$ relative to C_1, C_2 Ø determine which relays have which messages!

Time

Phase I may result in asymmetry

 $R_1^{(1)}, R_2^{(1)}$ relative to C_1, C_2 Ø determine which relays have which messages!

Time

Phase 2

Equivalence to cognitive radio channel

Asymmetric cases

Cognitive radio channel

Equivalence to cognitive radio channel

Asymmetric cases

linear precoding

Cognitive radio channel

dirty-paper coding

Transmitted signal at the 2 relays, resp.

Unit power messages

- Power constraints: $|b_{11}|^2 + |b_{12}|^2 + |b_{21}|^2 + |b_{22}|^2 \le P_R$
- Message knowledge constraints: B has zeros

Y = HX + N= HBU + N

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} + \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$$
$$= \begin{bmatrix} (h_{11}b_{11} + h_{21}b_{21})U_1 + (h_{11}b_{12} + h_{21}b_{22})U_2 \\ (h_{12}b_{11} + h_{22}b_{21})U_1 + (h_{12}b_{12} + h_{22}b_{22})U_2 \end{bmatrix} + \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$$

Receive SINR at Yı
$$\gamma_1 = \frac{(h_{11}b_{11} + h_{21}b_{21})^2}{(h_{11}b_{12} + h_{21}b_{22})^2 + N_1}$$

Receive SINR at Y₂
$$\gamma_2 = \frac{(h_{12}b_{12} + h_{22}b_{22})^2}{(h_{12}b_{11} + h_{22}b_{21})^2 + N_2}$$

$$R_1^{(2)} = \frac{1}{2}\log_2(1+\gamma_1), \quad R_2^{(2)} = \frac{1}{2}\log_2(1+\gamma_2)$$

Optimization

We will do so according to two optimization criteria

Max throughput criterion

Maximize the throughput over 2 phases

 $\begin{array}{l} \max & \frac{n_1 + n_2}{\frac{n_1}{R_1^{(1)}} + \frac{n_2}{R_2^{(1)}} + \max(\frac{n_1}{R_1^{(2)}}, \frac{n_2}{R_2^{(2)}})} \\ \text{s.t.} & n_1, n_2 \ge 0 \\ & R_1^{(1)}, R_2^{(1)} \text{ are phase 1 rates} \\ & R_1^{(2)}, R_2^{(2)} \text{ are phase 2 rates} \end{array}$

n1, n2 are number of bits sent to each mobile, variables to be optimized over

Extreme fairness criterion

Maximize the throughput when forced to send one unit of information to each mobile

 $\begin{array}{l} \max & \frac{n_1 + n_2}{\frac{n_1}{R_1^{(1)}} + \frac{n_2}{R_2^{(1)}} + \max(\frac{n_1}{R_1^{(2)}}, \frac{n_2}{R_2^{(2)}})} \\ \text{s.t.} & n_1, n_2 \ge 0 \\ & R_1^{(1)}, R_2^{(1)} \text{ are phase 1 rates} \\ & R_1^{(2)}, R_2^{(2)} \text{ are phase 2 rates} \end{array}$

$$n_1 = n_2$$

Optimization reduction

We reduce the non-linear optimization problem from one over 8 variables to one over 2 variables.

Max throughput optimization:

$$\begin{array}{c} \max \\ x, b_{11}, \\ \alpha, \beta, \theta \end{array} \xrightarrow{x+1} \\ x/R_1^{(1)} + 1/R_2^{(1)} + \max\left(x/\log_2\left(1 + \frac{|h_{11}|^2}{|\alpha|^2 + N_1/|b_{11}|^2}\right), 1/\log_2\left(1 + \frac{|\beta|^2}{|h_{12}|^2 + N_2/|b_{11}|^2}\right)\right) \\ \text{s.t.} \quad x \ge 0 \quad |b_{11}|^2 \le P_R \\ g_1|\alpha|^2 + 2|g_{12}||\alpha||\beta|\cos(\theta_G + \theta) + g_2|\beta|^2 \le P_R/|b_{11}|^2 - 1
\end{array}$$

Simplified max throughput optimization:

$$\begin{array}{c} \underset{t, |b_{11}|}{\max} \quad \frac{x+1}{x/R_1^{(1)} + 1/R_2^{(1)} + \max\left(x/\log_2\left(1 + \frac{|h_{11}|^2}{|\alpha(t, b_{11}, \theta^*)|^2 + N_1/|b_{11}|^2}\right), 1/\log_2\left(1 + \frac{|\beta(t, b_{11}, \theta^*)|^2}{|h_{12}|^2 + N_2/|b_{11}|^2}\right)\right)} \\ \text{s.t.} \quad x \in \{0, x^*, \infty\}, \quad |b_{11}|^2 \le P_R, \quad t \in [0, \pi], \quad \theta^* \in \{-\theta_G, \pi - \theta_G\} \end{array}$$

Optimization summary

Max throughput

Simulation Setup

Rayleigh fading, pathloss

Simulation Results

Optimization

Bi-directional relaying

Sang Joon Kim, Patrick Mitran, Natasha Devroye, Vahid Tarokh Nodes a and b want to exchange messages over a shared half-duplex memoryless channel with the help of a relay

[Naïve four phase bi-directional cooperation]

Protocols in time

Protocols in relaying

- Decode and Forward (D&F)

- Compress and Forward (C&F)

Mixed Forward : One way uses D&F and the other used C&F

Results

Find inner and outer bounds of capacity region

• Inner bound (achievable region)

$$R \le C_{in} \Longrightarrow \lim_{n \to \infty} P_e = 0$$

• Outer bound

$$R \le C_{out} \Leftarrow \lim_{n \to \infty} P_e = 0$$

• Capacity C lies in

$$C_{in} \leq C \leq C_{out}$$
Plots

Fig. 3. Comparison of bi-directional regions with $h_{ar} = h_{br} = 1$, $h_{ab} =$ 0.2, $P_a = P_b = P_r = 1$ and $N_a = 0.2$, $P_a = P_b = P_r = 10$ and $N_a = 0.2$, $P_a = P_b = P_r = 10^5$ and $N_a = 0.2$ $N_b = N_r = 1.$

Fig. 4. Comparison of bi-directional regions with $h_{ar} = h_{br} = 1$, $h_{ab} =$ regions with $h_{ar} = h_{br} = 1$, $h_{ab} =$ $N_{b} = N_{r} = 1.$

Fig. 5. Comparison of bi-directional $N_b = N_r = 1.$

Opportunistic interference cancellation

Petar Popovski, Natasha Devroye

Motivation

- Rather than Tx-side cognition, can the Rxs behave in a cognitive fashion?
- Assume the cognitive Rx knows the primary's codebook
- Assume the cognitive Tx knows at what power it may transmit so as not to harm the primary Rx
- Assume primary system does not change

Scenario I: MAC

Scenario 2: Interference

Scenario 3: Broadcast

Key idea

- The channel to the cognitive Rx is a multiple access channel: opportunistically decode the primary signal if its rate is below the capacity from the primary to secondary.
- Obtain the rate region described by the MAC but with the MAC rate set to the primary rate. Project down 1 dimension.

Nice technical result

- Can achieve all points on the boundary without time sharing with the primary
- Achieved by:
 - MAC: single message split at cognitive Tx
 - Int: cannot in general achieve
 - BC: cannot in general achieve

Gains for opportunistic MAC

Fig. 5. Opportunistic MAC channel regions.

Rate regions for opportunistic MAC channel with $(P_1, P_2) \in \mathcal{P}_{MAC}$.

Gains for opportunistic interference

Achievable rate regions for opportunistic interference channel, fixed P1=P:

Rate regions for opportunistic interference channel with equal, fixed powers $P_1 = P_2$.

Fig. 6. Opportunistic interference channel regions.

Rate regions for opportunistic interference channel with $(P_1, P_2) \in \mathcal{P}_{INT}$.

Causal cognitive radio channel

The question

What is the capacity of the cognitive radio channel?

 $a_{21}=0.8$

a12=0.2

Achievable rate regions at SNR 10, $a_{21}=0.8$, $a_{12}=0.2$

Different cross-over parameters

Achievable rate regions at SNR 10, a21=0.2, a12=0.8 MIMO broadcast chanr Cognitive channe 2.5 nterference chann Time-sharing °⊔ 0.5 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 R,

Achievable rate regions at SNR 10, a₂₁=a₁₂=0.55

a₂₁=0.2 a₁₂=0.8

a₂₁=0.55 a₁₂=0.55

Causal message knowledge?

What if this link is not free?

Protocol I

Phase I: broadcast channel

Phase 2: cognitive radio channel

Protocol 2

Protocol 3

Only one phase: interference channel.

 X_2 does not know X_1 and does not dirty paper code against it.

Protocol 4

Phase I: broadcast channel

Phase 2: X_2 aids X_1 in sending it message. X_2 does not send any information of its own.

Causal achievable regions

Blue: G=1 Yellow: G=10 Cyan: Genie-Aided

Cognitive radio channel

Unused spectrum

Figure 1: Occupancy of approximately 700 megahertz of spectrum below 1 GHz

Figure 3: Use of a 7 megahertz band below 1 GHz (percentage of a 30-second window by 7 megahertz block that was idle)

Federal Communications Commission Spectrum Policy Task Force Report of the Spectrum Efficiency Working Group November 15, 2002

http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf

Figure 2: Occupancy of a 7.5 megahertz UHF Land Mobile band

Formal definitions

A rate pair (R_1, R_2) is achievable if, for any $\epsilon > 0$, there exists an $(2^{\lceil nR_1 \rceil}, 2^{\lceil nR_2 \rceil}, n, P_e)$ code such that $P_e \leq \epsilon$.

An $(2^{\lceil nR_1 \rceil}, 2^{\lceil nR_2 \rceil}, n, P_e)$ code consists of encoding functions that map messages $W_1 \in \{1, 2, \dots 2^{\lceil nR_1 \rceil} \text{ and } W_2 \in \{1, 2, \dots 2^{\lceil nR_2 \rceil} \text{ and decoding functions that re$ cover these messages such that the average error proba $bility is less than <math>P_e$.

Achievable rate region: set of achievable rate pairs (R_1, R_2) .

Capacity region: the closure of the set of all achievable rate pairs (R_1, R_2) .

Channel capacity
(bits/channel use):
$$C = \begin{cases} \frac{1}{2}\log_2(1+|h|^2P/P_N) & \text{Instantaneous} \\ E_h\left[\frac{1}{2}\log_2(1+|h|^2P/P_N)\right] & \text{Ergodic} \end{cases}$$

Why Cooperate to Communicate?

2 Tx antenna, 2 Rx antenna Multiple Input Multiple Output (MIMO) fading channel with Gaussian noise

Asymmetric cooperation downlink

Which of 4 schemes is optimal

1

Linear throughputs conditions as functions of the channel parameters ${\rm Pmax}=10, {\rm Pg}_0=5, {\rm ubity}=2$ [1,1;1,0] [1,1;0,1] 15 8 85. ā 1.25 1.0 1.75 2.0 1.5 4.5 54 0.25 0.5 $h_{0R_{\rm c}}{=}1, h_{0R_{\rm c}}$ on this sub-1 0 $\mathbf{h}_{11}\!=\!\mathbf{h}_{22}\!=\!\mathbf{1},\ \mathbf{h}_{12}\!=\!\mathbf{h}_{21}$ on this axis

Fig. 15. DPC, Max throughput, $P_{max} = 10, P_B = 5$

Fig. 16. Linear, Max throughput, $P_{max} = 10, P_B = 5$

Fig. 17. DPC, Max throughput, $P_{max} = 5$, $P_B = 10$

Fig. 18. Linear, Max throughput, $P_{max} = 5$, $P_B = 10$

Inter transplate software is find any effective of the charmed parameters there is to $P_{m} = 10$, $P_{m} = 10$,

Fig. 7. DPC, Extreme Fairness, $P_{max} = 10$, $P_B = 10$

Fig. 8. Linear, Extreme Fairness, $P_{max} = 10$, $P_B = 10$

Fig. 9. DPC, Extreme Fairness, $P_{max} = 10$, $P_B = 5$ Fig. 10. Linear,

Fig. 10. Linear, Extreme Fairness, $P_{max} = 10, P_B = 5$

Baselines for comparison

- Depends on criterion
- Round robin with relay
- Best 2 hop overall

Gains of relay cooperation over non-cooperative schemes

Fig. 5. CDF of sum throughput under the max throughput criterion, *random MS* placement.

Fig. 8. CDF of sum throughput under the max throughput criterion, *fixed MS* placement.

6

Fig. 6. CDF of sum throughput under the extreme fairness criterion, *random MS* placement.

Fig. 9. CDF of sum throughput under the extreme fairness criterion, *fixed MS* placement.

Dirty-paper coding

Optimal encoding scheme for a broadcast channel

Dirty-paper coding

2) Case 2: relay 1 knows both messages, relay 2 knows message 1

 Case 2: relay 1 knows both messages, relay 2 knows message 2

4) Case 4: both relays know both messages

 $B_1 = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ $B_2 = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$

$$B_1 = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$$
$$B_2 = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$$

$$B_1 = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$$
$$B_2 = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$$

$$B_1 = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$$
$$B_2 = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$$

Power constraint:

 $trace(B_1 + B_2) \le P_R$

Dirty-paper coding

 The achievable rates can be written in terms of the transmit covariance matrices B₁ and B₂ as:

3) Case 3: relay 1 knows both messages, relay 2 knows message 2

$$R_1 \le \frac{1}{2} \log_2 \left(\frac{|H_1(B_1)H_1^T + N_1|}{|N_1|} \right), \qquad R_2 \le \frac{1}{2} \log_2 \left(\frac{|H_2(B_1 + B_2)H_2^T|}{|H_2B_1H_2^T + N_2|} \right)$$
Optimization

3) Case 2: relay 1 knows both messages, relay 2 knows message 2

4) Case 4: both relays know both messages

For **each** of the 4 cases, find the parameters that maximize throughput or extreme fairness criteria

Cognitive multiple access networks

Natasha Devroye, Patrick Mitran, Vahid Tarokh

Disjoint clusters interfere (inter-cluster) Nodes within a cluster interfere (intra-cluster)

<u>Competitive</u>: MAC <u>Cognitive</u>: Van der Meulen Prelov <u>Cooperative</u>: 2x1 vector MISO

<u>Competitive</u>: generalized interference <u>Cognitive</u>: THIS TALK

<u>Cooperative</u>: almost, but not quite broadcast!

- Motivation and definition
- Relation to previous work
- Theorem intuition
- Achievable region in Gaussian case

Traditionally

Proposed: simultaneous

Traditionally

Proposed: simultaneous

The catch: interference

If X_{21} is close to X_{11}, X_{12} it can obtain their messages

If X_{21} is close to X_{11} , X_{12} it can obtain their messages

Genie assumption: X_{21} knows X_{11} , X_{12} a priori

 X_{21} knows the messages of X_{11} and X_{12} a priori.

Asymmetric problem.

During simultaneous transmission, what rates R₁₁, R₁₂, R₂₁ are achievable?

Private variables M11α, M12α, M21α
(intended for one receiver only)Public variables M11β, M12β, M21β
(intended for all receivers)

 L_t is the rate of M_t

$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} L_{t_2} \right) \le I(Y_2; \mathbf{M}_T | \mathbf{M}_{\overline{T}})$$
$$T_2 = \{ 11\beta, 12\beta, 21\alpha, 21\beta \}$$

$$\bigcap_{T \subset T_1} \left(\sum_{t_1 \in T} L_{t_1} \right) \le I(Y_1; \mathbf{M}_T | \mathbf{M}_{\overline{T}})$$
$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} L_{t_2} \right) \le I(Y_2; \mathbf{M}_T | \mathbf{M}_{\overline{T}})$$

Secondary transmitter has prior knowledge of the primary's message and can:

I.Aid the primary transmitters

2. Use knowledge of interference to mitigate it

a priori message knowledge allows secondary transmitter to act as relay

$$\begin{split} M^{*}_{11\alpha}M^{*}_{11\beta} & M^{*}_{12\alpha}M^{*}_{12\beta} & \text{``aid'' random variables} \\ V_{11\alpha}V_{11\beta} & V_{12\alpha}V_{12\beta} & (M,M^{*}) \text{ combined for notational clarity} \end{split}$$

$$C = \max_{p(m_2, x_2 | x_1)} I(M_2; Y_2) - I(M_2; X_1)$$

$$R_{2jk} \le L_{2jk} - I(V_{2jk}; \mathbf{V_1})$$

is an outer bound for

along with the bounds

 $R_{11} \leq I(Y_1; X_{11}, X_{21} | X_{12})$ $R_{12} \leq I(Y_1; X_{12}, X_{21} | X_{11})$ $R_{21} \leq I(Y_2; X_{21} | X_{11}, X_{12})$

Competitive MAC channel

Cognitive MAC channel Outer bound 3x2 MIMO + inequalities

To send *bin number i*, given interference \times_{1} look in bin *i* for \mathbb{M}_{2} such that $(\mathbb{M}_{2}, \times_{1})$ are jointly typical.

$$C = \max_{p(m_2, x_2 | x_1)} I(M_2; Y_2) - I(M_2; X_1)$$

$$\bigcap_{T \subset T_G} \left(\sum_{t \in T} R_t \right) \leq I(g(\mathbf{X}_1); \mathbf{M}_T | \mathbf{M}_{\overline{T}})$$

$$R_{1ik} = L_{1ik}$$

$$R_{2jk} \leq L_{2jk} - I(V_{2jk}; \mathbf{V_1})$$

MAC equations for S2 to get X1's messages

Gel'fand-Pinsker coding

$$\bigcap_{T \subset T_1} \left(\sum_{t_1 \in T} L_{t_1} \right) \leq I(Y_1, \mathbf{V}_{\overline{T}}; \mathbf{V}_T | W)$$

$$\bigcap_{T \subset T_2} \left(\sum_{t_2 \in T} L_{t_2} \right) \leq I(Y_2, \mathbf{V}_{\overline{T}}; \mathbf{V}_T | W),$$

Overlapping MACs

 $[P(m_{11\alpha})P(m_{11\beta})P(x_{11}|m_{11\alpha},m_{11\beta})] \times [P(m_{12\alpha})P(m_{12\beta})P(x_{12}|m_{12\alpha},m_{12\beta})] \times [P(m_{11\alpha}^{*}|m_{11\alpha})P(m_{11\beta}^{*}|m_{11\beta})] \times [P(m_{12\alpha}^{*}|m_{12\alpha})P(m_{12\beta}^{*}|m_{12\beta})] \times [P(m_{21\alpha}|\mathbf{v_{1}})P(m_{21\beta}|\mathbf{v_{1}})] \times [P(m_{21\alpha}|\mathbf{v_{1}})P(m_{21\beta},\mathbf{m^{*}})] P(y_{1}|\mathbf{x_{1}},\mathbf{x_{2}})P(y_{2}|\mathbf{x_{1}},\mathbf{x_{2}})$

Competitive MAC channel

Volume 0.6536

Cognitive MAC channel Outer bound 3x2 MIMO + inequalities

Volume 2.9127

Volume 1.5064

2-Dimensional Generalized Processor Sharing (2D-GPS)

Raymond Yim

Natasha Devroye

Background: ID-GPS

Rate Guarantees

$$R_i = \frac{\phi_i R}{\sum_{j:b_j \neq 0} \phi_j} \text{ if } b_i \neq 0$$

The goal of Packet-by-Packet GPS (PGPS) server is to mimic the result of GPS

2D-GPS: Overview

Fairness in Augmentation

- In ID-GPS, solutions are both
 - Max-Min Fair
 - Proportionally Fair
- In 2D-GPS, the two fairness metrics will give rise to two different results in general.

Max-Min Fairness

Proportional Fairness

$$\min \sum_{i,j} \left| R_{ij} - k \phi_{ij} \right| \text{ subjected to}$$

$$R_{ij} \ge \phi_{ij}$$

$$R_{ij} = 0 \ if \ \phi_{ij} = 0$$

$$\sum_{i} R_{iq} \le 1 \ \forall \ q$$

$$\sum_{j} R_{pj} \le 1 \ \forall \ p$$

$$k \ge 1$$

$$\left(\sum_{j} R_{pj} - 1\frac{1}{j}\left(\sum_{i} R_{iq} - 1\frac{1}{j}\right) = 0 \text{ if } \phi_{ij} \neq 0$$

The non-augmentability constraints are non-linear

Birkhoff Decomposition

 Any NxN doubly stochastic matrix can be represented by a convex sum of at most (N-1)²+1 permutation matrices.

$$A = \sum_{i} \lambda_{i} P^{i}, \quad \sum_{i} \lambda_{i} = 1$$

Lemma

 Any non-augmentable matrix R from φ can be represented by a convex sum of non-absorbable zero-enforced permutation matrices of φ.

$$A = \sum_{i} \lambda_{i} P^{i}, \qquad \sum_{i} \lambda_{i} = 1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & X & 0 \end{bmatrix}, \begin{bmatrix} 0 & X & 0 \\ X & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & X & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & X \\ X & 0 & 0 \\ 0 & X & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & X \\ 0 & 1 & 0 \\ 0 & X & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & X \\ 0 & 1 & 0 \\ 0 & X & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & X \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Transform problem

Lemma 3: Let $P = \{P^1, \dots, P^z\}$ be the set of all nonabsorbable zero-enforced permutation matrices of Φ , and let p_{ij}^n be the entries of matrix P^n for $n \in \{1, \dots, z\}$. Let $\lambda = (\lambda_1, \dots, \lambda_z)$ be a vector of dimension z = |P|. Suppose λ and k are the solution to the optimization problem:

$$\min \sum_{i,j} \left| \sum_{n: p_{ij}^n = 1} \lambda_n - k \phi_{ij} \right|, \tag{7}$$

subjected to

$$\sum_{n:p_{ij}^n=1} \lambda_n \ge \phi_{ij} \quad \forall \quad i,j, \tag{8}$$

$$\sum_{n} \lambda_n = 1, \tag{9}$$

$$\lambda_n \ge 0 \quad \forall \quad n, \tag{10}$$

$$k \ge 0, \tag{11}$$

and the service rate matrix $R = \sum_{n=1}^{z} \lambda_n P^n$ satisfies the non-augmentability constraint. Then, we say R is the proportional fair solution to Φ , and k is the proportional increase of Φ .

Example 2: Using Φ from Example 1. We first write the service rate matrix R as a convex combination of nonabsorbable zero-enforced permutation matrices. That is, $R = \lambda_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} +$ $\lambda_4 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. The non-augmentability constraint is $\lambda_2 \lambda_3 = 0$. Solve the two linear optimization problems, one with $\lambda_2 = 0$ and one with $\lambda_3 = 0$, the minimum cost result from $\lambda_2 = 0$. The resulting $R = \begin{bmatrix} 0.4 & 0 & 0 \\ 0 & 0.85 & 0.15 \\ 0.6 & 0 & 0.4 \end{bmatrix}$.

Example

$$\Phi = \begin{bmatrix} \frac{1}{5} & 0 & 0\\ 0 & \frac{1}{2} & \frac{1}{10}\\ \frac{2}{5} & 0 & \frac{2}{5} \end{bmatrix}$$

Max-min augmentation

PF augmentation

$$\begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & \frac{5}{6} & \frac{1}{6}\\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

Compound Dirty Paper Channel

Patrick Mitran, Natasha Devroye, Vahid Tarokh Harvard University

- Results on the capacities of channels with side information known at the transmitter assume full channel knowledge
- In realistic cognitive radio channels, we should not assume full channel knowledge. Results for cognitive radio channels use results from channels with known side-info at the transmitter

- Channel with side information at the transmitter
- Fading channels, where the channel state is unknown to the transmitter, but known to the receiver
- What are bounds on the capacity?

Theorem 2: Let $p_{Y|X,S}^{\beta}$ be a compound channel continuously parameterized in $\beta \in C$ (C compact) where the input and output alphabets are standard. Then, the capacity of the compound channel with side-information at the transmitter, C, is bounded by $C_L \leq C \leq C_U$ where

$$C_L = \sup_{p_{U|X,q(S),W}, p_{X|q(S),W}, P_W} \left[\inf_{\beta \in \mathcal{C}} \left[I^{\beta}(U;Y|W) - I(U;q(S)|W) \right] \right]$$
(17)

$$C_U = \sup_{p_{U|X,S,W}^{\beta}, p_{X|S,W}, P_W} \left[\inf_{\beta \in \mathcal{C}} \left[I^{\beta}(U;Y|W) - I(U;S|W) \right] \right],$$
(18)

and the suprema are over all distributions on standard alphabets U, all distributions on finite alphabet random variables W and all quantizers q(.) for S.

Returning to the cognitive radio scenario, we consider the problem of encoding a message V with knowledge of a Gaussian interfering signal S of power Q. The encoder output X is also power constrained to P = Q and the signal received at the decoder is $Y = \beta_1 X + \beta_2 S + Z$ where Z is independent Gaussian noise and the compound parameter is $\beta := (\beta_1, \beta_2)$.

Similar to Costa's scheme, we suggest $U = X + \alpha S$, where α is now chosen as a function of the second order statistics of β_1 and β_2 . The scheme proposed in Section V selects

$$\alpha = \frac{\mu_1^* \mu_2 SNR}{(|\mu_1|^2 + \sigma_1^2)SNR + 1}.$$
(5)

We note the following three facts about this choice for Ricean fading channels where β_1 and β_2 have *K*-factors K_1 and K_2 respectively:

- 1) If $K_1, K_2 \to \infty$, then the scheme is identical to Costa's with $\alpha = P/(P+N)$ and the interference is perfectly mitigated.
- 2) If either $K_1 \rightarrow 0$ or $K_2 \rightarrow 0$, the scheme treats the interferer as noise.
- 3) The performance does not depend on the phase difference between μ_1 and μ_2 as this choice of α rotates the mean channels so that their phases are aligned.

Fig. 6. Communications over a fading channel with a fading interferer whose signal, but not fading coefficient, is known at the transmitter for SNR = 10 dB with P = Q = 1.

SDR Implementation of Collaborative Communications

Oh-Soon Shin, H.T. Kung, Vahid Tarokh Harvard University

> John Chapin's Team Vanu Inc.

- Design and implementation of an OFDMbased space-time collaborative system
- Our lab completed the simulations in Matlab/C, and Vanu Inc. will do the software radio platform design and implementation.

- Carrier frequencies: 902-928 MHz
- Bandwidth: < 5 MHz signal
- 64 subcarriers, spaced at 72kHz

Parameter	Value
Total bandwidth (W)	4.625 MHz
Total number of subcarriers (N_T)	64
Number data subcarriers (N_D)	48
Number pilot subcarriers (N_p)	4
Number of guard or null subcarriers (N_G)	12
Subcarrier frequency spacing (Δ_F)	72.27 kHz
IFFT/FFT period (T_{FFT})	13.838 µsec (64 samples)
Guard interval duration (T_{GI})	2.162 µsec (10 samples)*
OFDM symbol duration (T_{SYM})	16.0 $\mu sec (T_{FFT} + T_{GI})$

· Each PHY frame consists of two subsequent phases

• T-R configuration during each phase

- Listening phase
 - The source broadcasts an information frame
 - The destination and relay try to decode the frame
 - If the destination can decode it correctly, it will ignore the following collaboration frame
- Collaboration phase
 - If the relay succeeded in decoding of the listening frame, the source and relay will transmit space-time coded signal
 - Otherwise, the relay should be silent and only the source transmits as in the listening phase
 - For more reliable decision, the destination can combine the signals from the listening and collaboration phases

Behaves more like a 2x1 system than a Ix1 system

- Develop an equivalent system for cognitive transmission
- Toughest to tackle will be developing codes that layer relaying and dirty-paper coding schemes in the same transmission
- Same synchronization issues
- 2 phase protocols seem practical

To cooperate or to select?

Natasha Devroye, Sumeet Sandhu Intel Research

- Evaluate gains of cooperation between base stations in an 802.16d wireless network over no-cooperation, as well as selection.
- System level simulations that take shadowing, fading, sectorization, pathloss, realistic channel models, and interference from other base-stations/users into account.

- Cooperation performs only slightly better than selection.
- Shadowing drastically alters all simulations.
- Shadowing diversity exists.

Scheduling for SDMA

Natasha Devroye, Vahid Tarokh Harvard University

Goal: Produce a stable system of queues that is stochastically smaller that any queue length process produced by another stable policy.

- Found necessary conditions on Poisson arrival rates of various length packets that ensure the stability the queue length process.
- Simulated various scheduling algorithms, and saw their throughput.

- Base the decision of who to schedule on the current parameters and queue lengths only.
- If there exists a pair (i*, j*) with $C_{i*j*} = I$, and non-empty queues, send the pair such that:

Criteria 1:
$$(i^*, j^*) = \arg \max_{i,j}(q_{1i}, q_{2j})$$

Criteria 2: $(i^*, j^*) = \arg \max_{i,j}(q_{1i}q_{2j}) \left(\frac{l_{1i}+l_{2j}}{\max\{l_{1i}, l_{2j}\}}\right)$
Criteria 3: $(i^*, j^*) = \arg \max_{i,j} \left(\frac{q_{1i}q_{2j}}{q_{1i}+q_{2j}}\right) \left(\frac{l_{1i}+l_{2j}}{\max\{l_{1i}, l_{2j}\}}\right)^2$
Criteria 4: $(i^*, j^*) = \arg \max_{i,j} \left(\frac{q_{1i}q_{2j}}{q_{1i}+q_{2j}}\right) \left(\frac{l_{1i}+l_{2j}}{\max\{l_{1i}, l_{2j}\}}\right)^2$

EBCOT Image Compression

Natasha Devroye, Fabrice Labeau McGill University

- Year long project which consisted of reading D.Taubman's ``High performance scalable image compression with EBCOT " *IEEE Trans. on Image Processing*, vol.9, 2000.
- Learned all background material on image compression techniques, and coded the described algorithm, which forms the basis of JPEG2000 in C++.

- 2-D Wavelet Transform
- Bit-plane encoding
- Adaptive Arithmetic Coding
- On each bit plane, uses Quad-tree, and 4 more coding passes
- Post-compression rate distortion optimization