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Neither FCC nor NTIA routinely quantify actual spectrum usage by users under their 

jurisdiction.  However, during the Summer of 2002 the FCC’s Enforcement Bureau took limited 

measurements of spectrum use in certain urban areas which allow a partial view of actual 

spectrum use.  This effort was limited in duration and only used one site in each city studied, and 

hence generally underestimate actual spectrum use to some degree.  However, the Working 

Group believes that the general observations made here are likely to have broad applicability and 

should be verified in a broader measurement program, possibly in conjunction with noise 

measurements 

 

Figure 1 shows the general nature of spectrum occupancy in an approximately 700 

megahertz block of spectrum below 1 GHz in Atlanta, New Orleans, and San Diego.  This data 

was taken by FCC’s Enforcement Bureau at its offices in each city in June 2002.15 
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  The addresses of the measurement locations are: Atlanta - 3575 Koger Blvd, Duluth GA; New Orleans - 2424 
Edenborn Avenue, Metairie LA; and San Diego - 4542 Ruffner Street, San Diego CA 
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Use information theory to determine 
fundamental limits of cognitive networks
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Capacity bits/channel useC = max
p(x)

I(X; Y )

1

“mutual information” 
between X and Y

I(X; Y ) =
∑

x,y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)
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Gaussian noise channel capacity
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N Gaussian noise ~ N(0,PN)
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such that the average error probability is less
than Pe.

|h|2P
PN

C = max
p(x)

I(X; Y )

C = max
p(x):E[|X|2]≤P

I(X; Y )

=
1

2
log2

(

|h|2P + PN

PN

)

=
1

2
log2 (1 + SNR)

C =







1
2 log2(1 + |h|2P/PN)

Eh

[

1
2 log2(1 + |h|2P/PN)

]

C =







maxQ:Tr(Q)=P
1
2 log2

∣

∣IMR
+ HQH†

∣

∣

maxQ:Tr(Q)=P EH

[

1
2 log2

∣

∣IMR
+ HQH†

∣

∣

]

Y = HX + N

X = H−1U

= BU

⇓

Y = H(H−1U) + N

= U + N

[

X1

X2

]

=

[

b11U1 + b12U2

b21U1 + b22U2

]

5

YX = h X + N
h 

N Gaussian noise ~ N(0,PN)

Wireless channel 
with fading



Gaussian noise channel capacity

Capacity

(bits/channel use)

An (2!nR1", 2!nR2", n, Pe) code consists of en-
coding functions that map messages W1 ∈
{1, 2, · · ·2!nR1" and W2 ∈ {1, 2, · · ·2!nR2" and
decoding functions that recover these messages
such that the average error probability is less
than Pe.

|h|2P
PN

C = max
p(x)

I(X; Y )

C = max
p(x):E[|X|2]≤P

I(X; Y )

=
1

2
log2

(

|h|2P + PN

PN

)

=
1

2
log2 (1 + SNR)

C =







1
2 log2(1 + |h|2P/PN)

Eh

[

1
2 log2(1 + |h|2P/PN)

]

C =







maxQ:Tr(Q)=P
1
2 log2

∣

∣IMR
+ HQH†

∣

∣

maxQ:Tr(Q)=P EH

[

1
2 log2

∣

∣IMR
+ HQH†

∣

∣

]

Y = HX + N

X = H−1U

= BU

⇓

Y = H(H−1U) + N

= U + N

[

X1

X2

]

=

[

b11U1 + b12U2

b21U1 + b22U2

]

5

signal power at Rx

noise power at Rx

YX = h X + N
h 

N Gaussian noise ~ N(0,PN)

Wireless channel 
with fading



Capacity (region)

Y
1

X
1

R1
C10

R1



Y
1

X
1

X
2

Y
2

R1

R2
Achievable region

Capacity region

Outer bound

R1

R2

Capacity region        

Y
1

X
1

R1
C10

R1



Fundamental limits of communication in networks 
of primary users and secondary/cognitive users.
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Interference from signal 1 + Noise

)

P1 P ′
1 P2 = P ′

2 + P ′′
2

4

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

γ = α, β

(R1α, R1β, R2α, R2β)

R1 ≤
1

2
log2

(

1 +
Power of signal 1

Interference from signal 2 + Noise

)

R2 ≤
1

2
log2

(

1 +
Power of signal 2

Interference from signal 1 + Noise

)

P1 P ′
1 P2 = P ′

2 + P ′′
2

4



Message 1

message 1

Y
1

X
1

X
2

Y
2

R1

R2

Message 1: encoded by 
a codeword which is 

generated jointly 
Gaussian according to 

N(0,B1)

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B2)H
†
2 + PN2

PN2

)

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

9

=



Message 1

message 1

Y
1

X
1

X
2

Y
2

R1

R2

Message 1: encoded by 
a codeword which is 

generated jointly 
Gaussian according to 

N(0,B1)

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B2)H
†
2 + PN2

PN2

)

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

9

=
B2 =

[

0 0
0 P ′′

2

]

B2 =

[

0 0
0 c22

]

[

E[|X1|2] E[X1X2]
E[X1X2] E[|X2|2]

]

B1 =

[

P ′
1 z

z P ′
2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B2)H
†
2 + PN2

PN2

)

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

10



message 2

Y
1

X
1

X
2

Y
2

R1

R2

Message 2: encoded by 
a codeword which is 
generated as jointly 

Gaussian according to 
N(0,B2)

=

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B2)H
†
2 + PN2

PN2

)

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

9

Message 2



Send the superposition

Y
1

X
1

X
2

Y
2

R1

R2

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Cognitive region = Convex hull of















































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+Q1

H1(B2)H†
1+Q1

)

= R1(π12)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+Q2

Q2

)

= R2(π12)

B1, B2 " 0, B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

, B1 + B2 !

[

P1 z
z P2

]

, z2 ≤ P1P2















































MIMO BC region = Convex hull of

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(R1, R2) :

R1 ≤ 1
2 log2

„

H1(B1+B2)H†
1
+Q1

H1(B2)H†
1
+Q1

«

= R1(π12)

R2 ≤ 1
2 log2

„

H2(B2)H†
2
+Q2

Q2

«

= R2(π12)

S

R1 ≤ 1
2 log2

„

H1(B1)H†
1
+Q1

Q1

«

= R1(π21)

R2 ≤ 1
2 log2

„

H2(B1+B2)H†
2
+Q2

H2(B1)H†
2
+Q2

«

= R2(π21)

B1, B2 # 0, B1 =

»

P ′
1 z′

z′ P ′
2

–

, B2 =

»

P ′′
1 z′′

z′′ P ′′
2

–

, B1 + B2 $

»

P1 (z′ + z′′)
(z′ + z′′) P2

–

, (z′ + z′′)2 ≤ P1P2

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

9

Overall transmit covariance matrix 



Send the superposition

Y
1

X
1

X
2

Y
2

R1

R2

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Cognitive region = Convex hull of















































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+Q1

H1(B2)H†
1+Q1

)

= R1(π12)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+Q2

Q2

)

= R2(π12)

B1, B2 " 0, B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

, B1 + B2 !

[

P1 z
z P2

]

, z2 ≤ P1P2















































MIMO BC region = Convex hull of

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(R1, R2) :

R1 ≤ 1
2 log2

„

H1(B1+B2)H†
1
+Q1

H1(B2)H†
1
+Q1

«

= R1(π12)

R2 ≤ 1
2 log2

„

H2(B2)H†
2
+Q2

Q2

«

= R2(π12)

S

R1 ≤ 1
2 log2

„

H1(B1)H†
1
+Q1

Q1

«

= R1(π21)

R2 ≤ 1
2 log2

„

H2(B1+B2)H†
2
+Q2

H2(B1)H†
2
+Q2

«

= R2(π21)

B1, B2 # 0, B1 =

»

P ′
1 z′

z′ P ′
2

–

, B2 =

»

P ′′
1 z′′

z′′ P ′′
2

–

, B1 + B2 $

»

P1 (z′ + z′′)
(z′ + z′′) P2

–

, (z′ + z′′)2 ≤ P1P2

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

9

Per antenna power constraints



Send the superposition

Y
1

X
1

X
2

Y
2

R1

R2

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Cognitive region = Convex hull of















































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+Q1

H1(B2)H†
1+Q1

)

= R1(π12)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+Q2

Q2

)

= R2(π12)

B1, B2 " 0, B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

, B1 + B2 !

[

P1 z
z P2

]

, z2 ≤ P1P2















































MIMO BC region = Convex hull of

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(R1, R2) :

R1 ≤ 1
2 log2

„

H1(B1+B2)H†
1
+Q1

H1(B2)H†
1
+Q1

«

= R1(π12)

R2 ≤ 1
2 log2

„

H2(B2)H†
2
+Q2

Q2

«

= R2(π12)

S

R1 ≤ 1
2 log2

„

H1(B1)H†
1
+Q1

Q1

«

= R1(π21)

R2 ≤ 1
2 log2

„

H2(B1+B2)H†
2
+Q2

H2(B1)H†
2
+Q2

«

= R2(π21)

B1, B2 # 0, B1 =

»

P ′
1 z′

z′ P ′
2

–

, B2 =

»

P ′′
1 z′′

z′′ P ′′
2

–

, B1 + B2 $

»

P1 (z′ + z′′)
(z′ + z′′) P2

–

, (z′ + z′′)2 ≤ P1P2

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

9

Ensures Tx covariance 
matrix  is positive semi-

definite

Correlation between 
two antennas



Send the superposition

Y
1

X
1

X
2

Y
2

R1

R2

What rates R1, R2 are 
achievable?

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Cognitive region = Convex hull of















































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+Q1

H1(B2)H†
1+Q1

)

= R1(π12)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+Q2

Q2

)

= R2(π12)

B1, B2 " 0, B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

, B1 + B2 !

[

P1 z
z P2

]

, z2 ≤ P1P2















































MIMO BC region = Convex hull of

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(R1, R2) :

R1 ≤ 1
2 log2

„

H1(B1+B2)H†
1
+Q1

H1(B2)H†
1
+Q1

«

= R1(π12)

R2 ≤ 1
2 log2

„

H2(B2)H†
2
+Q2

Q2

«

= R2(π12)

S

R1 ≤ 1
2 log2

„

H1(B1)H†
1
+Q1

Q1

«

= R1(π21)

R2 ≤ 1
2 log2

„

H2(B1+B2)H†
2
+Q2

H2(B1)H†
2
+Q2

«

= R2(π21)

B1, B2 # 0, B1 =

»

P ′
1 z′

z′ P ′
2

–

, B2 =

»

P ′′
1 z′′

z′′ P ′′
2

–

, B1 + B2 $

»

P1 (z′ + z′′)
(z′ + z′′) P2

–

, (z′ + z′′)2 ≤ P1P2

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

9

Ensures Tx covariance 
matrix  is positive semi-

definite

Correlation between 
two antennas



R1: Rate of message 1

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

B =

[

P1 z
z P2

]

= B1 + B2

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)

5

Y
1

X
1

X
2

Y
2

H1

N1

R1
B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + N2

H2(B1)H
†
2 + N2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+N1

H1(B2)H†
1+N1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+N2

N2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]















































































9



R1 :Rate of message 1

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

B =

[

P1 z
z P2

]

= B1 + B2

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)

5

Y
1

X
1

X
2

Y
2

H1

N1

Interference + noise power 

Signal power at Y1

R1

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

9



R1 :Rate of message 1

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

B =

[

P1 z
z P2

]

= B1 + B2

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)

5

Y
1

X
1

X
2

Y
2

H1

N1

Interference + noise power 

Signal power at Y1

R1B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+PN1

H1(B2)H†
1+PN1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+PN2

PN2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]














































































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B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]
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R2 : Rate of message 2

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

B =

[

P1 z
z P2

]

= B1 + B2

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)

5

Interference + noise power 

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+PN1

H1(B2)H†
1+PN1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+PN2

PN2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]














































































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R2 : Rate of message 2

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

B =

[

P1 z
z P2

]

= B1 + B2

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

B = B1 + B2

γ = α, β

(R1α, R1β, R2α, R2β)

5

Interference + noise power 

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+PN1

H1(B2)H†
1+PN1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+PN2

PN2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]














































































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B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+PN1

H1(B2)H†
1+PN1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+PN2

PN2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]














































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
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
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Since Tx 2 knows message 1,            
we can do better!



Since Tx 2 knows message 1,            
we can do better!

Dirty paper coding



Dirty-paper coding 

[Costa, 1983]
[Gel’fand, Pinsker, 1980]



Dirty-paper coding 

D I R T Y



Dirty-paper coding 



write in black ink?

Dirty-paper coding 

D I RTY



adjust your ink ✓

Dirty-paper coding 

D I R TYD I R T Y



00

01

10

11

Send 2 bits:

Example of dirty-paper coding



00

01

10

11

Send 2 bits:

Power limited

Example of dirty-paper coding



Interference

Example of dirty-paper coding



Interference

Do NOT have 
enough power 
to subtract off 

the interference!

Power limited

Example of dirty-paper coding



How to send 01?

00

01

10

11

Example of dirty-paper coding



How to send 01?

00

01

10

11

Example of dirty-paper coding



How to send 01?

00

01

10

11

Interference

Example of dirty-paper coding



Dirty-paper coding

X
2

Y
2

=

NO power penalty!
NOT subtracting off interference!

Y
1

X
1

X
2

Y
2



Rate of message 2: 
WITHOUT and WITH dirty-paper coding

Interference + noise power 

Signal power at Y2

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+PN1

H1(B2)H†
1+PN1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+PN2

PN2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]














































































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WITHOUT



No interference + noise 

Signal at Y2

Rate of message 2: 
WITHOUT and WITH dirty-paper coding

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B2)H
†
2 + PN2

PN2

)

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

R1 ≤
1

2
log2

(

H1(B1 + B2)H
†
1 + PN1

H1(B2)H
†
1 + PN1

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]
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B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Y1 = H1X + N1

B2 =

[

0 0
0 ∗

]

B1 =

[

∗ ∗
∗ ∗

]

B2 =

[

0 0
0 P ′′

2

]

B1 =

[

P ′
1 z

z P ′
2

]

R2 ≤
1

2
log2

(

H2(B1 + B2)H
†
2 + PN2

H2(B1)H
†
2 + PN2

)

B = B1 + B2
[

P1 z
z P2

]

=

[

P ′
1 z

z P ′
2

]

+

[

0 0
0 P ′′

2

]

= conv















































































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+PN1

H1(B2)H†
1+PN1

)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+PN2

PN2

)

B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

Bi " 0, z2 ≤ P1P2

B1 + B2 !

[

P1 z
z P2

]















































































9

WITHOUT

WITH



Gaussian cognitive channel

 Matrices with zeros

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

Cognitive region = Convex hull of















































(R1, R2) :

R1 ≤ 1
2 log2

(

H1(B1+B2)H†
1+Q1

H1(B2)H†
1+Q1

)

= R1(π12)

R2 ≤ 1
2 log2

(

H2(B2)H†
2+Q2

Q2

)

= R2(π12)

B1, B2 " 0, B1 =

[

P ′
1 z

z P ′
2

]

, B2 =

[

0 0
0 P ′′

2

]

, B1 + B2 !

[

P1 z
z P2

]

, z2 ≤ P1P2


















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Gaussian MIMO broadcast 
channel region
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0 x
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Gaussian MIMO broadcast 
channel region
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B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =
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Gaussian MIMO broadcast 
channel region

Full matrices

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =
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0 0
0 x

)
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Cognitive region = Convex hull of
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Strongest result

The discrete memoryless cognitive radio channel

Largest to date known general region



C = max
p(x)

I(X; Y )

C =
1

2
log2(1 + P/N)

R2 ≤ I(Y2; X2|X1)

Let Z = (Y1, Y2,X1,X2,V1,V2, W ) be distributed as:

P (w) × P (m1α|w)P (m1β|w)P (x1|m1α, m1β, w)

× P (m∗
1α|m1α, w)P (m∗

1β|m1β, w)P (m2α|v1, w)P (m2β|v1, w)

× P (x2|m2α, m2β,m
∗, w)P (y1|x1,x2)P (y2|x1,x2)

P (w) ×

[

p
∏

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

]

×

[

q
∏

j=1

P ((m∗
1i1)

j|m1i1, w)P ((m∗
1i2)

j |m1i2, w)P (m2j1|v1, w)P (m2j2|v1, w)

]

× P (x2j|m2j1, m2j2, (m
∗)j, w)P (y1|x1,x2)P (y2|x1,x2), (1)

R1α ≤ I(M1α; YR|M1β , W )

R1β ≤ I(M1β ; YR|M1α, W )

R1α + R1β ≤ I(M1α, M1β ; YR|W )

R1γ = L1γ

R2γ ≤ L2γ − I(V2γ ; V1α, V1β)

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1,VT;VT) + f(VT)

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2,VT;VT) + f(VT)

1

C = max
p(x)

I(X; Y )

C =
1

2
log2(1 + P/N)

R2 ≤ I(Y2; X2|X1)

Let Z = (Y1, Y2,X1,X2,V1,V2, W ) be distributed as:

P (w) × P (m1α|w)P (m1β|w)P (x1|m1α, m1β, w)
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1α|m1α, w)P (m∗
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∏
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∏
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≤ I(Y1,VT;VT) + f(VT)

⋂
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t2∈T

Lt2

)

≤ I(Y2,VT;VT) + f(VT)

1

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =

(

0 0
0 x

)

, x ∈ R}

γ = α, β

(R1α, R1β, R2α, R2β)
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j |m1i2, w)P (m2j1|v1, w)P (m2j2|v1, w)
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C = max
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C =
1
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log2(1 + P/N)

R2 ≤ I(Y2; X2|X1)

Let Z = (Y1, Y2,X1,X2,V1,V2, W ) be distributed as:
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× P (m∗
1α|m1α, w)P (m∗

1β|m1β, w)P (m2α|v1, w)P (m2β|v1, w)

× P (x2|m2α, m2β,m
∗, w)P (y1|x1,x2)P (y2|x1,x2)

P (w) ×

[

p
∏

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

]

×

[

q
∏

j=1

P ((m∗
1i1)

j|m1i1, w)P ((m∗
1i2)

j |m1i2, w)P (m2j1|v1, w)P (m2j2|v1, w)

]

× P (x2j|m2j1, m2j2, (m
∗)j, w)P (y1|x1,x2)P (y2|x1,x2), (1)

R1α ≤ I(M1α; YR|M1β , W )

R1β ≤ I(M1β ; YR|M1α, W )
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≤ I(Y1,VT;VT) + f(VT)

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2,VT;VT) + f(VT)

1

B = {(B1, B2)|B1 ! 0, B2 ! 0, B1 + B2 " S, B2 =
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0 0
0 x

)
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γ = α, β
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4.2 The multiplexing gains of cognitive channels

The previous sections showed that when two interfering point-to-point (or multiple-access)

links act in a cognitive fashion, or employ asymmetric non-causal side information, inter-

ference may be at least partially mitigated, allowing for higher spectral efficiency. It is

thus possible for the cognitive secondary user to communicate at a non-zero rate while the

primary user suffers no loss in rate. At medium SNR levels, such as the values for which

the regions were evaluated, there is an advantage to cognitive transmission. One immediate

question that arises is how cognitive transmission performs in the high SNR regime. For

Gaussian noise channels, the multiplexing gain is defined as the limit of the ratio of the

maximal achieved rate to the log(SNR) as the SNR tends to infinity1. That is,

multiplexing gain := lim
max SNR→∞

R(SNR)

log(SNR)
.

Since a Gaussian noise point-to-point channel has channel capacity

C =
1

2
log2 (1 + SNR) ,

as the SNR→ ∞, the capacity of a single point to point channel scales as log2(SNR).

The multiplexing gain is of particular interest in multiple input multiple output channels,

and may be thought of as the number of clean point-to-point channels captured by the

MIMO channel. The multiplexing gain is thus a measure of how well a MIMO channel is

able to avoid self-interference. This is particularly relevant in studying cooperative commu-

nication in distributed systems where multiple Txs and Rxs wish to share the same medium.

As such, the multiplexing gain of various multiple input multiple output (MIMO) systems

has been recently studied in the literature [37]. For the single user point-to-point MIMO

1Note that the usual factor 1
2 is omitted in any rate expressions, but rather the number of times the

sum-rate looks like log(SNR) is the multiplexing gain.

Scales like log(SNR) as SNR →∞
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Degrees of freedom

Degrees of freedom (DOF) measures the number 
of point-to-point Gaussian channels contained in a 
MIMO channel as SNR →∞

DOF = lim
SNR→∞

Sum capacity(SNR)

log(SNR)

1

point-to-point channel

MIMO channel
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and

X
1

X
2

Y
2

Side-information:
Gaussian noise channels

M2 [Gel’fand, Pinsker 1980] 



random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and

X
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2
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• Capacity is that of interference-free channel!
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Achievable rate region for  
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on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)

p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),

(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real

numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M12) − I(M11;M12) (4.4)

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access

channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker

coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we

consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →

Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-

Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in

such that:
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Figure 4.2: Three instances of the cognitive X-channel. The X-channel has four messages
Wij, i, j = 1, 2 one from each Tx i to each Rx j. (a) The cognitive X-channel with message
W11 non-causally known message at Tx 2. (b) The cognitive X-channel with message W11

and W12 non-causally known at Tx 2. (c) The cognitive X-channel with codeword M11,
rather than message W11 as asymmetric side information at Tx 2.

n → ∞. An achievable region for this channel is the closure of a subset of the positive
region of R4 of achievable rate tuples. For an achievable rate tuple (R11, R12, R21, R22) the

sum-rate to Rx 1 is defined to be R1
!
= R11 + R21 and the sum-rate to Rx 2 is similarly

defined as R2
!
= R12 + R22. The sum-rate of this channel is the total sum of all rates

achieved, that is R11 + R12 + R21 + R22.
In the X-channel, at Tx 1, the encodings M11 and M12 may be jointly generated, for

example using a Gel’fand-Pinsker binning scheme. That is, one message may treat the
other as non-causally known interference and code so as to mitigate it. At Tx 2, not
only may the encodings M21 and M22 be jointly designed, but they may additionally use
the encoding M11 as a-priori known interference. Thus, Tx 2 could encode M22 so as to
potentially mitigate the interference Y2 will experience from M11 as well as M21. Theorem
7 is the main result of this section, and proves an achievable rate region for the discrete
cognitive X-channel with side-information of type (c).

Theorem 7 Let Z
!
= (Y1,Y2,X1,X2,M11,M12,M21,M22), and let P be the set of distributions

on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)
p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),
(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real
numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M21) − I(M11;M12) (4.4)Chapter 4: The cognitive X-channel 45

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access
channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker
coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we
consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →
Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-
Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in
order to guarantee finding an n-sequence m22 in the desired bin that is jointly typical with
any given m11,m21 pair.

Full proof: It is sufficient to show the achievability of the interior elements of S(Z) for
each Z ∈ P. Fix Z = (Y1, Y2,X1,X2,M11,M12,M21,M22) and take any (R11, R12, R21, R22)
satisfying (4.2)–(4.7). The standard notation and notions of strong ε-typicality, strong joint
typicality, and strongly typical sets of [12] will be used. Let some distribution on Z of
the form (4.1) be given. For any ε > 0 it is sufficient to prove that there exists a large
enough block length n to ensure that the probability of error is less than ε. We drop the n
superscript when it is obvious from context.

Codebook generation: To generate the codebook, first note that we may obtain the
marginal distributions as p(m11)=

∑
m12

p(m11,m12), and p(m22) =
∑

m11,m21
p(m22|m11,m21)

p(m11) p(m21). We will generate the codebook according to the distribution

p(m11)p(m12)p(m21)p(m22)p(x1|m11,m12)p(x2|m11,m21,m22). (4.8)

To do so,

• Generate 2nR12 sequences m12(j) i.i.d. according to
∏n

t=1 p(m(t)
12 ).

• Generate 2nL11 sequences m11(i) i.i.d. according to
∏n

t=1 p(m(t)
11 ) and throw them into

2nR11 bins uniformly.

• Generate 2nR21 sequences m21(k) i.i.d. according to
∏n

t=1 p(m(t)
21 ).

• Generate 2nL22 sequences m22(l) i.i.d. according to
∏n

t=1 p(m(t)
22 ) and throw them into

2nR22 bins uniformly.

Define the message index spaces W11
"
= {1, 2, . . . , 2#n(R11)$}, W12

"
= {1, 2, . . . , 2#n(R12)$},

W21
"
= {1, 2, . . . , 2#n(R21)$} and W22

"
= {1, 2, . . . , 2#n(R22)$}. The aim is to send a four

dimensional message w∗ "
= (w11, w12, w21, w22) ∈ W∗ "

= W11 × W12 × W21 × W22. Note
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on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)

p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),

(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real

numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M12) − I(M11;M12) (4.4)

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access

channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker

coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we

consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →

Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-

Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in

such that:
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Figure 4.2: Three instances of the cognitive X-channel. The X-channel has four messages
Wij, i, j = 1, 2 one from each Tx i to each Rx j. (a) The cognitive X-channel with message
W11 non-causally known message at Tx 2. (b) The cognitive X-channel with message W11

and W12 non-causally known at Tx 2. (c) The cognitive X-channel with codeword M11,
rather than message W11 as asymmetric side information at Tx 2.

n → ∞. An achievable region for this channel is the closure of a subset of the positive
region of R4 of achievable rate tuples. For an achievable rate tuple (R11, R12, R21, R22) the

sum-rate to Rx 1 is defined to be R1
!
= R11 + R21 and the sum-rate to Rx 2 is similarly

defined as R2
!
= R12 + R22. The sum-rate of this channel is the total sum of all rates

achieved, that is R11 + R12 + R21 + R22.
In the X-channel, at Tx 1, the encodings M11 and M12 may be jointly generated, for

example using a Gel’fand-Pinsker binning scheme. That is, one message may treat the
other as non-causally known interference and code so as to mitigate it. At Tx 2, not
only may the encodings M21 and M22 be jointly designed, but they may additionally use
the encoding M11 as a-priori known interference. Thus, Tx 2 could encode M22 so as to
potentially mitigate the interference Y2 will experience from M11 as well as M21. Theorem
7 is the main result of this section, and proves an achievable rate region for the discrete
cognitive X-channel with side-information of type (c).

Theorem 7 Let Z
!
= (Y1,Y2,X1,X2,M11,M12,M21,M22), and let P be the set of distributions

on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)
p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),
(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real
numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M21) − I(M11;M12) (4.4)Chapter 4: The cognitive X-channel 45

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access
channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker
coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we
consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →
Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-
Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in
order to guarantee finding an n-sequence m22 in the desired bin that is jointly typical with
any given m11,m21 pair.

Full proof: It is sufficient to show the achievability of the interior elements of S(Z) for
each Z ∈ P. Fix Z = (Y1, Y2,X1,X2,M11,M12,M21,M22) and take any (R11, R12, R21, R22)
satisfying (4.2)–(4.7). The standard notation and notions of strong ε-typicality, strong joint
typicality, and strongly typical sets of [12] will be used. Let some distribution on Z of
the form (4.1) be given. For any ε > 0 it is sufficient to prove that there exists a large
enough block length n to ensure that the probability of error is less than ε. We drop the n
superscript when it is obvious from context.

Codebook generation: To generate the codebook, first note that we may obtain the
marginal distributions as p(m11)=

∑
m12

p(m11,m12), and p(m22) =
∑

m11,m21
p(m22|m11,m21)

p(m11) p(m21). We will generate the codebook according to the distribution

p(m11)p(m12)p(m21)p(m22)p(x1|m11,m12)p(x2|m11,m21,m22). (4.8)

To do so,

• Generate 2nR12 sequences m12(j) i.i.d. according to
∏n

t=1 p(m(t)
12 ).

• Generate 2nL11 sequences m11(i) i.i.d. according to
∏n

t=1 p(m(t)
11 ) and throw them into

2nR11 bins uniformly.

• Generate 2nR21 sequences m21(k) i.i.d. according to
∏n

t=1 p(m(t)
21 ).

• Generate 2nL22 sequences m22(l) i.i.d. according to
∏n

t=1 p(m(t)
22 ) and throw them into

2nR22 bins uniformly.

Define the message index spaces W11
"
= {1, 2, . . . , 2#n(R11)$}, W12

"
= {1, 2, . . . , 2#n(R12)$},

W21
"
= {1, 2, . . . , 2#n(R21)$} and W22

"
= {1, 2, . . . , 2#n(R22)$}. The aim is to send a four

dimensional message w∗ "
= (w11, w12, w21, w22) ∈ W∗ "

= W11 × W12 × W21 × W22. Note

MAC+Gel’fand-Pinsker to Rx 1

}
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on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)

p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),

(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real

numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M12) − I(M11;M12) (4.4)

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access

channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker

coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we

consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →

Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-

Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in

such that:
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Figure 4.2: Three instances of the cognitive X-channel. The X-channel has four messages
Wij, i, j = 1, 2 one from each Tx i to each Rx j. (a) The cognitive X-channel with message
W11 non-causally known message at Tx 2. (b) The cognitive X-channel with message W11

and W12 non-causally known at Tx 2. (c) The cognitive X-channel with codeword M11,
rather than message W11 as asymmetric side information at Tx 2.

n → ∞. An achievable region for this channel is the closure of a subset of the positive
region of R4 of achievable rate tuples. For an achievable rate tuple (R11, R12, R21, R22) the

sum-rate to Rx 1 is defined to be R1
!
= R11 + R21 and the sum-rate to Rx 2 is similarly

defined as R2
!
= R12 + R22. The sum-rate of this channel is the total sum of all rates

achieved, that is R11 + R12 + R21 + R22.
In the X-channel, at Tx 1, the encodings M11 and M12 may be jointly generated, for

example using a Gel’fand-Pinsker binning scheme. That is, one message may treat the
other as non-causally known interference and code so as to mitigate it. At Tx 2, not
only may the encodings M21 and M22 be jointly designed, but they may additionally use
the encoding M11 as a-priori known interference. Thus, Tx 2 could encode M22 so as to
potentially mitigate the interference Y2 will experience from M11 as well as M21. Theorem
7 is the main result of this section, and proves an achievable rate region for the discrete
cognitive X-channel with side-information of type (c).

Theorem 7 Let Z
!
= (Y1,Y2,X1,X2,M11,M12,M21,M22), and let P be the set of distributions

on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)
p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),
(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real
numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M21) − I(M11;M12) (4.4)Chapter 4: The cognitive X-channel 45

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access
channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker
coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we
consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →
Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-
Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in
order to guarantee finding an n-sequence m22 in the desired bin that is jointly typical with
any given m11,m21 pair.

Full proof: It is sufficient to show the achievability of the interior elements of S(Z) for
each Z ∈ P. Fix Z = (Y1, Y2,X1,X2,M11,M12,M21,M22) and take any (R11, R12, R21, R22)
satisfying (4.2)–(4.7). The standard notation and notions of strong ε-typicality, strong joint
typicality, and strongly typical sets of [12] will be used. Let some distribution on Z of
the form (4.1) be given. For any ε > 0 it is sufficient to prove that there exists a large
enough block length n to ensure that the probability of error is less than ε. We drop the n
superscript when it is obvious from context.

Codebook generation: To generate the codebook, first note that we may obtain the
marginal distributions as p(m11)=

∑
m12

p(m11,m12), and p(m22) =
∑

m11,m21
p(m22|m11,m21)

p(m11) p(m21). We will generate the codebook according to the distribution

p(m11)p(m12)p(m21)p(m22)p(x1|m11,m12)p(x2|m11,m21,m22). (4.8)

To do so,

• Generate 2nR12 sequences m12(j) i.i.d. according to
∏n

t=1 p(m(t)
12 ).

• Generate 2nL11 sequences m11(i) i.i.d. according to
∏n

t=1 p(m(t)
11 ) and throw them into

2nR11 bins uniformly.

• Generate 2nR21 sequences m21(k) i.i.d. according to
∏n

t=1 p(m(t)
21 ).

• Generate 2nL22 sequences m22(l) i.i.d. according to
∏n

t=1 p(m(t)
22 ) and throw them into

2nR22 bins uniformly.

Define the message index spaces W11
"
= {1, 2, . . . , 2#n(R11)$}, W12

"
= {1, 2, . . . , 2#n(R12)$},

W21
"
= {1, 2, . . . , 2#n(R21)$} and W22

"
= {1, 2, . . . , 2#n(R22)$}. The aim is to send a four

dimensional message w∗ "
= (w11, w12, w21, w22) ∈ W∗ "

= W11 × W12 × W21 × W22. Note

MAC+Gel’fand-Pinsker to Rx 1

}
MAC+Gel’fand-Pinsker to Rx 2

}
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and

Approach

[Costa’s “Writing on Dirty Paper” 1980]  

Y = HX + N (1)

= HBU + N (2)

X = H−1PU

M2 = X2 + γX1

γ =
P2

P2 + Q2

[

Y1

Y2

]

=

[

h11 h21

h12 h22

] [

X1

X2

]

+

[
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N2

]

[

X1

X2

]

=

[

d11

d12

]

U1 +

[

d21

d22

]

U2

covariance(X) =

[

b(1)
11 b(1)

12

b(1)
12 b(1)

22

]

+

[

b(2)
11 b(2)

12

b(2)
21 b(2)

22

]

= B1 + B2

[

X1
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]

=
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b11 b12

b21 b22
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= B1 + B2
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2 + |b21|
2 + |b22|

2 ≤ PR
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and

Approach

[Costa’s “Writing on Dirty Paper” 1980]  
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= HBU + N (2)

X = H−1PU

M2 = X2 + γX1

γ =
P2

P2 + Q2

[

Y1

Y2

]

=

[

h11 h21

h12 h22

] [

X1

X2

]

+

[

N1

N2

]

[

X1

X2

]

=

[

d11

d12

]

U1 +

[

d21

d22

]

U2
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[

b(1)
11 b(1)

12

b(1)
12 b(1)

22

]

+
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11 b(2)
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21 b(2)

22

]

= B1 + B2

[
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X2

]

=
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b11 b12

b21 b22
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]

= B1 + B2
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Figure 4.2: Three instances of the cognitive X-channel. The X-channel has four messages
Wij, i, j = 1, 2 one from each Tx i to each Rx j. (a) The cognitive X-channel with message
W11 non-causally known message at Tx 2. (b) The cognitive X-channel with message W11

and W12 non-causally known at Tx 2. (c) The cognitive X-channel with codeword M11,
rather than message W11 as asymmetric side information at Tx 2.

n → ∞. An achievable region for this channel is the closure of a subset of the positive
region of R4 of achievable rate tuples. For an achievable rate tuple (R11, R12, R21, R22) the

sum-rate to Rx 1 is defined to be R1
!
= R11 + R21 and the sum-rate to Rx 2 is similarly

defined as R2
!
= R12 + R22. The sum-rate of this channel is the total sum of all rates

achieved, that is R11 + R12 + R21 + R22.
In the X-channel, at Tx 1, the encodings M11 and M12 may be jointly generated, for

example using a Gel’fand-Pinsker binning scheme. That is, one message may treat the
other as non-causally known interference and code so as to mitigate it. At Tx 2, not
only may the encodings M21 and M22 be jointly designed, but they may additionally use
the encoding M11 as a-priori known interference. Thus, Tx 2 could encode M22 so as to
potentially mitigate the interference Y2 will experience from M11 as well as M21. Theorem
7 is the main result of this section, and proves an achievable rate region for the discrete
cognitive X-channel with side-information of type (c).

Theorem 7 Let Z
!
= (Y1,Y2,X1,X2,M11,M12,M21,M22), and let P be the set of distributions

on Z that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11,m21)
p(x1|m11,m12)p(x2|m11,m21,m22)

p(y1|x1, x2)p(y2|x1, x2),
(4.1)

For any Z ∈ P, let S(Z) be the set of all tuples (R11, R12, R21, R22) of non-negative real
numbers such that:

R11 ≤ I(M11;Y1|M21) − I(M11;M12) (4.2)

R21 ≤ I(M21;Y1|M11) (4.3)

R11 + R21 ≤ I(M11,M21;Y1) + I(M11;M21) − I(M11;M12) (4.4)Chapter 4: The cognitive X-channel 45

R12 ≤ I(M12;Y2|M22) (4.5)

R22 ≤ I(M22;Y2|M12) − I(M22;M11,M21) (4.6)

R12 + R22 ≤ I(M12,M22;Y2) + I(M12;M22) − I(M22;M11,M21) (4.7)

Let S be the closure of ∪Z∈PS(Z). Then any element of S is achievable.

Proof:

Proof intuition: Notice that the channel from (M11,M21) → Y1 is a multiple-access
channel with encoders that are possibly correlated [10, 58] and employ Gel’fand-Pinsker
coding [25, 6]. The MAC equations obtained thus correspond to (4.2)–(4.4). The M11 we
consider uses binning scheme with respect to M12, but this does not alter the (M11,M21) →
Y1 MAC equations other than reduce the rate R11 by I(M11;M12) (analogous to Gel’fand-
Pinsker [25] coding). Similarly, for reliable communication over the MAC (M12,M22) → Y2

we require (4.5)–(4.7). There is a penalty of I(M22;M11,M21) for the rate R22 incurred in
order to guarantee finding an n-sequence m22 in the desired bin that is jointly typical with
any given m11,m21 pair.

Full proof: It is sufficient to show the achievability of the interior elements of S(Z) for
each Z ∈ P. Fix Z = (Y1, Y2,X1,X2,M11,M12,M21,M22) and take any (R11, R12, R21, R22)
satisfying (4.2)–(4.7). The standard notation and notions of strong ε-typicality, strong joint
typicality, and strongly typical sets of [12] will be used. Let some distribution on Z of
the form (4.1) be given. For any ε > 0 it is sufficient to prove that there exists a large
enough block length n to ensure that the probability of error is less than ε. We drop the n
superscript when it is obvious from context.

Codebook generation: To generate the codebook, first note that we may obtain the
marginal distributions as p(m11)=

∑
m12

p(m11,m12), and p(m22) =
∑

m11,m21
p(m22|m11,m21)

p(m11) p(m21). We will generate the codebook according to the distribution

p(m11)p(m12)p(m21)p(m22)p(x1|m11,m12)p(x2|m11,m21,m22). (4.8)

To do so,

• Generate 2nR12 sequences m12(j) i.i.d. according to
∏n

t=1 p(m(t)
12 ).

• Generate 2nL11 sequences m11(i) i.i.d. according to
∏n

t=1 p(m(t)
11 ) and throw them into

2nR11 bins uniformly.

• Generate 2nR21 sequences m21(k) i.i.d. according to
∏n

t=1 p(m(t)
21 ).

• Generate 2nL22 sequences m22(l) i.i.d. according to
∏n

t=1 p(m(t)
22 ) and throw them into

2nR22 bins uniformly.

Define the message index spaces W11
"
= {1, 2, . . . , 2#n(R11)$}, W12

"
= {1, 2, . . . , 2#n(R12)$},

W21
"
= {1, 2, . . . , 2#n(R21)$} and W22

"
= {1, 2, . . . , 2#n(R22)$}. The aim is to send a four

dimensional message w∗ "
= (w11, w12, w21, w22) ∈ W∗ "

= W11 × W12 × W21 × W22. Note

• Assume M11, M12,  M21, M22 
Gaussian and 2 dirty paper 
coding parameters ϒ1 ,ϒ2

• Optimize ϒ1 ,ϒ2

• Evaluate achievable sum-rate



Assumed input variables

3

readily be extended to memoryless channels with discrete

time and continuous alphabets by finely quantizing the

input, output, and interference variables (Gaussian in this

case).

We now outline an achievable rate region for the

Gaussian MIMO cognitive X-channel with the codeword
M11 as asymmetric side information (case (iv)), which

will be used to demonstrate a sum-rate scaling law of

2M . From now on we present results for case (iv).

The capacity region of the Gaussian MIMO broadcast

channel [16] is achieved using Costa’s dirty-paper coding

techniques [3]. In the MIMO cognitive X-channel, at Tx
1, the encodings M11 and M12 may be jointly generated,

for example using a dirty-paper like coding scheme. That

is, one message may treat the other as non-causally known

interference and code so as to mitigate it. At Tx 2,

not only may the encodings M21 and M22 be jointly

designed, but they may additionally use the codeword

M11 as a-priori known interference. Thus, Tx 2 could

encode M22 so as to potentially mitigate the interference

Y2 will experience from M11 as well as M21. Let R11

be the rate from M11 → Y1, R12 from M12 → Y2, R21

from M21 → Y1 and R22 from M22 → Y2.

Theorem 1: Let Z
!
= (Y1, Y2, X1, X2, M11, M12,

M21, M22), and let P be the set of distributions on Z
that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11, m21)
p(x1|m11, m12)p(x2|m11, m21, m22)

p(y1|x1, x2)p(y2|x1, x2),
(3)

where we additionally require p(m12, m22) =
p(m12)p(m22). For any Z ∈ P , let S(Z) be the

set of all tuples (R11, R12, R21, R22) of non-negative
real numbers such that:

R11 ≤ I(M11; Y1|M21) − I(M11; M12)
R21 ≤ I(M21; Y1|M11)

R11 + R21 ≤ I(M11, M21; Y1) − I(M11; M12)

R12 ≤ I(M12; Y2|M22)
R22 ≤ I(M22; Y2|M12) − I(M22; M11, M21)

R12 + R22 ≤ I(M12, M22; Y2) − I(M22; M11, M21)

Any element in the closure of ∪Z∈PS(Z) is achievable.

Proof: The codebook generation, encoding, decod-

ing schemes and formal probability of error analysis are

deferred to the manuscript in preparation [6]. Heuristi-

cally, notice that the channel from (M11, M21) → Y1

is a multiple access which employs dirty paper coding

[3], reducing the rate R11 by I(M11; M12) (like in

Gel’fand-Pinsker [8] coding). Similarly, for the MAC

(M12, M22) → Y2 the encodings M12 and M22 are

independent (this is true in particular in the Gaussian case

of interest in the next subsection, and so we simplify

our theorem by ensuring the condition p(m12, m22) =
p(m12)p(m22)) so that the regular MAC equations hold.
The rate R22 is subject to a penalty of I(M22; M11, M21)
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Fig. 2. Additive Gaussian noise interference channels with
cross-over parameters α12, α21, transmitted encodings X1, X2
with expected transmit power limitations P1 and P2, and
received signals Y1 and Y2. (a) Cognitive X channel: four
messages encoded as M11, M12, M21, M22. M11 is the partial
and asymmetric message knowledge at X2. (b) Cognitive chan-
nel:two messages encoded as M11, M22. X1 is the asymmetric
side-information known at X2.

in order to guarantee finding an n-sequence m22 in

the desired bin that is jointly typical with any given

(m11, m21).

A. MIMO Cognitive X-channel multiplexing gain is 2M

We use the above achievable rate region to show

that the sum-rate of the MIMO X-channel with partial
asymmetric side-information has a multiplexing gain 2M .

Corollary 2: Consider the MIMO additive Gaussian

X-channel with partial asymmetric side-information de-
scribed in eqns. (1), (2) and Fig. 2(a) with P1 = P2 =
P . Then

lim
P→∞

max R11 + R12 + R21 + R22

log P
= 2M, (4)

where the max is taken over all (R11, R12, R21, R22) ∈
CX−cog, where CX−cog is the capacity region of the

MIMO cognitive X-channel.

Proof: We sketch the proof for M = 1, and defer
details, as well as the more involved proof for general M
to [6]. Roughly speaking, the general M case is proven

by evaluating the same mutual information terms of Thm.

1, as done forM = 1, with the added complications (such
as matrix inversions) that arise from considering vectors

rather than scalars.

First, note that the multiplexing gain of the MIMO

broadcast channel, whose capacity region outer bounds

ours, with 2 transmit antennas and single receive antennas

at the Rxs is 2. We will in fact prove that 2 is achievable

using the scheme of Thm. 1. To do so, we specify

forms for the variables, and then optimize the dirty paper

coding parameters, similar to Costa’s technique [3]. The

Gaussian distributions we assume on all variables are of

the form

M11 = U11 + γ1U12 U11 ∼ N (0, P11)
M12 = U12, U12 ∼ N (0, P12)
M21 = U21, U21 ∼ N (0, P21)
M22 = U22 + γ2(U21 + a12U11) U22 ∼ N (0, P22)

4

X1 = U11 + U12

X2 = U21 + U22 +
q

(1−β)P2
P11

U11

Y1 =
“

1 + a21

q

(1−β)P2
P11

”

U11 + U12 + a21(U21 + U22) + N1

Y2 =
“

a12 +
q

(1−β)P2
P11

”

U11 + a12U12 + (U21 + U22) + N2.

where P1 = P11 + P12 and βP2 = P21 + P22.

Here the variables U11, U12, U21, U22 are all indepen-

dent, encoding the four messages to be transmitted. The

β parameter divides power at Tx 2: βP2 is used in

transmitting its own messages, m21 and m22, while the

remainder of the power, (1 − β)P2 is used to reinforce

the message encoded as m11 of Tx 1. The rates R1 =
R11+R21 and R2 = R12+R22 to each Rx are calculated

separately and each is maximized with respect to the

relevant dirty-paper coding parameter (γ1 for Tx 1, and

γ2 for Tx 2). The bounds of Thm. 1 may be evaluated by

combining the appropriate determinants of sub-matrices

of the overall covariance matrix E[ΘΘT ] where Θ
!
=

(M11, M21, M12, M22, Y1, Y2). The six bounds of Thm. 1
are evaluated explicitly in [6]; we simply demonstrate the

resulting expressions for the sum-rate to Rx 1, R1 as well

as to Rx 2, R2 in the expressions (5) and (6) resp. In order

to simplify the expressions, we have set θ
!
=

√

(1−β)P2

P11
.

We could search for the γ1 and γ2 that jointly optimize

R1 +R2. However, noticing that R1 depends only on γ1,

we heuristically select γ1 to maximize R1, as (8) When

we substitute this γ1 into the bounds on Rx 1’s total sum-

rate we obtain the bound (7). Notice that an important

cancellation occurs in the denominator of (7) when the

optimal γ1 is substituted.

γ1 =
P11(1 + a21θ)

P11(1 + a21θ)2 + α2
21P22 + N1

, γ2 =
P22

P22 + N2
(8)

Although we could maximize R2 with respect to γ2, we

use a simpler and more heuristic approach and simply

minimize the denominator of the sum-rate R2 = R12 +
R22 with respect to γ2, which yields γ2 as in (8). It

is interesting to note that this is exactly the same dirty

paper coding parameter as Costa derives. It is intuitively

pleasing, and although it does not strictly maximize R2

with respect to γ2, as we will see shortly, it performs

sufficiently well in the limit of large SNR, thus performs

asymptotically optimally. If we fix P22 (does not scale

with P ), set β = 1 (or θ = 0) and let P11 = P12 =
P21 all scale like P , subject to P11 + P12 = P and

P21 + P22 = P , then the bound on the total sum rate to

both Rxs R11 +R12 +R21+R22 scales like 2 logP . This
can be seen by noting that γ2 remains fixed and γ1 → 1
as P → ∞. Keeping P22 fixed was crucial for achieving

the log P scaling in R1. Intuitively, this is because of

the asymmetric message knowledge; the interference Tx

2 causes the Tx 1 is not mitigated. Keeping P22 constant

still allows Tx 2 to dirty paper code, or mitigate the

interference caused by M11 and M21 to Rx 2’s signal

Y2, while causing asymptotically (as P11, P12, P21 → ∞)

negligible interference to Y1. Setting β = 1, or θ = 0 is
also crucial in order to ensure the sum-rate to Rx 2 given

in (6) is not killed by Tx 1’s transmissions.

III. THE COGNITIVE INTERFERENCE CHANNEL

In the previous section we demonstrated that the

scaling law of the sum-rate of the MIMO cognitive

X channel, with partial transmitter side-information is

2M , which is optimal in the limit as SNR → ∞. In
this section we investigate whether partial asymmetric

side-information is always equivalent to full symmetric

transmitter side information in terms of sum-rate scaling

as SNR → ∞. To do so we look at another channel with
partial asymmetric side information at the transmitters:

the recently explored cognitive interference channel (also

known as the interference channel with degraded message

sets [13] or the cognitive radio channel [5]), shown in

Fig. 2(b). We consider the same additive Gaussian noise

channel as in (1), (2). The only difference with the cogni-

tive X-channel is the absence of cross-over messages 12
and 21. We will see that while partial asymmetric side

information in the X-channel results in the same sum-
rate scaling as a fully cooperative (at the transmitters)

X-channel, the opposite is true of partial asymmetric side
information in the interference channel: at high SNR its

sum-rate scales like the interference channel. In other

words, although partial side-information may help the

interference channel in a medium SNR-regime [5], [13],
at high SNR, one cannot improve the scaling law of

the sum-rate. The Gaussian cognitive interference channel

considered here is the same channel as that of [13], where

its capacity region is derived for the case α21 ≤ 1, and
sum-rate capacity is found for α21 > 1. The next theorem
is a direct result of [13].

Theorem 3: Consider the Gaussian interference chan-

nel where Tx 2 has non-causal knowledge of the message

of Tx 1, described in eqns. (1), (2) and Fig. 2(b) with

P1 = P2 = P . Then

lim
P→∞

max(R1,R2)∈C R1 + R2

log P
= 1, (9)

where Ri corresponds to the rates from the i-th source to
the i-th Rx, and C is the capacity region of the channel.

The proof of this result is deferred to work [6], and

employs eqns. (24), (25) and Corollary 4.1 of [13].

IV. COMPARISON OF COGNITIVE AND COGNITIVE X
CHANNEL REGIONS AT VARIOUS SNRS

In this section, we numerically evaluate the capacity

region of the cognitive channel of Fig. 2(b) and [13] and

compare it with the achievable region of the cognitive

X channel described in Thm. 1 and Fig. 2(a) under our

choice of variables, as well as the MIMO broadcast chan-

nel with 2 Tx antennas and 2 single antenna receivers. In

doing so, we highlight the dependence of the rate region,

Y
1

X
1

X
2

Y
2

M11

M22

M12

M21

M11
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P11
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1 + a21

q

(1−β)P2
P11
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U11 + U12 + a21(U21 + U22) + N1
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a12 +
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(1−β)P2
P11
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where P1 = P11 + P12 and βP2 = P21 + P22.

Here the variables U11, U12, U21, U22 are all indepen-

dent, encoding the four messages to be transmitted. The

β parameter divides power at Tx 2: βP2 is used in

transmitting its own messages, m21 and m22, while the

remainder of the power, (1 − β)P2 is used to reinforce

the message encoded as m11 of Tx 1. The rates R1 =
R11+R21 and R2 = R12+R22 to each Rx are calculated

separately and each is maximized with respect to the

relevant dirty-paper coding parameter (γ1 for Tx 1, and

γ2 for Tx 2). The bounds of Thm. 1 may be evaluated by

combining the appropriate determinants of sub-matrices

of the overall covariance matrix E[ΘΘT ] where Θ
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=

(M11, M21, M12, M22, Y1, Y2). The six bounds of Thm. 1
are evaluated explicitly in [6]; we simply demonstrate the

resulting expressions for the sum-rate to Rx 1, R1 as well

as to Rx 2, R2 in the expressions (5) and (6) resp. In order

to simplify the expressions, we have set θ
!
=

√

(1−β)P2

P11
.

We could search for the γ1 and γ2 that jointly optimize

R1 +R2. However, noticing that R1 depends only on γ1,

we heuristically select γ1 to maximize R1, as (8) When

we substitute this γ1 into the bounds on Rx 1’s total sum-

rate we obtain the bound (7). Notice that an important

cancellation occurs in the denominator of (7) when the

optimal γ1 is substituted.

γ1 =
P11(1 + a21θ)

P11(1 + a21θ)2 + α2
21P22 + N1

, γ2 =
P22

P22 + N2
(8)

Although we could maximize R2 with respect to γ2, we

use a simpler and more heuristic approach and simply

minimize the denominator of the sum-rate R2 = R12 +
R22 with respect to γ2, which yields γ2 as in (8). It

is interesting to note that this is exactly the same dirty

paper coding parameter as Costa derives. It is intuitively

pleasing, and although it does not strictly maximize R2

with respect to γ2, as we will see shortly, it performs

sufficiently well in the limit of large SNR, thus performs

asymptotically optimally. If we fix P22 (does not scale

with P ), set β = 1 (or θ = 0) and let P11 = P12 =
P21 all scale like P , subject to P11 + P12 = P and

P21 + P22 = P , then the bound on the total sum rate to

both Rxs R11 +R12 +R21+R22 scales like 2 logP . This
can be seen by noting that γ2 remains fixed and γ1 → 1
as P → ∞. Keeping P22 fixed was crucial for achieving

the log P scaling in R1. Intuitively, this is because of

the asymmetric message knowledge; the interference Tx

2 causes the Tx 1 is not mitigated. Keeping P22 constant

still allows Tx 2 to dirty paper code, or mitigate the

interference caused by M11 and M21 to Rx 2’s signal

Y2, while causing asymptotically (as P11, P12, P21 → ∞)

negligible interference to Y1. Setting β = 1, or θ = 0 is
also crucial in order to ensure the sum-rate to Rx 2 given

in (6) is not killed by Tx 1’s transmissions.

III. THE COGNITIVE INTERFERENCE CHANNEL

In the previous section we demonstrated that the

scaling law of the sum-rate of the MIMO cognitive

X channel, with partial transmitter side-information is

2M , which is optimal in the limit as SNR → ∞. In
this section we investigate whether partial asymmetric

side-information is always equivalent to full symmetric

transmitter side information in terms of sum-rate scaling

as SNR → ∞. To do so we look at another channel with
partial asymmetric side information at the transmitters:

the recently explored cognitive interference channel (also

known as the interference channel with degraded message

sets [13] or the cognitive radio channel [5]), shown in

Fig. 2(b). We consider the same additive Gaussian noise

channel as in (1), (2). The only difference with the cogni-

tive X-channel is the absence of cross-over messages 12
and 21. We will see that while partial asymmetric side

information in the X-channel results in the same sum-
rate scaling as a fully cooperative (at the transmitters)

X-channel, the opposite is true of partial asymmetric side
information in the interference channel: at high SNR its

sum-rate scales like the interference channel. In other

words, although partial side-information may help the

interference channel in a medium SNR-regime [5], [13],
at high SNR, one cannot improve the scaling law of

the sum-rate. The Gaussian cognitive interference channel

considered here is the same channel as that of [13], where

its capacity region is derived for the case α21 ≤ 1, and
sum-rate capacity is found for α21 > 1. The next theorem
is a direct result of [13].

Theorem 3: Consider the Gaussian interference chan-

nel where Tx 2 has non-causal knowledge of the message

of Tx 1, described in eqns. (1), (2) and Fig. 2(b) with

P1 = P2 = P . Then

lim
P→∞

max(R1,R2)∈C R1 + R2

log P
= 1, (9)

where Ri corresponds to the rates from the i-th source to
the i-th Rx, and C is the capacity region of the channel.

The proof of this result is deferred to work [6], and

employs eqns. (24), (25) and Corollary 4.1 of [13].

IV. COMPARISON OF COGNITIVE AND COGNITIVE X
CHANNEL REGIONS AT VARIOUS SNRS

In this section, we numerically evaluate the capacity

region of the cognitive channel of Fig. 2(b) and [13] and

compare it with the achievable region of the cognitive

X channel described in Thm. 1 and Fig. 2(a) under our

choice of variables, as well as the MIMO broadcast chan-

nel with 2 Tx antennas and 2 single antenna receivers. In

doing so, we highlight the dependence of the rate region,
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R11+R21 and R2 = R12+R22 to each Rx are calculated

separately and each is maximized with respect to the

relevant dirty-paper coding parameter (γ1 for Tx 1, and

γ2 for Tx 2). The bounds of Thm. 1 may be evaluated by

combining the appropriate determinants of sub-matrices

of the overall covariance matrix E[ΘΘT ] where Θ
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=

(M11, M21, M12, M22, Y1, Y2). The six bounds of Thm. 1
are evaluated explicitly in [6]; we simply demonstrate the

resulting expressions for the sum-rate to Rx 1, R1 as well

as to Rx 2, R2 in the expressions (5) and (6) resp. In order

to simplify the expressions, we have set θ
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=

√
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P11
.

We could search for the γ1 and γ2 that jointly optimize

R1 +R2. However, noticing that R1 depends only on γ1,

we heuristically select γ1 to maximize R1, as (8) When

we substitute this γ1 into the bounds on Rx 1’s total sum-

rate we obtain the bound (7). Notice that an important

cancellation occurs in the denominator of (7) when the

optimal γ1 is substituted.
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use a simpler and more heuristic approach and simply

minimize the denominator of the sum-rate R2 = R12 +
R22 with respect to γ2, which yields γ2 as in (8). It

is interesting to note that this is exactly the same dirty

paper coding parameter as Costa derives. It is intuitively

pleasing, and although it does not strictly maximize R2

with respect to γ2, as we will see shortly, it performs

sufficiently well in the limit of large SNR, thus performs

asymptotically optimally. If we fix P22 (does not scale

with P ), set β = 1 (or θ = 0) and let P11 = P12 =
P21 all scale like P , subject to P11 + P12 = P and

P21 + P22 = P , then the bound on the total sum rate to

both Rxs R11 +R12 +R21+R22 scales like 2 logP . This
can be seen by noting that γ2 remains fixed and γ1 → 1
as P → ∞. Keeping P22 fixed was crucial for achieving

the log P scaling in R1. Intuitively, this is because of

the asymmetric message knowledge; the interference Tx

2 causes the Tx 1 is not mitigated. Keeping P22 constant

still allows Tx 2 to dirty paper code, or mitigate the

interference caused by M11 and M21 to Rx 2’s signal

Y2, while causing asymptotically (as P11, P12, P21 → ∞)

negligible interference to Y1. Setting β = 1, or θ = 0 is
also crucial in order to ensure the sum-rate to Rx 2 given

in (6) is not killed by Tx 1’s transmissions.

III. THE COGNITIVE INTERFERENCE CHANNEL

In the previous section we demonstrated that the
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this section we investigate whether partial asymmetric
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as SNR → ∞. To do so we look at another channel with
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known as the interference channel with degraded message
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Fig. 2(b). We consider the same additive Gaussian noise

channel as in (1), (2). The only difference with the cogni-

tive X-channel is the absence of cross-over messages 12
and 21. We will see that while partial asymmetric side

information in the X-channel results in the same sum-
rate scaling as a fully cooperative (at the transmitters)

X-channel, the opposite is true of partial asymmetric side
information in the interference channel: at high SNR its

sum-rate scales like the interference channel. In other

words, although partial side-information may help the

interference channel in a medium SNR-regime [5], [13],
at high SNR, one cannot improve the scaling law of

the sum-rate. The Gaussian cognitive interference channel

considered here is the same channel as that of [13], where

its capacity region is derived for the case α21 ≤ 1, and
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is a direct result of [13].
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• They prove that for a<1 (weak 
interference) the capacity 
region when both nodes are 
power limited to P is the set 
of all rate pairs (R1, R2) such 
that, for all 0 ≤ α ≤ 1,

R1

R2

DOF=1
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– For any 0 ≤ α ≤ 1 the cognitive radio spends αP of its power 
amplifying the primary message, and (1-α)P of its power 
dirty-paper coding its own message

Interference at primary receiver 
due to cognitive transmission

DOF=1
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• Moreover, they find the maximum 
rate the cognitive user may 
transmit at such that the primary 
user suffers no loss in rate 
(compared to cognitive-free 
transmission)

• This determines the optimal α* 
as:

Optimal α* yields 
this point 
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• ϒ1 selected so as to maximize the sum-
rate to Rx 1

• ϒ2 selected so as to minimize the 
denominator of the sum-rate to Rx 2

Selected DPC 
parameters
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where P1 = P11 + P12 and βP2 = P21 + P22.

Here the variables U11, U12, U21, U22 are all indepen-

dent, encoding the four messages to be transmitted. The

β parameter divides power at Tx 2: βP2 is used in

transmitting its own messages, m21 and m22, while the

remainder of the power, (1 − β)P2 is used to reinforce

the message encoded as m11 of Tx 1. The rates R1 =
R11+R21 and R2 = R12+R22 to each Rx are calculated

separately and each is maximized with respect to the

relevant dirty-paper coding parameter (γ1 for Tx 1, and

γ2 for Tx 2). The bounds of Thm. 1 may be evaluated by

combining the appropriate determinants of sub-matrices

of the overall covariance matrix E[ΘΘT ] where Θ
!
=

(M11, M21, M12, M22, Y1, Y2). The six bounds of Thm. 1
are evaluated explicitly in [6]; we simply demonstrate the

resulting expressions for the sum-rate to Rx 1, R1 as well

as to Rx 2, R2 in the expressions (5) and (6) resp. In order

to simplify the expressions, we have set θ
!
=

√

(1−β)P2

P11
.

We could search for the γ1 and γ2 that jointly optimize

R1 +R2. However, noticing that R1 depends only on γ1,

we heuristically select γ1 to maximize R1, as (8) When

we substitute this γ1 into the bounds on Rx 1’s total sum-

rate we obtain the bound (7). Notice that an important

cancellation occurs in the denominator of (7) when the

optimal γ1 is substituted.

γ1 =
P11(1 + a21θ)

P11(1 + a21θ)2 + α2
21P22 + N1

, γ2 =
P22

P22 + N2
(8)

Although we could maximize R2 with respect to γ2, we

use a simpler and more heuristic approach and simply

minimize the denominator of the sum-rate R2 = R12 +
R22 with respect to γ2, which yields γ2 as in (8). It

is interesting to note that this is exactly the same dirty

paper coding parameter as Costa derives. It is intuitively

pleasing, and although it does not strictly maximize R2

with respect to γ2, as we will see shortly, it performs

sufficiently well in the limit of large SNR, thus performs

asymptotically optimally. If we fix P22 (does not scale

with P ), set β = 1 (or θ = 0) and let P11 = P12 =
P21 all scale like P , subject to P11 + P12 = P and

P21 + P22 = P , then the bound on the total sum rate to

both Rxs R11 +R12 +R21+R22 scales like 2 logP . This
can be seen by noting that γ2 remains fixed and γ1 → 1
as P → ∞. Keeping P22 fixed was crucial for achieving

the log P scaling in R1. Intuitively, this is because of

the asymmetric message knowledge; the interference Tx

2 causes the Tx 1 is not mitigated. Keeping P22 constant

still allows Tx 2 to dirty paper code, or mitigate the

interference caused by M11 and M21 to Rx 2’s signal

Y2, while causing asymptotically (as P11, P12, P21 → ∞)

negligible interference to Y1. Setting β = 1, or θ = 0 is
also crucial in order to ensure the sum-rate to Rx 2 given

in (6) is not killed by Tx 1’s transmissions.

III. THE COGNITIVE INTERFERENCE CHANNEL

In the previous section we demonstrated that the

scaling law of the sum-rate of the MIMO cognitive

X channel, with partial transmitter side-information is

2M , which is optimal in the limit as SNR → ∞. In
this section we investigate whether partial asymmetric

side-information is always equivalent to full symmetric

transmitter side information in terms of sum-rate scaling

as SNR → ∞. To do so we look at another channel with
partial asymmetric side information at the transmitters:

the recently explored cognitive interference channel (also

known as the interference channel with degraded message

sets [13] or the cognitive radio channel [5]), shown in

Fig. 2(b). We consider the same additive Gaussian noise

channel as in (1), (2). The only difference with the cogni-

tive X-channel is the absence of cross-over messages 12
and 21. We will see that while partial asymmetric side

information in the X-channel results in the same sum-
rate scaling as a fully cooperative (at the transmitters)

X-channel, the opposite is true of partial asymmetric side
information in the interference channel: at high SNR its

sum-rate scales like the interference channel. In other

words, although partial side-information may help the

interference channel in a medium SNR-regime [5], [13],
at high SNR, one cannot improve the scaling law of

the sum-rate. The Gaussian cognitive interference channel

considered here is the same channel as that of [13], where

its capacity region is derived for the case α21 ≤ 1, and
sum-rate capacity is found for α21 > 1. The next theorem
is a direct result of [13].

Theorem 3: Consider the Gaussian interference chan-

nel where Tx 2 has non-causal knowledge of the message

of Tx 1, described in eqns. (1), (2) and Fig. 2(b) with

P1 = P2 = P . Then

lim
P→∞

max(R1,R2)∈C R1 + R2

log P
= 1, (9)

where Ri corresponds to the rates from the i-th source to
the i-th Rx, and C is the capacity region of the channel.

The proof of this result is deferred to work [6], and

employs eqns. (24), (25) and Corollary 4.1 of [13].

IV. COMPARISON OF COGNITIVE AND COGNITIVE X
CHANNEL REGIONS AT VARIOUS SNRS

In this section, we numerically evaluate the capacity

region of the cognitive channel of Fig. 2(b) and [13] and

compare it with the achievable region of the cognitive

X channel described in Thm. 1 and Fig. 2(a) under our

choice of variables, as well as the MIMO broadcast chan-

nel with 2 Tx antennas and 2 single antenna receivers. In

doing so, we highlight the dependence of the rate region,
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and 21. We will see that while partial asymmetric side

information in the X-channel results in the same sum-
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Fig. 3. Comparison of the cognitive interference and the cognitive X channels at various SNRs.

and in particular the sum-rate scaling, on the SNR. At 0

and 10dB receive SNR, the two regions almost coincide

for large R1. At high SNR (50dB) the sum-rate scaling

increases, and the gap between the sum-rate achieved by

the cognitive interference and the cognitive X-channels
widens, confirming the sum-rate scaling laws of 1 and 2

respectively. Fig. 3 contrasts the achievable rate regions

for cross-over parameters α12 = 0.8, α21 = 0.2 at the
SNRs 0, 10 and 50 dB. Notice that the broadcast channel

always forms an outer bound, but that the achievable rate

region appears to be tight for large R1.

V. CONCLUSION

In this paper we have derived an achievable rate region

for the MIMO cognitive X channel with a dirty-paper

encoded codeword as asymmetric side information. We

used this to show that shown that the multiplexing gain

of the sum-rate of is 2M , achieving the optimal sum-rate

scaling.This could lead one to think that asymmetric side-

information, rather than symmetric side-information (of

full cooperation) between Txs always yields the optimal

sum-rate scaling. However, we then showed that this

is not the case: in the interference channel with asym-

metric side-information, where no cross-over information

is permitted, the scaling of the sum-rate for the single

antenna channel is 1, rather than the optimal 2. Of interest

for future research are the derivation of achievable rate

regions for cases the cognitive X channel with side

information (i), (ii), and (iii), which would compliment

the multiplexing gains derived in [11] for these cases.
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X1 = U11 + U12

X2 = U21 + U22 +
q

(1−β)P2
P11

U11

Y1 =
“

1 + a21

q

(1−β)P2
P11

”

U11 + U12 + a21(U21 + U22) + N1

Y2 =
“

a12 +
q

(1−β)P2
P11

”

U11 + a12U12 + (U21 + U22) + N2.

where P1 = P11 + P12 and βP2 = P21 + P22.

Here the variables U11, U12, U21, U22 are all indepen-

dent, encoding the four messages to be transmitted. The

β parameter divides power at Tx 2: βP2 is used in

transmitting its own messages, m21 and m22, while the

remainder of the power, (1 − β)P2 is used to reinforce

the message encoded as m11 of Tx 1. The rates R1 =
R11+R21 and R2 = R12+R22 to each Rx are calculated

separately and each is maximized with respect to the

relevant dirty-paper coding parameter (γ1 for Tx 1, and

γ2 for Tx 2). The bounds of Thm. 1 may be evaluated by

combining the appropriate determinants of sub-matrices

of the overall covariance matrix E[ΘΘT ] where Θ
!
=

(M11, M21, M12, M22, Y1, Y2). The six bounds of Thm. 1
are evaluated explicitly in [6]; we simply demonstrate the

resulting expressions for the sum-rate to Rx 1, R1 as well

as to Rx 2, R2 in the expressions (5) and (6) resp. In order

to simplify the expressions, we have set θ
!
=

√

(1−β)P2

P11
.

We could search for the γ1 and γ2 that jointly optimize

R1 +R2. However, noticing that R1 depends only on γ1,

we heuristically select γ1 to maximize R1, as (8) When

we substitute this γ1 into the bounds on Rx 1’s total sum-

rate we obtain the bound (7). Notice that an important

cancellation occurs in the denominator of (7) when the

optimal γ1 is substituted.

γ1 =
P11(1 + a21θ)

P11(1 + a21θ)2 + α2
21P22 + N1

, γ2 =
P22

P22 + N2
(8)

Although we could maximize R2 with respect to γ2, we

use a simpler and more heuristic approach and simply

minimize the denominator of the sum-rate R2 = R12 +
R22 with respect to γ2, which yields γ2 as in (8). It

is interesting to note that this is exactly the same dirty

paper coding parameter as Costa derives. It is intuitively

pleasing, and although it does not strictly maximize R2

with respect to γ2, as we will see shortly, it performs

sufficiently well in the limit of large SNR, thus performs

asymptotically optimally. If we fix P22 (does not scale

with P ), set β = 1 (or θ = 0) and let P11 = P12 =
P21 all scale like P , subject to P11 + P12 = P and

P21 + P22 = P , then the bound on the total sum rate to

both Rxs R11 +R12 +R21+R22 scales like 2 logP . This
can be seen by noting that γ2 remains fixed and γ1 → 1
as P → ∞. Keeping P22 fixed was crucial for achieving

the log P scaling in R1. Intuitively, this is because of

the asymmetric message knowledge; the interference Tx

2 causes the Tx 1 is not mitigated. Keeping P22 constant

still allows Tx 2 to dirty paper code, or mitigate the

interference caused by M11 and M21 to Rx 2’s signal

Y2, while causing asymptotically (as P11, P12, P21 → ∞)

negligible interference to Y1. Setting β = 1, or θ = 0 is
also crucial in order to ensure the sum-rate to Rx 2 given

in (6) is not killed by Tx 1’s transmissions.

III. THE COGNITIVE INTERFERENCE CHANNEL

In the previous section we demonstrated that the

scaling law of the sum-rate of the MIMO cognitive

X channel, with partial transmitter side-information is

2M , which is optimal in the limit as SNR → ∞. In
this section we investigate whether partial asymmetric

side-information is always equivalent to full symmetric

transmitter side information in terms of sum-rate scaling

as SNR → ∞. To do so we look at another channel with
partial asymmetric side information at the transmitters:

the recently explored cognitive interference channel (also

known as the interference channel with degraded message

sets [13] or the cognitive radio channel [5]), shown in

Fig. 2(b). We consider the same additive Gaussian noise

channel as in (1), (2). The only difference with the cogni-

tive X-channel is the absence of cross-over messages 12
and 21. We will see that while partial asymmetric side

information in the X-channel results in the same sum-
rate scaling as a fully cooperative (at the transmitters)

X-channel, the opposite is true of partial asymmetric side
information in the interference channel: at high SNR its

sum-rate scales like the interference channel. In other

words, although partial side-information may help the

interference channel in a medium SNR-regime [5], [13],
at high SNR, one cannot improve the scaling law of

the sum-rate. The Gaussian cognitive interference channel

considered here is the same channel as that of [13], where

its capacity region is derived for the case α21 ≤ 1, and
sum-rate capacity is found for α21 > 1. The next theorem
is a direct result of [13].

Theorem 3: Consider the Gaussian interference chan-

nel where Tx 2 has non-causal knowledge of the message

of Tx 1, described in eqns. (1), (2) and Fig. 2(b) with

P1 = P2 = P . Then

lim
P→∞

max(R1,R2)∈C R1 + R2

log P
= 1, (9)

where Ri corresponds to the rates from the i-th source to
the i-th Rx, and C is the capacity region of the channel.

The proof of this result is deferred to work [6], and

employs eqns. (24), (25) and Corollary 4.1 of [13].

IV. COMPARISON OF COGNITIVE AND COGNITIVE X
CHANNEL REGIONS AT VARIOUS SNRS

In this section, we numerically evaluate the capacity

region of the cognitive channel of Fig. 2(b) and [13] and

compare it with the achievable region of the cognitive

X channel described in Thm. 1 and Fig. 2(a) under our

choice of variables, as well as the MIMO broadcast chan-

nel with 2 Tx antennas and 2 single antenna receivers. In

doing so, we highlight the dependence of the rate region,

after substituting ϒ1
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both low and high SNR. Finally, Section V shows some numer-

ical results for the ergodic throughput in the case of independent

Rayleigh fading and Section VI points out our conclusions and

some considerations on the downlink of wireless systems where

the base station is equipped with an antenna array.

II. BACKGROUND

We review the information-theoretic results that will be used

in the rest of this paper in order to tackle the GBC,

namely, Costa’s dirty-paper coding [31], [32], Marton’s achiev-

able region [34], and Sato’s “cooperative” upper bound on the

sum capacity of general BCs [33].

A. Dirty-Paper Coding

The capacity of a single-user memoryless channel

with input , output , and interference , where the interfer-

ence sequence (with ) is noncausally known by the

transmitter and unknown to the receiver, was found in [31] and

is given by

(5)

where the supremum is over all

where is given, and is some deterministic function.

When is given by the additive noise model

, where and are independent

and the input is constrained by , the capacity (5) is

the same as if the interference were not present [32], given by

, and it is obtained by letting

and , with .

The achievability proof in [32] relies on the fact that both

the noise and the interference signal are Gaussian i.i.d. This re-

sult has been recently generalized in various ways. In [40], it

is shown that the same rate can be achieved for arbitrary noise

distribution, provided that the interference is Gaussian i.i.d., or

for arbitrary interference distribution provided that the noise is

Gaussian (possibly colored). In [41], [42], it is shown that the

same result holds for arbitrary interference (arbitrary interfer-

ence statistics, or even arbitrary interference sequences, where

the transmitter knows the individual sequence but ignores its

statistics), provided that the transmitter and the receiver share a

common random dither signal.2

B. Marton’s Achievable Region

The best known achievable region for a general memoryless

BC with marginal transition probabilities and was

found by Marton in [34]. A special case of the Marton region is

given by

(6)

2Notice that sharing randomness is common practice in wireless communica-
tions. For example, in standard randomly spread CDMA transmitter and receiver
share the (pseudo)random spreading code generator.

(“ ” denotes convex closure) where is the set of all joint

probability distributions on such that

, , and such that the

marginal conditional distributions of and given are

equal to and , respectively.

For any joint distribution , the rate pair

(7)

can be achieved by generating signal i.i.d. for user 2 and

for user 1 by treating as the state sequence of a “virtual”

single-user channel whose transition probability depends on the

state (or interference) variable . Since is generated by the

transmitter itself, the noncausal knowledge of the whole inter-

ference sequence can be exploited by the transmitter for gen-

erating . From (5) it is apparent that for any given

the rates (7) are achievable. In general, the set of achievable rates

can be increased by reversing the roles of user 1 and 2, and the

region (6) follows [43].3

We shall refer to the approach of ordering the users and

encoding each user by treating the effect of previous users as

noncausally known interference as the successive encoding

strategy, to stress the parallel with the successive decoding

strategy achieving the capacity region of degraded broadcast

and multiple-access channels [18].

C. The Cooperative Upper Bound

An upper bound to the sum rate of a general BC is obtained in

[33] by letting the receivers cooperate and by noticing that the

capacity region of the BC depends only on the marginal transi-

tion probability distributions and , and not on the

joint distribution . By taking the worst case cooper-

ative capacity over all joint transition probabilities with given

marginals, we obtain the upper bound

(8)

where is the set of joint transition probabilities with fixed

marginals and and is the set of allowed input

distributions (determined by the input constraint).

We use (8) to obtain an upper bound to the throughput of the

GBC. In our case, the marginal transition probability

density functions (pdfs) are given by

Any set of marginal transition pdfs

with yields a GBC capacity region containing that of

the original GBC, since any user in the new channel can em-

ulate the th output of the original channel by adding indepen-

dent Gaussian noise with variance . This implies that the

channels in the family (1) for given andwith ,

where is any nonnegative definite Hermitian matrix whose

diagonal elements are not larger than (we refer to this con-

straint as the subunit diagonal constraint), have all broadcast

capacity regions containing the region of the original

3Note that, in general, theMarton region includes a common rate factor which
in certain cases, as the one at hand, happens not to be essential for optimizing
sum rates.



random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and
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3

readily be extended to memoryless channels with discrete

time and continuous alphabets by finely quantizing the

input, output, and interference variables (Gaussian in this

case).

We now outline an achievable rate region for the

Gaussian MIMO cognitive X-channel with the codeword
M11 as asymmetric side information (case (iv)), which

will be used to demonstrate a sum-rate scaling law of

2M . From now on we present results for case (iv).

The capacity region of the Gaussian MIMO broadcast

channel [16] is achieved using Costa’s dirty-paper coding

techniques [3]. In the MIMO cognitive X-channel, at Tx
1, the encodings M11 and M12 may be jointly generated,

for example using a dirty-paper like coding scheme. That

is, one message may treat the other as non-causally known

interference and code so as to mitigate it. At Tx 2,

not only may the encodings M21 and M22 be jointly

designed, but they may additionally use the codeword

M11 as a-priori known interference. Thus, Tx 2 could

encode M22 so as to potentially mitigate the interference

Y2 will experience from M11 as well as M21. Let R11

be the rate from M11 → Y1, R12 from M12 → Y2, R21

from M21 → Y1 and R22 from M22 → Y2.

Theorem 1: Let Z
!
= (Y1, Y2, X1, X2, M11, M12,

M21, M22), and let P be the set of distributions on Z
that can be decomposed into the form

p(m11|m12)p(m12)p(m21)p(m22|m11, m21)
p(x1|m11, m12)p(x2|m11, m21, m22)

p(y1|x1, x2)p(y2|x1, x2),
(3)

where we additionally require p(m12, m22) =
p(m12)p(m22). For any Z ∈ P , let S(Z) be the

set of all tuples (R11, R12, R21, R22) of non-negative
real numbers such that:

R11 ≤ I(M11; Y1|M21) − I(M11; M12)
R21 ≤ I(M21; Y1|M11)

R11 + R21 ≤ I(M11, M21; Y1) − I(M11; M12)

R12 ≤ I(M12; Y2|M22)
R22 ≤ I(M22; Y2|M12) − I(M22; M11, M21)

R12 + R22 ≤ I(M12, M22; Y2) − I(M22; M11, M21)

Any element in the closure of ∪Z∈PS(Z) is achievable.

Proof: The codebook generation, encoding, decod-

ing schemes and formal probability of error analysis are

deferred to the manuscript in preparation [6]. Heuristi-

cally, notice that the channel from (M11, M21) → Y1

is a multiple access which employs dirty paper coding

[3], reducing the rate R11 by I(M11; M12) (like in

Gel’fand-Pinsker [8] coding). Similarly, for the MAC

(M12, M22) → Y2 the encodings M12 and M22 are

independent (this is true in particular in the Gaussian case

of interest in the next subsection, and so we simplify

our theorem by ensuring the condition p(m12, m22) =
p(m12)p(m22)) so that the regular MAC equations hold.
The rate R22 is subject to a penalty of I(M22; M11, M21)
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Fig. 2. Additive Gaussian noise interference channels with
cross-over parameters α12, α21, transmitted encodings X1, X2
with expected transmit power limitations P1 and P2, and
received signals Y1 and Y2. (a) Cognitive X channel: four
messages encoded as M11, M12, M21, M22. M11 is the partial
and asymmetric message knowledge at X2. (b) Cognitive chan-
nel:two messages encoded as M11, M22. X1 is the asymmetric
side-information known at X2.

in order to guarantee finding an n-sequence m22 in

the desired bin that is jointly typical with any given

(m11, m21).

A. MIMO Cognitive X-channel multiplexing gain is 2M

We use the above achievable rate region to show

that the sum-rate of the MIMO X-channel with partial
asymmetric side-information has a multiplexing gain 2M .

Corollary 2: Consider the MIMO additive Gaussian

X-channel with partial asymmetric side-information de-
scribed in eqns. (1), (2) and Fig. 2(a) with P1 = P2 =
P . Then

lim
P→∞

max R11 + R12 + R21 + R22

log P
= 2M, (4)

where the max is taken over all (R11, R12, R21, R22) ∈
CX−cog, where CX−cog is the capacity region of the

MIMO cognitive X-channel.

Proof: We sketch the proof for M = 1, and defer
details, as well as the more involved proof for general M
to [6]. Roughly speaking, the general M case is proven

by evaluating the same mutual information terms of Thm.

1, as done forM = 1, with the added complications (such
as matrix inversions) that arise from considering vectors

rather than scalars.

First, note that the multiplexing gain of the MIMO

broadcast channel, whose capacity region outer bounds

ours, with 2 transmit antennas and single receive antennas

at the Rxs is 2. We will in fact prove that 2 is achievable

using the scheme of Thm. 1. To do so, we specify

forms for the variables, and then optimize the dirty paper

coding parameters, similar to Costa’s technique [3]. The

Gaussian distributions we assume on all variables are of

the form

M11 = U11 + γ1U12 U11 ∼ N (0, P11)
M12 = U12, U12 ∼ N (0, P12)
M21 = U21, U21 ∼ N (0, P21)
M22 = U22 + γ2(U21 + a12U11) U22 ∼ N (0, P22)

Formal Theorem 1
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Scaling laws

•[Gupta+Kumar 2000]: Non-cooperative ad hoc networks

• per-node throughput ~ O(1/√n)

•Degradation is due to multi-hop and interference between nodes

What about cognitive networks?

•[Ozgur, Leveque, Tse 2007]: Cooperative ad hoc networks

•nodes may cooperate as in a MIMO system

•per-node throughput ~ O(1) (constant)
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D. The primary exclusive region

To study the radius of the primary exclusive region, we consider a special case of the network

with only a single PER at the center. In other words, we consider only Tx1
p at the center of the

network and its receiver Rx1
p within a radius R0 from the primary transmitter. The main reason

is that we focus on the impact on a primary user of the addition of cognitive users. Without

these cognitive users, the primary network would operate with noise and the usual interference

from the other primary users. Hence this special case can also be thought of as approximating

the noise power to include the interference from other primary users to the considered user.

The radius R0 of the primary exclusive region is determined by the outage constraint on the

primary user given as

Pr [primary user’s rate ≤ C0] ≤ β

where C0 and β are pre-chosen constants. This constraint guarantees the primary user a rate of

at least C0 for all but β fraction of the time.

Denote h0 as the channel of the considered primary user, and gi as the channel from cognitive

transmitter i to this user’s receiver (as in Table II). The interference power from the cognitive

users to the considered primary user is

I0 =
n

∑

i=1

P |gi|2 (6)

Again this interference power is random because of the random placement of the cognitive users.

With Gaussian signaling, the rate of this primary user can be written as

Cp = log

(

1 +
P0|h0|2

I0 + σ2

)

.

This rate is random because of random interference I0. The outage constraint can now be written

as

Pr

[

log

(

1 +
P0|h0|2

I0 + σ2

)

≤ C0

]

≤ β. (7)

Since we consider channels with only path loss, outages occur here are not because of fading

as in traditional schemes, but because of the random placement of cognitive users.

Model 1[Vu, Devroye, Tarokh 2007]
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Cp = log

(

1 +
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)

.

This rate is random because of random interference I0. The outage constraint can now be written

as

Pr

[

log

(

1 +
P0|h0|2

I0 + σ2

)

≤ C0

]

≤ β. (7)

Since we consider channels with only path loss, outages occur here are not because of fading

as in traditional schemes, but because of the random placement of cognitive users.

What we prove 
Sum-throughput per cognitive user scale as

 O(1) as  n →∞ 

while guaranteeing 
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is that we focus on the impact on a primary user of the addition of cognitive users. Without
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at least C0 for all but β fraction of the time.
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Again this interference power is random because of the random placement of the cognitive users.
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Cp = log

(

1 +
P0|h0|2

I0 + σ2

)

.
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Model 1[Vu, Devroye, Tarokh 2007]
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For α = 2k with integer k, we can calculate E[I0] analytically. As an example, for α = 4,

we obtain the values of E[I0] as

E[I0]α=4 = λπP

[

−
R2

(R2 − R2
0)

2
+

(R0 + εp)2

ε2
p(2R0 + εp)2

]

. (21)

The derivation is in the Appendix. Letting R → ∞, this average interference becomes

E[I0]
∞
α=4 = λπP

[

(R0 + εp)2

ε2
p(2R0 + εp)2

]

(22)

Next, we derive bounds on this expected interference power E[I0] at the primary receiver for

a general α. We use these bounds to analyze the interference versus the radius R0 and the path

loss α. We then relate the outage probability to the average interference through the Markov

inequality and establish an explicit dependence of R0 on εp and other design parameters.

A. Upper and lower bounds on the average interference

In this subsection we obtain two lower bounds and an upper bound on E[I0].

1) A first lower bound on E[I0]: A first lower bound on E[I0] can be established by re-

centering the network at the primary receiver Rx1
p. We then make a new exclusive region of

radius 2R0, and a new outer radius of R − R0, both centered at Rx
1
p, as shown in Figure 6.

The set of cognitive users included in the new ring will be a subset of the original, making the

interference a lower bound as

E[I0]LB1 =

∫ R−R0

2R0+εp

2πλPr

rα
dr

=
2πλP

α − 2

(

1

(2R0 + εp)α−2
−

1

(R − R0)α−2

)

. (23)

As R → ∞, this bounds approach the limit:

E[I0]
∞
LB1 =

2πPλ

α − 2

1

(2R0 + εp)α−2
(24)

2) A second lower bound on E[I0]: Another lower bound on the interference can be derived

by approximating the interference region by two half-planes, similar to [15]. As illustrated in

Figure 7, consider only interference from the cognitive users in the two half-planes PA and PB

which touch the circle of radius R0 +εp. Consider a line in PA that makes an angle φ at Rx1
p, the

distance d from any point on this line to Rx1
p satisfies

εp

cos(φ) ≤ d < ∞. Since the cognitive users

are distributed uniformly, as R → ∞, the distribution of d becomes similar to the distribution
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Fig. 8. An upper bound on the expected interference at the primary Rx is obtained by forming a cognitive-free circle of radius

εp around the primary receiver and enlarging the network radius, centered at the primary receiver, to R + R0. All cognitive

transmitters now lie within these new boundaries.
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Fig. 9. Upper (29), lower bound 1 (24), lower bound 2 (28) for α = 3, λ = 1, P = 1, εp = 2. In this case the exact expression

for α = 4 is a lower bound on the expected interference.
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exact expression for α = 4, which we compare to the other bounds to give an indication of their tightness.
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expression for α = 4 is an upper bound on the expected interference.

C. The primary exclusive radius

The above bounds on the expected interference can be used to bound the radius R0 of the

primary exclusive region. In particular, for a given outage capacity C0, the primary outage
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C. The primary exclusive radius

The above bounds on the expected interference can be used to bound the radius R0 of the

primary exclusive region. In particular, for a given outage capacity C0, the primary outage
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D. The primary exclusive region

To study the radius of the primary exclusive region, we consider a special case of the network

with only a single PER at the center. In other words, we consider only Tx1
p at the center of the

network and its receiver Rx1
p within a radius R0 from the primary transmitter. The main reason

is that we focus on the impact on a primary user of the addition of cognitive users. Without

these cognitive users, the primary network would operate with noise and the usual interference

from the other primary users. Hence this special case can also be thought of as approximating

the noise power to include the interference from other primary users to the considered user.

The radius R0 of the primary exclusive region is determined by the outage constraint on the

primary user given as

Pr [primary user’s rate ≤ C0] ≤ β

where C0 and β are pre-chosen constants. This constraint guarantees the primary user a rate of

at least C0 for all but β fraction of the time.

Denote h0 as the channel of the considered primary user, and gi as the channel from cognitive

transmitter i to this user’s receiver (as in Table II). The interference power from the cognitive

users to the considered primary user is

I0 =
n

∑

i=1

P |gi|2 (6)

Again this interference power is random because of the random placement of the cognitive users.

With Gaussian signaling, the rate of this primary user can be written as

Cp = log

(

1 +
P0|h0|2

I0 + σ2

)

.

This rate is random because of random interference I0. The outage constraint can now be written

as

Pr

[

log

(

1 +
P0|h0|2

I0 + σ2

)

≤ C0

]

≤ β. (7)

Since we consider channels with only path loss, outages occur here are not because of fading

as in traditional schemes, but because of the random placement of cognitive users.

Model 1
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users to the considered primary user is
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Again this interference power is random because of the random placement of the cognitive users.

With Gaussian signaling, the rate of this primary user can be written as
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(

1 +
P0|h0|2

I0 + σ2

)

.
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as
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Since we consider channels with only path loss, outages occur here are not because of fading
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Model 1Tradeoffs!
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Fig. 1. We consider two network models. In (a), the primary nodes as well as the secondary nodes form distinct, and co-existing

ad-hoc networks. This model is analyzed in Section III. In (b), the primary nodes communicate with the help of base stations,

while the secondary nodes still form an ad hoc network. This model is analyzed in Section IV.

served S-D pairs, is lower bounded by whp, which

completes the proof.

V. CONCLUSION

APPENDIX

Before proving our lemmas, we recall the following useful lemma from [5].

Lemma 12: (Franceschetti, Dousse, Tse, and Thiran) Let be a Poisson random variable

with parameter . Then

for (32)

Proof of Lemma 1

Let denote the number of primary nodes in a unit area. For part (a) we wish to show that

as . Noting that is a Poisson random variable with mean

and standard deviation , we use Chebyshev’s inequality to see that

Clearly, as tends to infinity we can make this quantity arbitrarily small.

September 6, 2007 DRAFT

Model 2



Ad hoc cognitive networks 22

(a) (b)

Primary
node

Secondary
node

BS

Fig. 1. We consider two network models. In (a), the primary nodes as well as the secondary nodes form distinct, and co-existing

ad-hoc networks. This model is analyzed in Section III. In (b), the primary nodes communicate with the help of base stations,

while the secondary nodes still form an ad hoc network. This model is analyzed in Section IV.

served S-D pairs, is lower bounded by whp, which

completes the proof.

V. CONCLUSION

APPENDIX

Before proving our lemmas, we recall the following useful lemma from [5].

Lemma 12: (Franceschetti, Dousse, Tse, and Thiran) Let be a Poisson random variable

with parameter . Then

for (32)

Proof of Lemma 1

Let denote the number of primary nodes in a unit area. For part (a) we wish to show that

as . Noting that is a Poisson random variable with mean

and standard deviation , we use Chebyshev’s inequality to see that

Clearly, as tends to infinity we can make this quantity arbitrarily small.

September 6, 2007 DRAFT

Model 2

#secondary nodes = #primary nodesβ



What we guarantee
Primary nodes act as if cognitive network does not exist

Model 2
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What we guarantee
Primary nodes act as if cognitive network does not exist

Model 2

Primary nodes achieve same scaling law as if cognitive 
network does not exist

What we prove 

For a sufficiently large and , the primary and secondary

networks can achieve the following per-node throughputs and

sum throughputs almost surely:

(1)

and

(2)

where and are the per-node and sum throughputs

of the primary network (similarly and for the

secondary network).

Note that the constraint that primary network does not alter

its protocol because of the secondary network is what makes

the problem non-trivial. Indeed, if the primary network were

to change its protocol when a secondary network is present, a

simple time-sharing or TDMA scheme is able to achieve the

above throughput-scaling.

For the primary network, we use a routing protocol as a

simple modification of the nearest neighbor multi-hop scheme

in [1]. We propose a novel routing protocol for the secondary

network. This protocol also uses multi-hop routing, in which

the secondary routes avoid passing too close to the primary

nodes, reducing the interference to them. We show that these

protocols achieve the above throughput scalings simultane-

ously. This implies that when a denser network is layered

on top of a sparser one, then both may achieve a scaling of

, where is the number of nodes

in each network, respectively. This result may be extended to

more than two networks, provided each layered network obeys

the same three main assumptions as in the two network case.

Throughout this paper, we will be dealing with events which

take place almost surely (a.s.), or with probability 1 as the node

density . For simplicity, we use the notation a.s. in this

paper to mean an event occurs almost surely as .

This paper is structured as follows. In Section II we outline

the system model: we first look at the network geometry, co-

existing primary and secondary ad hoc networks, then turn to

the information theoretic achievable rates, before stating our

assumptions on the primary and secondary network behaviors.

In Section III we outline the protocols used to prove our

achievable throughput scalings. In Section IV we show that

using these protocols, the claimed single network throughput

scalings may be achieved. We conclude in Section V and refer

the proofs of lemmas to the paper in preparation [15].

II. SYSTEM MODEL

In this section, we define the underlying network models and

then look at the transmission schemes, the resulting achievable

rates, and assumptions made about the primary and secondary

networks.

A. Network geometry

We consider a planar area in which a primary network and

a secondary network co-exist. Primary nodes are distributed

according to a Poisson point process of density over a

unit square which are randomly grouped into primary S-D

pairs. For the secondary network, nodes are again distributed

according to a Poisson point process of density over the

same area and are also randomly grouped into secondary S-

D pairs. The densities of primary and secondary nodes are

related according to

(3)

where , meaning that the density of the secondary nodes

is higher than that of the primary nodes. We consider a path

loss channel model such that the channel power gain ,

normalized by a constant, is given by

(4)

where denotes the distance between a transmitter (Tx) and

its receiver (Rx) and denotes the power exponent.

B. Rates and throughputs achieved

Each network operates based on slotted transmissions. We

assume the duration of each slot and the coding scheme are

such that one can achieve the Gaussian noise channel capacity.

We further assume all the primary and secondary nodes are

subject to a transmit power constraint .

We will characterize the rates achieved by the primary

and secondary S-D pairs. Suppose that primary pairs and

secondary pairs communicate simultaneously. Let

denote the distance between the Tx of the -th primary pair

and the Rx of the -th primary pair and denote the

distance between the Tx of the -th secondary pair and the

Rx of the -th primary pair. Similarly, denotes the

distance between the Tx of the -th secondary pair and the Rx

of the -th secondary pair and denotes the distance

between the Tx of the -th primary pair and the Rx of the

-th secondary pair. The -th primary pair can communicate

with a rate of

(5)

where is the interference power from the primary nodes,

is the interference power from the secondary nodes,

and is the thermal noise power. and are

given by and ,

respectively. The -th secondary pair can communicate with a

rate of

(6)

where is the interference power from the secondary

nodes and is the interference power from the primary

nodes. and are given by

and , respectively.

[Jeon, Devroye, Vu, Chung, Tarokh 2008]*
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Fig. 1. Secondary data paths: a secondary S-D pair goes around if it is
blocked by a preservation region.

the secondary -TDMA scheme is three times longer than that

of the primary -TDMA. The other more important, difference

is that the secondary multihop paths must circumvent the

preservation regions and that the portion of S-D pairs which

lie in these preservation regions are not served. By re-routing

the secondary nodes’ transmission around the primary nodes’

preservation regions, we can guarantee the primary nodes a

non-trivial rate.

IV. THROUGHPUT ANALYSIS AND ITS ASYMPTOTIC

BEHAVIOR

In this section, we analyze the per-node throughput and

sum throughput of each network under the given protocols

and derive asymptotic throughput behaviors with respect to

the node density.

A. Primary network throughputs

We first consider the per-node throughput of the primary

network in the presence of the secondary network. We state

two lemmas, which may be combined to prove that the primary

network may achieve a sum-throughput scaling identical to

that as if no secondary network were present.

Lemma 2: Each primary cell can sustain traffic with a

constant rate of , where is independent of .

The essence of the proof of Lemma 2 is showing that

the preservation regions which shield the primary nodes from

secondary interference can guarantee a non-trivial rate in each

cell. That is, even as the number of secondary nodes 1,

they do not cause the aggregated rate of each primary cell to

decay with (or equivalently with ).

The next lemma bounds the number of data paths that

each primary cell should carry. To obtain this upper bound,

we extend each HDP to the entire horizontal line and all

cells through which this horizontal line passes should deliver

the corresponding data of HDP (see Figure 2). Similarly, we

extend each VDP to the entire vertical line. We define this

entire horizontal and vertical line as an extended HDP and an

extended VDP, respectively.

Lemma 3: Each primary cell carries at most

primary data paths a.s..

The overall primary network throughput may then be ob-

tained in the following Theorem.

1 is equivalent to since .

Fig. 2. Examples of original HDPs (left) and their extended HDPs (right)
of the primary S-D pairs.

Theorem 1: The primary network can achieve the following

per-node throughput and sum throughput a.s.:

(7)

and

(8)

Proof: Since each primary cell can sustain a rate of

(Lemma 2), each primary S-D pair can achieve a rate of at

least divided by the maximum number of data paths per

primary cell. This number of data paths is upper bounded

by a.s. (Lemma 3). Therefore, is lower

bounded by a.s.. Now the whole network contains

at least primary S-D pairs a.s. (Lemma 1). Thus,

is given by a.s., which completes the

proof.

B. Secondary network throughputs

Let us now consider the per-node throughput of the sec-

ondary network in the presence of the primary network.

Recall that the secondary nodes wish to transmit according

to a multihop protocol, but their path may be blocked by

a preservation region. In this case, they must circumvent

the preservation region, or possibly the cluster of primary

preservation regions2. We use percolation theory to show that

this re-routing of the secondary paths around cluster(s) of

primary preservation regions does not cause a loss in terms

of secondary sum-throughput scaling (that is, the re-routed

path does not grow as a function of or ).

Let us consider a Poisson Boolean model with radius and

density on . Each primary node is the center of a closed

circle with radius , where points are distributed according

to a Poisson point process of density . Two circles are

directly connected if there is an overlapping region between

them. Similarly, two circles are connected if there exist links

of directly connected circles between them. Define a cluster

as a set of circles such that any two circles in the cluster

are connected. We use the following result from percolation

2Since the primary nodes are distributed according to a Poisson point
process, clustering of preservation regions may occur and the secondary data
path goes around more in this case.
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Motivation

• Cellular providers are introducing relays to

• extend cell coverage

• boost transmission rates

• improve spectral efficiency 

All at lower costs than building new 
full-fledged base stations
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☞ linear precoding
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Precoding matrix B

}

Transmitted signal 
at the 2 relays, resp.} Unit power messages}

• Power constraints: 

• Message knowledge constraints: B has zeros
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From this, the SNR γ1 at MS 1 (who wants X1) and the SNR γ2 at MS 2
(who wants X2) are given by:

γ1 =
(h11b11 + h21b21)2

(h11b12 + h21b22)2 + N1

γ2 =
(h12b12 + h22b22)2

(h12b11 + h22b21)2 + N2

The achievable Shannon rates, R1 to MS 1, and R2 to MS 2, are then given
by

R1 =
1

2
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log2 (1 + γ2) . (1)
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(
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The achievable Shannon rates, R1 to MS 1, and R2 to MS 2, are then given
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1

2
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log2 (1 + γ2) . (2)

t(1)1 , t(1)2 , R(1)
1 , R(1)

2 , n1, n2
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Need to select: 
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Phase 2:  linear precoding B matrix
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Optimization

☞ We will do so according to two optimization criteria



☞  Maximize the throughput over 2 phases
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n1, n2 are number of bits sent to each mobile, 
variables to be optimized over

Max throughput criterion



☞ Maximize the throughput when forced to 
send one unit of information to each mobile
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From this, the SNR γ1 at MS 1 (who wants X1) and the SNR γ2 at MS 2
(who wants X2) are given by:

γ1 =
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(h11b12 + h21b22)2 + N1
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The achievable Shannon rates, R1 to MS 1, and R2 to MS 2, are then given
by

R1 =
1

2
log2 (1 + γ1) , R2 =

1

2
log2 (1 + γ2) . (2)

3

n1 =n2 

Extreme fairness criterion



We reduce the non-linear optimization problem 
from one over 8 variables to one over 2 variables. 

Optimization reduction

5

Max throughput optimization:

max
x, b11,
α, β, θ

x + 1

x/R(1)
1 + 1/R(1)

2 + max
(

x/ log2

(

1 + |h11|2

|α|2+N1/|b11|2

)

, 1/ log2

(

1 + |β|2

|h12|2+N2/|b11|2

)) (8)

s.t. x ≥ 0 |b11|2 ≤ PR (9)

g1|α|2 + 2|g12||α||β| cos(θG + θ) + g2|β|2 ≤ PR/|b11|2 − 1 (10)

Simplified max throughput optimization:

max
t, |b11|

x + 1

x/R(1)
1 + 1/R(1)

2 + max
(

x/ log2

(

1 + |h11|2

|α(t,b11,θ∗)|2+N1/|b11|2

)

, 1/ log2

(

1 + |β(t,b11,θ∗)|2

|h12|2+N2/|b11|2

)) (11)

s.t. x ∈ {0, x∗,∞}, |b11|2 ≤ PR, t ∈ [0, π], θ∗ ∈ {−θG, π − θG} (12)

Simplified extreme fairness optimization:

min
t, |b11|

max

(

1/ log2

(

1 +
|h11|2

|α(t, b11, θ∗)|2 + N1/|b11|2

)

, 1/ log2

(

1 +
|β(t, b11, θ∗)|2

|h12|2 + N2/|b11|2

))

(15)

s.t. |b11|2 ≤ PR, t ∈ [0, π], θ∗ ∈ {−θG, π − θG} (16)

be optimal under the max throughput (black) and extreme

fairness (grey) constraints assuming random MS placement.

We can see that under the max throughput scenario, sym-

metric Case 1 is selected about 45% of the time, while the

asymmetric Cases 2 and 3 are optimal roughly 20% of the

time each, and the fully symmetric Case 4 is optimal 15%

of the time. Under the max throughput criterion, all 4 cases

allow for a single message to be sent. Interestingly, 61% of

the time it is throughput optimal to do so, and we observe

that all 45% of the time Case 1 is chosen, it is to send a single

message. Thus, when it is optimal to transmit 2 messages, the

asymmetric scenarios are almost always optimal. The grey

bars in Fig. 4 correspond to the extreme fairness criterion.

There, Case 1 accounts for 35% of optimal points, Cases

2 and 3 ∼7% each, and Case 4 ∼50%, indicating that full
cooperation is desirable when two equal length messages

must be transmitted.

Fixed MS placement: Figure 7 demonstrates the fraction

of time the 4 cases are chosen under fixed MS placement.

Because of the geometry of the layout, where relay 1 is

aligned with mobile 1 and relay 2 is aligned with mobile 2,

the asymmetric Case 3 is optimal roughly 50% of the time

under the max throughput criterion, in contrast to the 20%

for Case 2. Cases 1 and 4 are optimal 20% and 10% of the

time respectively. Under the fixed MS placement, sending a

single message is optimal only 33% of the time, and again

accounts for all occasions of Case 1 being chosen. Under

the extreme fairness criterion, Case 1, 3 and 4 are optimal

25%, 5% and 70% of the time respectively.

B. Sum-throughput of cooperation versus two non-

cooperative baselines

The plots in Figs. 5, 6, 8, 9 show the cumulative distribu-

tion functions (CDFs) of the throughput of the cooperation

proposed here and compare them to two non-cooperative

baselines. Baseline 1 is “round-robin with relay”, in which

the BS (in a round robin fashion) alternates between trans-

mitting to each mobile with the help of the relay with the best

relay-mobile channel. Baseline 2 is “best 2 hop”, in which

the 2 hop (BS → relay j → MSi) path which takes the

minimal time to transmit one unit of data is chosen. For the

extreme fairness, one message is sent to each mobile along

the best 2 hop path to that mobile, while for the maximum

throughput criteria, only a single message is sent along the

best 2 hop path.

As expected, the cooperative schemes yield higher sum-

throughputs than the non-cooperative baselines. In these

baselines, the mobile stations combine (in a maximum ratio

combining (MRC) fashion [19]) the signals from the BS

and relays. Despite not using any form of combining, the

cooperative schemes still perform better due to the spatial

diversity offered by both symmetric as well as asymmetric

forms of cooperation. The throughputs of the cooperative

schemes are typically 20-50% higher than those of the

baselines.

V. CONCLUSION

In this work we motivate the study of asymmetric co-

operation as a possible optimal transmission strategy in the

downlink of a cellular systems employing cooperating relays.

We provide an analytic framework, outline solutions, and

demonstrate through numerical simulation that the asymmet-

ric cases are often optimal, under two diametrically opposite

optimization criteria. The percentage of time that asymmetric

cooperation outperforms symmetric cooperation depends on

the optimization criteria and channel conditions. Therefore,

the goal of this paper is to highlight a new form of coopera-

tion which should not be neglected and encourage others
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|, and the corresponding linear precoding
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Fig. 4. Four message knowledge scenarios when |hBR1
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|, and a single message is sent. The corresponding
phase 1 and phase 2 rates are illustrated.
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total time taken to transmit them over both phases, as shown in (5).

n1

R
(1)
1

+
n2

R
(1)
2

+ max

(

n1
log2(1+γ1)

,

n2
log2(1+γ2)

)! ! !

!"#$%&'

!"#$%&'

!"#$%&(

"#$%&'(&')*+,$#'&
$%,,*-%&.

"#$%&'(&')*+,$#'&
$%,,*-%&/

"#$%&'(&')*+,$#'&
0('1&$%,,*-%,&,#$23'*+%(2,34

"('*3&'#$%&'*5%+&'(&&
')*+,$#'&$%,,*-%,&.&*+6&/

7
(5)

Phase 1 also impacts phase 2 by constraining the form the linear precoding matrix B can take.

The overall sum throughput optimization problem may then be formulated as in (6)–(12) and

involves determining the optimal rates R(1)
1 and R(1)

2 , linear pre-coding matrix B and the number

of bits n1 and n2. This is subject to the constraints in equations (9)–(12), which mandate that a

decode-and-forward relay can only transmit a message that it has successfully decoded.

In order to minimize the time taken to transmit the messages, R(1)
1 and R(2)

2 must be either

CBR1 or CBR2 . Thus, there are only 22 = 4 possible optimal values for the rate pairs (R(1)
1 , R(1)

2 ),

which correspond to Cases 1–4 of Fig. 3. Given the unavoidable combinatorial nature of the

constraints, the overall maximum is obtained by optimizing each of the four cases separately

and choosing the one with the highest throughput.

max
B, n1, n2

R
(1)
1 , R

(1)
2

n1 + n2

n1

R
(1)
1

+ n2

R
(1)
2

+ max
(

n1
log2(1+γ1) ,

n2
log2(1+γ2)

) (6)

s.t. n1, n2 ≥ 0 (7)

|b11|2 + |b12|2 + |b21|2 + |b22|2 ≤ PR (8)

If R(1)
1 ≥ log2

(

1 + |hBR1 |2PB

)

then b11 = 0 (9)

If R(1)
2 ≥ log2

(

1 + |hBR1 |2PB

)

then b12 = 0 (10)

If R(1)
1 ≥ log2

(

1 + |hBR2 |2PB

)

then b21 = 0 (11)

If R(1)
2 ≥ log2

(

1 + |hBR2 |2PB

)

then b22 = 0 (12)

D. Fairness metrics

The above formulation, which strives to maximize the total throughput, places no additional

constraint on n1 and n2, and can even lead to one of them being zero in the optimal solution. This
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Rayleigh fading, pathloss

Simulation Setup
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Fig. 5. Flowgraph of the maximum throughput optimization which could led to asymmetric relay cooperation.
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Fig. 6. Simulation setup: the relays are at equal distance, spaced at angles 40◦ on arc of radius 5 units. We simulate

two different models for mobile placement: mobiles random in shaded sector for the random MS placement, or at

the fixed points in the fixed MS placement.
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Extreme fairness

Maximum throughput

Fig. 7. Percentage of time the sin-

gle message case, as well as the 4

dual-message cases are chosen under

random MS placement. PR = PB =

1000, radius=10 units.
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Cooperative max throughput

Round robin with relay

Best 2 hop

Fig. 8. CDF of sum throughput under

the max throughput criterion, random

MS placement.
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Ccooperative extreme fairness
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Fig. 9. CDF of sum throughput under

the extreme fairness criterion, random

MS placement.
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Extreme fairness

Maximum throughput

Fig. 10. Percentage of time the single

message case, as well as the 4 dual-

message cases are chosen under fixed

MS placement. PR = PB = 1000,

radius=10 units.
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Cooperative max throughput
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Fig. 11. CDF of sum throughput

under the max throughput criterion,

fixed MS placement.
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Fig. 12. CDF of sum throughput

under the extreme fairness criterion,

fixed MS placement.
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Extreme fairness

Maximum throughput

Fig. 10. Percentage of time the single

message case, as well as the 4 dual-

message cases are chosen under fixed

MS placement. PR = PB = 1000,

radius=10 units.
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fixed MS placement.
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Fig. 12. CDF of sum throughput

under the extreme fairness criterion,

fixed MS placement.
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Optimization
16

d

Fig. 3. Objective function versus the various ellipses obtained for different θ, or angle between the now complex coefficients α and β.

• Cutoff region: when it is not worth sending either M1 or M2? It’s actually all a function of the 6 variables

hBR1
, hBR2

, h11, h12, h21, h22, PB, PR. So we need to fix some and plot others. It may even be interesting

to do this numerically: then people can just use it. Or give the code that does it for any given channel

matrices. Which are best to keep fix, which to let run?

• Compare which of the 4 cooperation schemes is best? % of time wise?
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Bi-directional relaying
Sang Joon Kim, Patrick Mitran, 
Natasha Devroye, Vahid Tarokh



Nodes a and b want to exchange messages 
over a shared half-duplex memoryless channel 

with the help of a relay

Bi-directional relaying protocols

• Bi-directional relaying communication
-Two terminal nodes exchange messages over a shared half-duplex 

and memoryless channel with the help of a relay.

Sang Joon Kim



Protocols in timeProtocols – By time allocations



Protocols in relayingProtocols – By relaying schemes

- Decode and Forward (D&F)

- Compress and Forward (C&F)

- Mixed Forward : One way uses D&F and the other 

used C&F

aa x|! rar xy |ˆ|! aby !
~|

aa x|!
rrr xyy |ˆ| arb yy !

~|
~
ˆ|



ResultsBounds
Find inner and outer bounds of capacity region

• Inner bound (achievable region)

• Outer bound

• Capacity C lies in  

lim 0
in e

n

R C P
!"

# $ %

lim 0
out e

n

CR P
!"

# & %

in out
C CC # #



Plots
18

Fig. 3. Comparison of bi-directional

regions with har = hbr = 1, hab =

0.2, Pa = Pb = Pr = 1 and Na =

Nb = Nr = 1.

Fig. 4. Comparison of bi-directional

regions with har = hbr = 1, hab =

0.2, Pa = Pb = Pr = 10 and Na =

Nb = Nr = 1.

Fig. 5. Comparison of bi-directional

regions with har = hbr = 1, hab =

0.2, Pa = Pb = Pr = 10
5 and Na =

Nb = Nr = 1.

Fig. 6. Comparison of bi-directional

regions with har = 0.5, hbr = 2,

hab = 0.2, Pa = Pb = Pr = 1 and

Na = Nb = Nr = 1.

Fig. 7. Comparison of bi-directional

regions with har = 0.5, hbr = 2,

hab = 0.2, Pa = Pb = Pr = 10 and

Na = Nb = Nr = 1.

Fig. 8. Comparison of bi-directional

regions with har = 0.5, hbr = 2,

hab = 0.2, Pa = Pb = Pr = 10
5

and Na = Nb = Nr = 1.

B. Asymmetric Case

In this case(har = 0.5, hbr = 2 and hnar = 2, hbr = 0.5, and we plot the regions for transmit SNRs

of 0, 5 and 50dB. Note that these two asymmetric cases are different for the mixed forwarding cases,

which assume CF in one direction and DF in the other. COMMENTARY WHEN WE HAVE THE

FINAL FIGURES.

C. Maximum Sum Data Rate

In this subsection we plot the maximum sum-rate Ra +Rb as a function of the transmit SNR for the

symmetric and two asymmetric cases of the previous subsections. As expected, different schemes

are optimal for different SNR values. COMMENTARY WHEN WE HAVE THE FINAL FIGURES.
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Opportunistic 
interference cancellation

Petar Popovski, Natasha Devroye



Motivation

• Rather than Tx-side cognition, can the Rxs 
behave in a cognitive fashion?

• Assume the cognitive Rx knows the 
primary’s codebook

• Assume the cognitive Tx knows at what 
power it may transmit so as not to harm the 
primary Rx

• Assume primary system does not change



Scenario 1: MAC

3

j are used for the cognitive channels. These are assumed to remain fixed over the transmission duration

(quasi-static).

7) The SNR of the primary signal at cognitive Rx i is denoted by γpi, while the SNR of the cognitive

transmitter i at receiver j is denoted by γij .

8) All links are assumed to subject to independent AWGN of zero mean and unit power.

9) All nodes are assumed to have a single antenna and transmit over the same frequency.

10) The primary and secondary systems are synchronized at the secondary Rxs, allowing for opportunistic

decoding. How this is achieved is not the focus of this work.

Standard definitions of encoders, decoders, codes, errors, and achievable rates and rate regions are assumed

[4], [1]. The number of channel uses n over which transmission takes place tends to ∞, and is omitted when

describing codewords and vectors for brevity. (THINK WE SHOULD BE PRECISE HERE? WILL ADD IT

IF WE NEED IT IN THE PROOFS)

We now define the three cognitive channels for which the benefits of opportunistic interference cancellation

will be explored: the multiple access channel, the interference channel and the broadcast channel. For all

channels, there is a single primary Tx, which transmits a signal Xp (at each channel use) from a randomly

generated Gaussian codebook of power Pp.

B. The multiple access channel with opportunistic interference cancellation
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Fig. 1. The multiple access channel with opportunistic interference cancellation system setup: M non-cooperating cognitive transmitters

Tx 1, · · · , Tx i, · · · , Tx M, wish to transmit to a single cognitive receiver Rx 1 which undergoes AWGN of mean 0 and variance 1. A

single primary transmitter interferes at both the receivers, and may be opportunistically cancelled.

We consider an M → 1 cognitive multiple access channel (MAC) in which M independent cognitive Txs

wish to communicate with a single cognitive Rx, as shown in Figure 1. The cognitive Rx receives the primary

transmission of rate Rp at an SNR of γp1, which it may be able to decode. The primary receiver is operating

at a positive interference margin Imargin, which is known to the cognitive Txs. The channels between the

December 4, 2007 DRAFT



Scenario 2: Interference

4

transmitters and receivers are assumed to be memoryless and iid subject to AWGN. If the symbol transmitted

by cognitive Tx i at a given channel use is given by Xi, then the output at the cognitive Rx 1, Y1, is given by

Y1 =
M
∑

i=1

hi1Xi + hp1Xp + N1, where N1 ∼ N (0, 1).

In constructing an achievable rate region we will assume all transmitted Xi belong to independent Gaussian

codebooks generated at each of the cognitive Txs of power Pi. The powers of these Gaussian codebooks must

be such that the interference margin Imargin at the primary Rx is satisfied. That is, the admissible powers of

the M → 1 MAC P = (P1, P2, · · · , PM ) lie in the region defined by the interference margin Imargin and

channel gains to the primary Rx, hip:

PMAC =
{

(P1, P2, · · · , PM ) such that |h1p|
2P1 + |h2p|

2P2 + · · · + |hMp|
2PM ≤ Imargin

}

An achievable rate region for the M → 1 MAC with opportunistic interference cancellation is a set of rates

(R1, R2, · · ·Rm), for a given primary rate Rp, given channel gains hij , and given interference margin Imargin

which is a subset of the positive quadrant of RM which we call RMAC . For each set of powers P ∈ PMAC , an

achievable rate region may be found. An overall achievable rate region RMAC may be obtained as the convex

hull of the union over all P ∈ PMAC of these rate regions. In Section III we obtain an expression for RMAC .

C. The interference channel with opportunistic interference cancellation
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Fig. 2. The interference channel with opportunistic interference cancellation system setup: two non-cooperating cognitive transmitters

Tx 1 and Tx 2, two independent cognitive receivers Rx 1 and Rx 2 all undergo independent AWGN of mean 0 and variance 1. A single

primary transmitter interferes at both the receivers, and may be opportunistically cancelled.

We consider a cognitive interference channel in which 2 independent cognitive Txs wish to communicate

with two independent cognitive Rx, as shown in Figure 2. The cognitive Rxs receive the primary transmission

of rate Rp at an SNR of γp1 and γp2 respectively, which none, one, or both may be able to decode. The

primary receiver is operating at a positive interference margin Imargin, which is known to the cognitive Txs.

The channels between the transmitters and receivers are assumed to be memoryless and iid subject to AWGN.
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Scenario 3: Broadcast

5

If the symbol transmitted by cognitive Tx i at a given channel use is given by Xi, then the output at the

cognitive Rx 1, Y1, and Rx 2, Y2 are given by

Y1 = h11X1 + h21X2 + hp1Xp + N1, where N1 ∼ N (0, 1), and

Y2 = h12X1 + h22X2 + hp2Xp + N2, where N2 ∼ N (0, 1).

In constructing an achievable rate region we will assume all transmitted Xi belong to independent Gaussian

codebooks generated at each of the cognitive Txs of power Pi. The powers of these Gaussian codebooks must

be such that the interference margin Imargin at the primary Rx is satisfied. That is, the admissible powers of

the interference channel P = (P1, P2) lie in the region defined by the interference margin Imargin and channel

gains to the primary Rx, hip:

PINT =
{

(P1, P2) such that |h1p|
2P1 + |h2p|

2P2 ≤ Imargin

}

An achievable rate region for the interference channel with opportunistic interference cancellation is a set of

rate pairs (R1, R2), for a given primary rate Rp, given channel gains hij , and given interference margin Imargin

which is a subset of the positive quadrant of R2 which we call RINT . For each set of powers P ∈ PINT , an

achievable rate region may be found. An overall achievable rate region RINT may be obtained as the convex

hull of the union over all P ∈ PINT of these rate regions. In Section IV we obtain an expression for RINT .

D. The broadcast channel with opportunistic interference cancellation
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Fig. 3. The broadcast channel with opportunistic interference cancellation system setup: a single cognitive transmitter Tx 1 wishes to

communicate with M non-cooperating cognitive receivers Rx 1, · · · , Rx i, · · · , Rx M, which undergo independent AWGN of mean 0

and variance 1. A single primary transmitter interferes at both the receivers, and may be opportunistically cancelled.

Lastly, we consider a 1 → M cognitive broadcast channel (BC) in which M independent cognitive Rxs

wish to decode independent messages from a single cognitive Tx, as shown in Figure 3. The cognitive Rxs
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Key idea

• The channel to the cognitive Rx is a multiple 
access channel: opportunistically decode the 
primary signal if its rate is below the capacity 
from the primary to secondary.

• Obtain the rate region described by the 
MAC but with the MAC rate set to the 
primary rate. Project down 1 dimension.



Nice technical result

• Can achieve all points on the boundary 
without time sharing with the primary

• Achieved by:

• MAC: single message split at cognitive Tx

• Int: cannot in general achieve

• BC: cannot in general achieve



Gains for opportunistic MAC
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(a) (b)

Rate regions for opportunistic MAC chan-
nel with equal, fixed powers P1 = P2.

Rate regions for opportunistic MAC chan-
nel with (P1, P2) ∈ PMAC .

Fig. 5. Opportunistic MAC channel regions.

Rx, i.e.

Fixed transmit powers: P1 =
Imargin

2|h1p|2
, P2 =

Imargin

2|h2p|2
.

Notice that in this case no union over all transmit powers is taken (as done in Theorems 1 and 3.) This is

considered in the second case, where we allow the transmit powers to be anything such that the interference

margin is met, i.e. (P1, P2) ∈ PMAC and (P1, P2) ∈ PINT respectively, which, with the given parameters, are

given as:

All possible transmit powers: (P1, P2) ∈ PMAC = PINT = {(P1, P2)||h1p|
2P1 + |h2p|

2P2 ≤ Imargin}

= {(P1, P2)|P1 + P2 ≤ 25}

PETAR: what other plots would be interesting? I was thinking of making some 3-d plots with R1, R2 on

the x and y axes and perhaps Imargin or Rp on the z-axis. This will show how the regions change as the

cognitive transmit powers increase, or as the primary rate changes, respectively. Still have to do this....

The figures 5 illustrate the improvement in the rate region when using opportunistic decoding at the cognitive

receiver of a MAC channel. In (a), the powers are held fixed, while in (b), the powers lie anywhere in PMAC .

Figure 6 illustrate the improvement in the rate region when using opportunistic decoding at the cognitive

receiver of an interference channel. In (a), the powers are held fixed, while in (b), the powers lie anywhere in

PINT . In this case, none, one, or both of the cognitive Rxs may decode the primary message.

KEY MESSAGE: cognitive Rxs close to primary Tx is great. Not done.
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Gains for opportunistic interference
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Rate regions for opportunistic interference
channel with equal, fixed powers P1 =
P2.

Rate regions for opportunistic interference
channel with (P1, P2) ∈ PINT .

Fig. 6. Opportunistic interference channel regions.

VII. CONCLUSION

REFERENCES

[1] T. Berger, “Multiterminal source coding,” in The Information Theory Apporach to Communications, G. Longo, Ed. New York:

Springer-Verlag, 1977.

[2] A. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. IT-24, no. 1, pp. 60–70, Jan. 1978.

[3] H. Chong, M. Motani, H. Garg, and H. E. Gamal, “On the han-kobayashi region for the interference channel.”

[4] T. Cover and J. Thomas, Elements of Information Theory. New York: John Wiley & Sons, 1991.

[5] N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp.

1813–1827, May 2006.

[6] R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” 2007. [Online]. Available:

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0702045

[7] T. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. IT-27, no. 1, pp.

49–60, 1981.

[8] A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic perspective,” Submitted to IEEE Trans. Inf. Theory, 2006.

APPENDIX
Proof of Theorem 1.
Since the M cognitive Txs and the primary Tx are independent, and all signals are received at the cognitive

Rx, a M +1 → 1 virtual MAC exists. We call this a virtual MAC as the primary Tx does not create it codebook
with the aim of communicating with the cognitive Rx 1. However, because we have assumed Gaussian input
distributions in the construction of our achievable rate region, a codebook designed for the primary Rx and the
cognitive Rx will look the same. Since the cognitive Rx has the primary’s codebook, it is able to decode the
primary’s signal provided the primary rate R∗

p lies below the capacity of the channel between the primary Tx
and the cognitive Rx. The capacity of this channel is given by C(γp1).
If R∗

p ≥ C(γp1), the cognitive Rx is not able to decode the primary Tx’s signal reliably and thus treats it as
noise. The standard MAC equations, in compact form, are stated in the theorem.
On the other hand, if R∗

p < C(γp1), the cognitive Rx may opportunistically decode the primary user’s
message. Thus the M cognitive Txs as well as the primary Rx are decoded a the cognitive Rx, forming an
M +1 → 1 MAC if the primary’s rate Rp in the virtual MAC were to remain free. However, since the primary
Tx sets its rate Rp = R∗

p, the (M + 1)-dimensional rate region reduces to an M -dimensional one, obtained as
the level set of the MAC polytope with Rp = R∗

p.

Proof of Theorem 2.
PETAR? In the achievable rate region did not split the messages. Split in this proof.

Proof of Theorem 3.
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What is the capacity of the 
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between (S2, R2), the best rate region one can hope to achieve is the time-
sharing rate region. Where we operate on the boundary of this region depends
entirely on what percentage of the time the primary user is on the channel
(or the α parameter of (1.5)). The rates achieved by the cognitive user thus
depend on the primary user’s channel utilization. It is important to note that
in the region and coding scheme described in Theorem 1 that the cognitive
user’s choice of the power-sharing parameter α in essence determines where
on the boundary of the cognitive IC-DMS region we operate. Thus, if such
a scheme were to be implemented, one would need to ensure that cognitive
radios would not select an α that would be too detrimental to the rate of
the primary user. Nonetheless, theoretically, the presence of the incumbent
cognitive radio S2 can be beneficial to S1, and could provide incentives for
the introduction of such schemes.
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MIMO broadcast channel

Cognitive channel
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Time!sharing

Fig. 1.4. Capacity region of the Gaussian 2 × 1 MIMO two receiver broadcast
channel (outer), cognitive channel (middle), achievable region of the interference
channel (second smallest) and time-sharing (innermost) region for Gaussian noise
powers N1 = N2 = 1, power constraints P1 = P2 = 10 at the two transmitters, and
channel parameters a12 = 0.8, a21 = 0.2.

1.2.2 Discrete Memoryless Channel

In the previous subsection, we outlined the capacity region for the Gaussian
cognitive radio channel (or IC-DMS) in the weak interference (a21 < 1) regime.
Gaussian noise channels have in general been more well studied and under-
stood than general discrete channel models (where channel inputs and outputs

a21=0.8
a12=0.2
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Protocol 1

Phase 1:

broadcast channel 
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cognitive radio channel 
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Protocol 2
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Protocol 3
Only one phase: interference channel. 

X2 does not know X1 and does not dirty paper code against it.
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Protocol 4

Phase 1: 

broadcast channel 

Phase 2: 
X2 aids  X1 in sending it 

message. X2 does not 
send any information of 
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Causal achievable regions

P1=P2=6 P1=6, P2=1.5

Blue: G=1     Yellow: G=10     Cyan: Genie-Aided
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Unused spectrum
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able to observe higher-powered broadcast transmitters and land mobile base stations more easily 

and at greater distances than lower-power short range mobile units, particularly hand-held units. 

 

Limited-duration spectrum observations are only useful for estimating average spectrum 

use.  For blocks of spectrum subject to highly peaked demand, e.g. public safety spectrum, such 

limited-duration monitoring may miss the demand peaks altogether. Nevertheless, the existence 

of such low average occupancy bands in urbanized areas with increasing spectrum demand raises 

interest in the possibility of matching supply and demand better with alternative technology.  

Several options for doing this are discussed elsewhere in this Report. 

 

Up to this point, this Report has focused on the “raw” monitoring data.  However, the 

data can also be processed to look at the statistics of spectrum use.  For this analysis we looked at 

a sliding 30-second window of spectrum observations and computed what fraction of the 

observed frequencies were idle during each window.16  Figures 3 and 4 show this type of analysis 

for two nonadjacent 7 megahertz blocks of spectrum below 1 GHz.  These data again show that 

while some frequencies are heavily used, there are other bands that have large parcels of time-

frequency blocks of spectrum available even in high-use urban areas.  
 

 
Figure 3: Use of a 7 megahertz band below 1 GHz  

(percentage of a 30-second window by 7 megahertz block that was idle) 

                                            
16

  For this data, observations were made every 10 kHz. 
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Neither FCC nor NTIA routinely quantify actual spectrum usage by users under their 

jurisdiction.  However, during the Summer of 2002 the FCC’s Enforcement Bureau took limited 

measurements of spectrum use in certain urban areas which allow a partial view of actual 

spectrum use.  This effort was limited in duration and only used one site in each city studied, and 

hence generally underestimate actual spectrum use to some degree.  However, the Working 

Group believes that the general observations made here are likely to have broad applicability and 

should be verified in a broader measurement program, possibly in conjunction with noise 

measurements 

 

Figure 1 shows the general nature of spectrum occupancy in an approximately 700 

megahertz block of spectrum below 1 GHz in Atlanta, New Orleans, and San Diego.  This data 

was taken by FCC’s Enforcement Bureau at its offices in each city in June 2002.15 

 

 

 

                                            
15

  The addresses of the measurement locations are: Atlanta - 3575 Koger Blvd, Duluth GA; New Orleans - 2424 
Edenborn Avenue, Metairie LA; and San Diego - 4542 Ruffner Street, San Diego CA 

Figure 1:  Occupancy of approximately 700 megahertz  

of spectrum below 1 GHz 

Federal Communications Commission 
Spectrum Policy Task Force 
Report of the Spectrum  
Efficiency Working Group 
November 15, 2002
http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf

http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf
http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf
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In Figure 1 it can be seen that there can be a large variation in spectrum use intensity 

within the spectrum below 1 GHz in Atlanta, New Orleans and San Diego.  The lower 

frequencies in the observed spectrum tend to have lower utilization than the higher frequencies.  

Blocks of frequencies used by television broadcasting and cellular base stations have continuous 

occupancy, while other frequencies are more dynamic. 

 

More detail about mobile radio occupancy is shown in Figure 2, which shows 7.5 MHz of 

a UHF land mobile band in the same three cities.  It can be seen in this detailed view that land 

mobile demand is very dynamic, but there is still a large amount of “white space” in the band 

that was monitored. 

 

 
 

Single-site monitoring, such as this, tends to underestimate spectrum use somewhat and a 

good example is seen here as some bands are heavily used, while other bands have less use.  This 

behavior may be due to fact that a given monitoring site is only able to receive signals that are 

sufficiently strong at that specific monitoring site.  The signals that a nearby monitoring site is 

capable of receiving may be quite different.  Furthermore, a given monitoring site is likely to be 

Figure 2: Occupancy of a 7.5 megahertz UHF Land Mobile band 

Atlanta 

 
 
 
 
 
New Orleans 

 
 
 
 
 
San Diego 
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Achievable rate region: set of
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Capacity region: the closure of the set
of all achievable rate pairs (R1, R2).

An (2#nR1$, 2#nR2$, n, Pe) code consists of encoding func-
tions that map messages W1 ∈ {1, 2, · · ·2#nR1$ and
W2 ∈ {1, 2, · · ·2#nR2$ and decoding functions that re-
cover these messages such that the average error proba-
bility is less than Pe.
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2 Tx antenna, 2 Rx antenna Multiple Input Multiple 
Output (MIMO) fading channel with Gaussian noise
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• Depends on criterion

• Round robin with relay

• Best 2 hop overall 
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Fig. 5. CDF of sum throughput under the max
throughput criterion, random MS placement.
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Fig. 6. CDF of sum throughput under the
extreme fairness criterion, random MS place-
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Fig. 8. CDF of sum throughput under the
max throughput criterion, fixed MS placement.
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Fig. 9. CDF of sum throughput under the
extreme fairness criterion, fixed MS placement.

to consider this when designing anything from standards

to analytic frameworks involving cooperation. Future work

includes the extension to different downlink coding and

decoding techniques including, for example, the interfer-

ence mitigating dirty-paper coding, considering asymmetry

performance in multiple relay and/or mobile scenarios, and

models in which only channel fading statistics are known.
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• The achievable rates 
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Disjoint clusters interfere (inter-cluster)
Nodes within a cluster interfere (intra-cluster)
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• Motivation and definition 

• Relation to previous work

• Theorem intuition

• Achievable region in Gaussian case  
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2)

#

×

2

4

q
Y

j=1

P (m2j1|v1)P (m2j2|v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j)

3

5 P (y1|x1, x2)P (y2|x1, x2)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT )

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂T1

 

X

t1∈T

Rt1

!

≤ I(Y1;MT |MT )

Lt is the rate of Mt

T1 = {111, 112, 121, 122, 211}

\

T⊂T2

 

X

t2∈T

Rt2

!

≤ I(Y2;MT |MT )

T2 = {112, 122, 211, 212}

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W )

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ),

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (??), with

respect to T2 in (??), and VT denotes the vector of Vi such

that i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any
element (R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (??) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (??) and (??) corre-

spond to the equations for two overlapping MAC channels

seen between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (??) and (??) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and
in the other case it could dirty-paper code against the

known interference by selecting P (x2j |m2j1, m2j2, aj, w) =
P (x2j |m2j1, m2j2, w) := P (x2j |v2j1, v2j2, w), where v2j1

and v2j2 serve as the fictitious auxiliary inputs in the dirty

paper coding argument.

II. THE GAUSSIAN COGNITIVE MULTIPLE ACCESS

CHANNEL

Consider the (2, 1) genie-aided cognitive radio multiple
access channel, depicted in Fig. ??, with independent additive

noise Z1 ∼ N (0, Q1), Z2 ∼ N (0, Q2) and g(X11, X12) =
X11 +X12. In order to determine an achievable region for the

modified Gaussian genie-aided cognitive radio multiple access

channel, specific forms of the random variables described

in Theorem 1 are assumed. For the purpose of deriving an

achievable region, we letW , the time-sharing random variable,

be constant.

Consider the case where, for certain α, β ∈ R, µ, ν ∈ [0, 1]
and λ,λ, γ, γ, η, η ∈ [0, 1], with λ+λ = 1, γ+γ = 1, η+η =

1, and additional independent auxiliary random variables U211

and U212 as in Fig. ??, the following hold:

M111 ∼ N (0, λP11), M112 ∼ N (0, λP11)

X11 = M111 + M112

M121 ∼ N (0, γP12), M122 ∼ N (0, γP12)

X12 = M121 + M122

P31 = µP21, P32 = ν(P21 − P31), P33 = P21 − P31 − P32

A1
111 =

p

(θP31)/(λP11)M111, A1
112 =

q

(θP31)/(λP11)M121

A1
121 =

p

(ψP32)/(γP12)M121, A1
122 =

q

(ψP32)/(γP12)M121

U211 ∼ N (0, ηP33), U212 ∼ N (0, ηP33)

M211 = U211 + α(X11 + X12 + A1
111 + A1

112 + A1
121 + A1

122)

M212 = U212 + β(X11 + X12 + A1
111 + A1

112 + A1
121 + A1

122)

X21 = A1
111 + A1

112 + A1
121 + A1

122 + U211 + U212

Bounds on the rates R111, R112, R121, R122, R211 and

R212 can be calculated as functions of the free parameters

α, β, λ, γ, η, µ, ν, the channel coefficients, the noise parame-
ters Q1 and Q2, and the power constraints P11, P12 and P21.

The achievable region thus obtained by Theorem 3 and

Lemma 2 for the Gaussian genie-aided cognitive radio channel

is plotted in Fig. ?? (middle). As expected, because of the

extra information at the encoder and the partial use of a

Gel’fand-Pinsker coding technique, S21 can simultaneously

transmit with S11 and S12 at much larger rates than when

no collaboration is used.

A. The Competitive and Cooperative Cases

When S2 does not know or employ S1’s message, the

two MAC clusters behave in a competitive manner. We set

α = β = 0 (no Gel’fand-Pinsker coding), and obtain the

achievable region for the competitive case shown in Fig. ??

(left). The cooperative case is obtained by considering the

3×2 Gaussian MIMO broadcast channel, whose capacity was
recently computed in [?]. This region provides a 2-D region

for the broadcast rates R1 and R2. We equate R2 = R21,

and split write R1 = R11 + R12 The 3 × 2 MIMO broadcast
channel provides a loose bound since all users are permitted

to cooperate. We tighten the outer bound by noticing that

because S1 cannot aid S2, the rate R21 is bounded by the

no-interference case, or R21 ≤ 1/2 log
(

1 + a2
212P21/Q2

)

.

Similarly, since S12 cannot aid S11, even if R12 = 0,

we see that R11 ≤ 1/2 log
(

1 + (a111

√
P11+a211

√
P21)2

Q1

)

and

analogously, R12 ≤ 1/2 log
(

1 + (a121

√
P12+a211

√
P21)2

Q1

)

. We

also restrict the diagonal elements of the covariance matrix

constraint used to evaluate the 3×2MIMO broadcast capacity
to be P11, P12 and P21 respectively. The MIMO 3×2 broadcast
channel intersected with the bounds on R11, R12 and R21 is

plotted in Fig. ?? (right), and provides an outer bound on the

cognitive behavior.

R11 ≤ I(Y1; X11, X21|X12)

R12 ≤ I(Y1; X12, X21|X11)
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2)

#

×

2

4

q
Y

j=1

P (m2j1|v1)P (m2j2|v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j)

3

5 P (y1|x1, x2)P (y2|x1, x2)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT )

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂T1

 

X

t1∈T

Rt1

!

≤ I(Y1;MT |MT )



random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2)

#

×

2

4

q
Y

j=1

P (m2j1|v1)P (m2j2|v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j)

3

5 P (y1|x1, x2)P (y2|x1, x2)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT )

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂T1

 

X

t1∈T

Rt1

!

≤ I(Y1;MT |MT )

random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2)

#

×

2

4

q
Y

j=1

P (m2j1|v1)P (m2j2|v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j)

3

5 P (y1|x1, x2)P (y2|x1, x2)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT )

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\

T⊂T1

 

X

t1∈T

Rt1

!

≤ I(Y1;MT |MT )
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {111, 112, 121, 122, 211}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {112, 122, 211, 212}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)
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T⊂TG
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t∈T

Rt

!

≤ I(g(X1);MT |MT )

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\
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!
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Lt is the rate of Mt

Rt is the rate of Vt

T1 = {111, 112, 121, 122, 211}

\

T⊂T2

 

X

t2∈T

Rt2

!

≤ I(Y2;MT |MT )

T2 = {112, 122, 211, 212}

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W )

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ),

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (??), with

respect to T2 in (??), and VT denotes the vector of Vi such

that i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any
element (R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (??) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (??) and (??) corre-

spond to the equations for two overlapping MAC channels

seen between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (??) and (??) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and
in the other case it could dirty-paper code against the

known interference by selecting P (x2j |m2j1, m2j2, aj, w) =
P (x2j |m2j1, m2j2, w) := P (x2j |v2j1, v2j2, w), where v2j1

and v2j2 serve as the fictitious auxiliary inputs in the dirty

paper coding argument.

II. THE GAUSSIAN COGNITIVE MULTIPLE ACCESS

CHANNEL

Consider the (2, 1) genie-aided cognitive radio multiple
access channel, depicted in Fig. ??, with independent additive

noise Z1 ∼ N (0, Q1), Z2 ∼ N (0, Q2) and g(X11, X12) =
X11 +X12. In order to determine an achievable region for the

modified Gaussian genie-aided cognitive radio multiple access

channel, specific forms of the random variables described

in Theorem 1 are assumed. For the purpose of deriving an

achievable region, we letW , the time-sharing random variable,

be constant.

Consider the case where, for certain α, β ∈ R, µ, ν ∈ [0, 1]
and λ,λ, γ, γ, η, η ∈ [0, 1], with λ+λ = 1, γ+γ = 1, η+η =
1, and additional independent auxiliary random variables U211

and U212 as in Fig. ??, the following hold:

M111 ∼ N (0, λP11), M112 ∼ N (0, λP11)

X11 = M111 + M112

M121 ∼ N (0, γP12), M122 ∼ N (0, γP12)

X12 = M121 + M122

P31 = µP21, P32 = ν(P21 − P31), P33 = P21 − P31 − P32

A1
111 =

p

(θP31)/(λP11)M111, A1
112 =

q

(θP31)/(λP11)M121

A1
121 =

p

(ψP32)/(γP12)M121, A1
122 =

q

(ψP32)/(γP12)M121

U211 ∼ N (0, ηP33), U212 ∼ N (0, ηP33)

M211 = U211 + α(X11 + X12 + A1
111 + A1

112 + A1
121 + A1

122)

M212 = U212 + β(X11 + X12 + A1
111 + A1

112 + A1
121 + A1

122)

X21 = A1
111 + A1

112 + A1
121 + A1

122 + U211 + U212

Bounds on the rates R111, R112, R121, R122, R211 and

R212 can be calculated as functions of the free parameters

α, β, λ, γ, η, µ, ν, the channel coefficients, the noise parame-
ters Q1 and Q2, and the power constraints P11, P12 and P21.

The achievable region thus obtained by Theorem 3 and

Lemma 2 for the Gaussian genie-aided cognitive radio channel

is plotted in Fig. ?? (middle). As expected, because of the

extra information at the encoder and the partial use of a

Gel’fand-Pinsker coding technique, S21 can simultaneously

transmit with S11 and S12 at much larger rates than when

no collaboration is used.

A. The Competitive and Cooperative Cases

When S2 does not know or employ S1’s message, the

two MAC clusters behave in a competitive manner. We set

α = β = 0 (no Gel’fand-Pinsker coding), and obtain the

achievable region for the competitive case shown in Fig. ??

(left). The cooperative case is obtained by considering the

3×2 Gaussian MIMO broadcast channel, whose capacity was
recently computed in [?]. This region provides a 2-D region

for the broadcast rates R1 and R2. We equate R2 = R21,

and split write R1 = R11 + R12 The 3 × 2 MIMO broadcast
channel provides a loose bound since all users are permitted

to cooperate. We tighten the outer bound by noticing that

because S1 cannot aid S2, the rate R21 is bounded by the

no-interference case, or R21 ≤ 1/2 log
(

1 + a2
212P21/Q2

)

.

Similarly, since S12 cannot aid S11, even if R12 = 0,

we see that R11 ≤ 1/2 log
(

1 + (a111

√
P11+a211

√
P21)2

Q1

)

and

analogously, R12 ≤ 1/2 log
(

1 + (a121

√
P12+a211

√
P21)2

Q1

)

. We

also restrict the diagonal elements of the covariance matrix

constraint used to evaluate the 3×2MIMO broadcast capacity
to be P11, P12 and P21 respectively. The MIMO 3×2 broadcast
channel intersected with the bounds on R11, R12 and R21 is

plotted in Fig. ?? (right), and provides an outer bound on the

cognitive behavior.

R11 ≤ I(Y1; X11, X21|X12)

Lt is the rate of Mt

Rt is the rate of Vt

T1 = {111, 112, 121, 122, 211}

\

T⊂T2
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X
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Lt2

!

≤ I(Y2,VT ;VT |W ),

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (??), with

respect to T2 in (??), and VT denotes the vector of Vi such

that i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any
element (R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (??) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (??) and (??) corre-

spond to the equations for two overlapping MAC channels

seen between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (??) and (??) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and
in the other case it could dirty-paper code against the

known interference by selecting P (x2j |m2j1, m2j2, aj, w) =
P (x2j |m2j1, m2j2, w) := P (x2j |v2j1, v2j2, w), where v2j1

and v2j2 serve as the fictitious auxiliary inputs in the dirty

paper coding argument.

II. THE GAUSSIAN COGNITIVE MULTIPLE ACCESS

CHANNEL

Consider the (2, 1) genie-aided cognitive radio multiple
access channel, depicted in Fig. ??, with independent additive

noise Z1 ∼ N (0, Q1), Z2 ∼ N (0, Q2) and g(X11, X12) =
X11 +X12. In order to determine an achievable region for the

modified Gaussian genie-aided cognitive radio multiple access

channel, specific forms of the random variables described

in Theorem 1 are assumed. For the purpose of deriving an

achievable region, we letW , the time-sharing random variable,

be constant.

Consider the case where, for certain α, β ∈ R, µ, ν ∈ [0, 1]
and λ,λ, γ, γ, η, η ∈ [0, 1], with λ+λ = 1, γ+γ = 1, η+η =
1, and additional independent auxiliary random variables U211

and U212 as in Fig. ??, the following hold:

M111 ∼ N (0, λP11), M112 ∼ N (0, λP11)

X11 = M111 + M112

M121 ∼ N (0, γP12), M122 ∼ N (0, γP12)

X12 = M121 + M122

P31 = µP21, P32 = ν(P21 − P31), P33 = P21 − P31 − P32

A1
111 =

p

(θP31)/(λP11)M111, A1
112 =

q

(θP31)/(λP11)M121

A1
121 =

p

(ψP32)/(γP12)M121, A1
122 =

q

(ψP32)/(γP12)M121

U211 ∼ N (0, ηP33), U212 ∼ N (0, ηP33)

M211 = U211 + α(X11 + X12 + A1
111 + A1

112 + A1
121 + A1

122)

M212 = U212 + β(X11 + X12 + A1
111 + A1

112 + A1
121 + A1

122)

X21 = A1
111 + A1

112 + A1
121 + A1

122 + U211 + U212

Bounds on the rates R111, R112, R121, R122, R211 and

R212 can be calculated as functions of the free parameters

α, β, λ, γ, η, µ, ν, the channel coefficients, the noise parame-
ters Q1 and Q2, and the power constraints P11, P12 and P21.

The achievable region thus obtained by Theorem 3 and

Lemma 2 for the Gaussian genie-aided cognitive radio channel

is plotted in Fig. ?? (middle). As expected, because of the

extra information at the encoder and the partial use of a

Gel’fand-Pinsker coding technique, S21 can simultaneously

transmit with S11 and S12 at much larger rates than when

no collaboration is used.

A. The Competitive and Cooperative Cases

When S2 does not know or employ S1’s message, the

two MAC clusters behave in a competitive manner. We set

α = β = 0 (no Gel’fand-Pinsker coding), and obtain the

achievable region for the competitive case shown in Fig. ??

(left). The cooperative case is obtained by considering the

3×2 Gaussian MIMO broadcast channel, whose capacity was
recently computed in [?]. This region provides a 2-D region

for the broadcast rates R1 and R2. We equate R2 = R21,

and split write R1 = R11 + R12 The 3 × 2 MIMO broadcast
channel provides a loose bound since all users are permitted

to cooperate. We tighten the outer bound by noticing that

because S1 cannot aid S2, the rate R21 is bounded by the

no-interference case, or R21 ≤ 1/2 log
(

1 + a2
212P21/Q2

)

.

Similarly, since S12 cannot aid S11, even if R12 = 0,

we see that R11 ≤ 1/2 log
(

1 + (a111

√
P11+a211

√
P21)2

Q1

)

and

analogously, R12 ≤ 1/2 log
(

1 + (a121

√
P12+a211

√
P21)2

Q1

)

. We

also restrict the diagonal elements of the covariance matrix

constraint used to evaluate the 3×2MIMO broadcast capacity
to be P11, P12 and P21 respectively. The MIMO 3×2 broadcast
channel intersected with the bounds on R11, R12 and R21 is

plotted in Fig. ?? (right), and provides an outer bound on the

cognitive behavior.

R11 ≤ I(Y1; X11, X21|X12)



Gel’fand-Pinsker coding

Overlapping MACs

Achievable rate region:

random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {111, 112, 121, 122, 211}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {112, 122, 211, 212}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

\
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X

t∈T
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!
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R2jk ≤ L2jk − I(V2jk;V1)

\
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

"

p
Y

i=1

P (m1iα)P (m1iβ)P (x1i|m1iα, m1iβ)

#

×

"

p
Y

i=1

P (m1

1iα, m
2

1iα, . . . m
q
1iα|m1iα)P (m1

1iβ , m
2

1iβ , . . . , m
q
1iβ |m1iβ)

#

×

2

4

q
Y

j=1

P (m2jα|v1)P (m2jβ |v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2jα, m2jβ , m
j)

3

5 P (y1|x1, x2)P (y2|x1, x2)

[P (m11α)P (m11β)P (x11|m11α, m11β)]

× [P (m12α)P (m12β)P (x12|m12α, m12β)]

×
[

P (m∗
11α|m11α)P (m∗

11β |m11β)
]

×
[

P (m∗
12α|m12α)P (m∗

12β |m12β)
]

× [P (m21α|v1)P (m21β |v1)]

× [P (x21|m21α, m21β,m∗)] P (y1|x1,x2)P (y2|x1,x2)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;VT |VT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;VT |VT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)

random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

"

p
Y

i=1

P (m1iα)P (m1iβ)P (x1i|m1iα, m1iβ)

#

×

"

p
Y

i=1

P (m1

1iα, m
2

1iα, . . . m
q
1iα|m1iα)P (m1

1iβ , m
2

1iβ , . . . , m
q
1iβ |m1iβ)

#

×

2

4

q
Y

j=1

P (m2jα|v1)P (m2jβ |v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2jα, m2jβ , m
j)

3

5 P (y1|x1, x2)P (y2|x1, x2)

[P (m11α)P (m11β)P (x11|m11α, m11β)]

× [P (m12α)P (m12β)P (x12|m12α, m12β)]

×
[

P (m∗
11α|m11α)P (m∗

11β |m11β)
]

×
[

P (m∗
12α|m12α)P (m∗

12β |m12β)
]

× [P (m21α|v1)P (m21β |v1)]

× [P (x21|m21α, m21β,m∗)] P (y1|x1,x2)P (y2|x1,x2)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;VT |VT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;VT |VT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)



is an outer 
bound for

along with the bounds

Y
1

X
11

X
12

X
21

Y
2

R11 ≤ I(Y1; X11, X21|X12)

R12 ≤ I(Y1; X12, X21|X11)

R21 ≤ I(Y2; X21|X11, X12)

III. CONCLUSION

We have defined inter/intra-cluster cognitive behavior, and

have derived an achievable region for the cognitive radio

multiple access channel. In the Gaussian case, this region was

compared to the achievable regions under competitive as well

as cooperative behavior. These results provide a foundation for

theoretical studies of the fundamental, information theoretic

limits of cognitive radio channels.
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) are jointly typical. 

random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

\

T⊂TG

 

X

t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

R1ik = L1ik (6)

R2jk ≤ L2jk − I(V2jk;V1) (7)

\

T⊂T1

 

X

t1∈T

Lt1

!

≤ I(Y1,VT ;VT |W ) (8)

\

T⊂T2

 

X

t2∈T

Lt2

!

≤ I(Y2,VT ;VT |W ), (9)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the

complement of the subset T with respect to T1 in (8), with

respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
(R1,R2) in S, is achievable for MACm

G .

Proof: The full proof will be given in [?]. The main

intuition is as follows: the equations in (5) ensure that when

the second MAC channel is presented with g(x1), the auxiliary
variables M1ik can be recovered. Eqs. (8) and (9) correspond

to the equations for two overlapping MAC channels seen

between the effective random variables VT1
→ R1, and

VT2
→ R2. Eqs. (6) and (7) are necessary for the Gel’fand-

Pinsker coding scheme to work.

This theorem is of interest because the coding scheme

covers in a sense, two limiting possibilities of how S2

could employ its knowledge of S1’s message: in one

case it could completely aid S1, which is obtained by

selecting P (x2j |m2j1, m2j2, aj, w) = P (x2j |aj, w), and

2nR bins

2nI(M2;X1) n-sequences for M2 per bin



MAC equations for  
S2 to get X1’s messages

Gel’fand-Pinsker coding

Overlapping MACs

random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are

with input X , side information S and output Y have capacity

C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable

rates (compared to the fictitious DMC from U → Y ) for the
links which use the non-causal information. The reduction in

the rates is the cost of limiting the fictitious input U to those

that are jointly typical to the non-causal side information, or

equivalently, I(U ; S). In our case, each V2jk variable, which

uses the non-causal knowledge of V1 variables, will suffer a

reduction in rate of I(V2jk;V1).

C. Terminology and definitions

Let K1 := (K111, K112, . . . , K1p1, K1p2) and K2 :=
(K211, K212, . . . , K2q1, K2q2), K1ik, K2jk ≥ 1, and define an
(n,K1,K2, λ) code for MACm

G as a set of K1i1 × K1i2

codewords xn
1i ∈ Xn

1i for S1i for i = 1, 2, . . . , p, and
(K111×K112× · · ·×K1p1×K1p2)×K2j1×K2j2 codewords

x2j ∈ Xn
2j for S2j for j = 1, 2, . . . , q such that the average

probability of decoding error is less than λ. We say the rate
(Rm

1 ,Rm
2 ), where Rm

1 := (R111, R112, · · ·R1p1, R1p2) and
Rm

2 := (R211, R212, · · ·R2q1, R2q2), is achievable if there
exists a sequence of (n,Kn

1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of

achievable rates.

Let W ∈ W be a time-sharing random variable whose n-

sequences wn !
= (w(1), w(2), . . . , w(n)) are generated inde-

pendently of the messages, according to
∏n

t=1 P (w(t)). The
n-sequence wn is given to all senders and receivers. Let TG

be the set of all subscripts of the first MAC channel, and T1

and T2 denote the set of all subscripts of all the “V ” random
variables that R1 and R2 respectively wish to receive, i.e.,

TG := {111, 112, 121, 122, . . . , 1p1, 1p2} (1)

T1 := {111, 112, 121, 122, . . . , 1p1, 1p2, 211, 221, . . . , 2q1} (2)

T2 := {112, 122, . . . , 1p2, 211, 212, 221, 222, . . . , 2q1, 2q2}. (3)

TG := {111, 112, 121, 122}

T1 := {111, 112, 121, 122, 211}

T2 := {112, 122, 211, 212}

The paper’s main results are given next.

Lemma 2: Let (Rm
1 ,Rm

2 ) be an achievable rate tuple for
MACm

G . Then the rate tuple (R1,R2) is achievable for

MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be

decomposed into the form

P (w) ×

"

p
Y

i=1

P (m1i1|w)P (m1i2|w)P (x1i|m1i1, m1i2, w)

#

×

"

p
Y

i=1

P (a1

1i1, a
2

1i1, . . . a
q
1i1|m1i1, w)P (a1

1i2, a
2

1i2, . . . , a
q
1i2|m1i2, w)

#

×

2

4

q
Y

j=1

P (m2j1|v1, w)P (m2j2|v1, w)

3

5

×

2

4

q
Y

j=1

P (x2j |m2j1, m2j2, a
j
, w)

3

5 P (y1|x1, x2)P (y2|x1, x2), (4)

where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:
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t∈T

Rt

!

≤ I(g(X1);MT |MT ) (5)

(6)

R1ik = L1ik (7)

R2jk ≤ L2jk − I(V2jk;V1) (8)

(9)

\

T⊂T1

 

X
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!

≤ I(Y1,VT ;VT |W ) (10)

\

T⊂T2

 

X
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Lt2

!

≤ I(Y2,VT ;VT |W ), (11)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2. The genie
presents the second MAC with some function g(X1) of the
encoded messages of the first MAC channel. T denotes the
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respect to T2 in (9), andVT denotes the vector of Vi such that

i ∈ T . Let S be the closure of ∪Z∈PS(Z). Then any element
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random variables at sender S2j . Also, we let A1 be the vector

of all A1ik , i = 1, 2, . . . , p, k = 1, 2.
The V2jk (or equivalently M2jk) also have a second pur-

pose: they act as the auxiliary random variable introduced

in coding for channels with side information known to the

transmitter, [?], [?]. The ‘side information’ in our case will be

the messages V1 := (V111, V112, . . . , V1p1, V1p2) that are used
to send information from S1 toR1 or (R1,R2) as appropriate.
TheseV1 andV2 random variables serve as fictitious inputs to

an equivalent channel shown in Fig. ??. The V1 variables do

not use any Gel’fand-Pinsker coding techniques, whereas the

variables V2 do. Such channels, whose simplest models are
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C = max
p(m2,x2|x1)

I(M2; Y2) − I(M2; X1)

where U is an auxiliary random variable that serves as a

fictitious input to the channel. There is a penalty in using this

approach which will be reflected by a reduction in achievable
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the rates is the cost of limiting the fictitious input U to those
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Rm
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1 ,Kn
2, λn) codes with Kn

1ik =
2nR1ik and Kn

2jk = 2nR2jk such that λn → 0 as n → ∞.
An achievable region of MACm

G is the closure of a subset of
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2 ) be an achievable rate tuple for
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MACG, where R1i = R1i1 + R1i2 and R2j = R2j1 + R2j2.

Proof: Analogous to Corollary (2.1) of [?].

Theorem 3: Let Z
!
=(Y1,Y2,X1,X2,V1,V2,W ), as shown in

Fig. ??. Let P be the set of distributions on Z that can be
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"

p
Y

i=1

P (m1iα)P (m1iβ)P (x1i|m1iα, m1iβ)

#

×

"

p
Y

i=1

P (m1

1iα, m
2

1iα, . . . m
q
1iα|m1iα)P (m1

1iβ , m
2

1iβ , . . . , m
q
1iβ |m1iβ)

#

×

2

4

q
Y

j=1

P (m2jα|v1)P (m2jβ |v1)

3

5

×

2

4

q
Y

j=1

P (x2j |m2jα, m2jβ , m
j)

3
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× [P (m12α)P (m12β)P (x12|m12α, m12β)]
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[

P (m∗
11α|m11α)P (m∗

11β |m11β)
]
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[

P (m∗
12α|m12α)P (m∗

12β |m12β)
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where P (y1|x1,x2) and P (y2|x1,x2) are fixed by the
channel. For any Z ∈ P , let S(Z) be the set of

all tuples R1 := (R111, R112, R121, R122, . . . , R1p1, R1p2),
R2 := (R211, R212, R221, R222, . . . , R2q1, R2q2) of non-

negative real numbers such that there exist non-negative reals

L1 := (L111, L112, L121, L122, . . . , L1p1, L1p2) and L2 :=
(L211, L212, L221, L222, . . . , L2q1, L2q2) satisfying:

⋂

T⊂T1

(

∑

t1∈T

Lt1

)

≤ I(Y1;MT |MT )

T1 = {11α, 11β, 12α, 12β, 21β}

⋂

T⊂T2

(

∑

t2∈T

Lt2

)

≤ I(Y2;MT |MT )

T2 = {11β, 12β, 21α, 21β}

R1ik = L1ik

R2jk ≤ L2jk − I(V2jk;V1)
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Fairness in 
Augmentation

• In 1D-GPS, solutions are both

• Max-Min Fair

• Proportionally Fair

• In 2D-GPS, the two fairness metrics will give 
rise to two different results in general.
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Max-Min Fairness
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Proportional Fairness

subjected to

The non-augmentability 
constraints are non-linear
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Birkhoff Decomposition

• Any NxN doubly stochastic matrix can be 
represented by a convex sum of at most 
(N-1)2+1 permutation matrices.
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Lemma
• Any non-augmentable matrix R from φ can be 

represented by a convex sum of non-absorbable 
zero-enforced permutation matrices of φ.



Transform problem 

where 1{·} is the indicator function.
Definition 6: A zero-enforced permutation matrix M of

B is said to be non-absorbable if it does not have another
zero-enforced permutation matrix M̂ of B, M̂ != M , such
that M̂ dominates M . Otheriwse, we say the zero-enforced
matrix is absorbable.

The two following lemmata allow us to transform the
non-augmentability constraints by considering the service
rate matrix R as a convex combination of non-absorbable
zero-enforced permutation matrices of Φ.

Lemma 2: Let R = (Rij) be a matrix such that rij =
0 whenever φij = 0. If a matrix R is non-augmentable,
then it can be decomposed as a convex combination of non-
absorbable zero-enforced permutation matrices of Φ.

Proof: We first show that if R is a non-augmentable
matrix, it can always be decomposed into a convex sum
of zero-enforced permutation matrices. Consider a doubly
stochastic matrix R̂ that is created by augmenting only the
zero-valued elements in R. By Birkoff decomposition [3],
R̂ can be decomposed as a convex combination of permu-
tation matrices. Now, if we set every element at position
(p, q) in each permutation matrix to zero whenever rpq = 0,
R can be decomposed as a convex combination of these
zero-enforced permutation matrices.

We now show that if some of the zero-enforced per-
mutation matrices in the decomposition are absorbable,
then matrix R is augmentable. By definition, every ab-
sorbable zero-enforced matrix can be dominated by a non-
absorbable matrix. Hence, by replacing the absorbale ma-
trices by the corresponding non-absorbable matrices in the
decomposition, the new matrix will dominate R. This im-
plies R is augmentable.

Lemma 3: Let P = {P 1, · · · , P z} be the set of all non-
absorbable zero-enforced permutation matrices of Φ, and
let pn

ij be the entries of matrix P n for n ∈ {1, · · · z}. Let
λ = (λ1, · · · ,λz) be a vector of dimension z = |P |. Suppose
λ and k are the solution to the optimization problem:

min
∑

i,j

∣∣∣∣∣∣

∑

n:pn
ij=1

λn − kφij

∣∣∣∣∣∣
, (7)

subjected to ∑

n:pn
ij=1

λn ≥ φij ∀ i, j, (8)

∑

n

λn = 1, (9)

λn ≥ 0 ∀ n, (10)

k ≥ 0, (11)

and the service rate matrix R =
∑z

n=1 λnPn satisfies the
non-augmentability constraint. Then, we say R is the pro-
portional fair solution to Φ, and k is the proportional in-
crease of Φ.

Proof: It follows by transforming the definition of
proportional fairness.

The fact that λ needs to satisfy the non-augmentability
constraint still causes the optimization problem to be non-
linear. However, this constraint is a disjunction of at most
2N terms, one for each row and column. This allows speed

improvement in obtaining the result. We apply basic algo-
rithms to achieve the solution:

Algorithm 2:
1. Use the simplex algorithm to solve the linear program-

ming problem by ignoring the non-augmentability con-
straints.

2. For each non-augmentability constraint, use the dual
simplex algorithm [2] to obtain a revised optimal λ, or
the problem becomes infeasible.

3. Choose λ that gives the minimum cost among all so-
lutions.

This algorithm is a direct application of optimization tech-
niques, and it can be shown that it will gives the propor-
tional fair solution.

We illustrate the algorithm using the following example.
Example 2: Using Φ from Example 1. We first write

the service rate matrix R as a convex combination of non-
absorbable zero-enforced permutation matrices. That is,
R = λ1

[
1 0 0
0 1 0
0 0 1

]
+ λ2

[
1 0 0
0 0 1
0 0 0

]
+ λ3

[
0 0 0
0 0 1
1 0 0

]
+

λ4

[
0 0 0
0 1 0
1 0 0

]
. The non-augmentability constraint is

λ2λ3 = 0. Solve the two linear optimization problems,
one with λ2 = 0 and one with λ3 = 0, the minimum cost
result from λ2 = 0. The resulting R =

[
0.4 0 0
0 0.85 0.15

0.6 0 0.4

]
.

V. Conclusions

We have defined two performance criteria for single node
Generalized Processor Sharing for Network Switches (GPS-
SW) in the context of N ×N network switches. These per-
formance criteria take into account the service request from
each stream while maximizing server utilization. Further-
more, we have proposed two rate augmentation algorithms
that can achieve the two criteria. As demonstrated in the
examples, the two solutions are not the same in general.
Hence, a network switch designer should choose the appro-
priate criterion that is best suited to their application.
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Example

switched from input port p to output port q, φpq is as-
sumed to be zero.

The goal of GPS-SW is to choose an N ×N service rate
matrix R = (rij) that satisfies three criteria: i) it must
provide at least the rate requested from each stream; ii)
it allocates bandwidth to each stream fairly according to
their rate requests; and iii) it allows the server to be used
maximally by minimizing server idle time. The following
definitions are introduced to formally define R.

Definition 1: A matrix M = (mij) is said to dominate a
matrix P = (pij) if, for each matrix index (i, j), mij ≥ pij .

Definition 2: Consider a substochastic matrix M =
(mij). We say a non-zero matrix element at position (p, q)
is non-augmentable if an arbitrary increase in mpq will
cause another matrix element to decrease in value in or-
der for M to remain substochastic. A row or a column of
M is said to be non-augmentable if all non-zero valued ma-
trix elements in the row or column are non-augmentable. A
matrix is said to be non-augmentable if all non-zero valued
matrix elements in the matrix are non-augmentable.

Using these definitions, our objective is to find a non-
augmentable substochastic service rate matrix R that dom-
inates the rate request matrix Φ while satisfying some per-
formance criterion.

The following lemma characterizes the property of a non-
augmentable matrix.

Lemma 1: A substochastic matrix M = (mij) is non-
augmentable if and only if, for all mpq #= 0,




N∑

j=1

mpj − 1




(

N∑

i=1

miq − 1

)
= 0. (1)

Proof: Proof is omitted as it is easy to derive from
the definition of augmentability.

III. Max-Min Fairness

We extend the notion of max-min fairness [1] to take
into account the rate request from each traffic stream. In
particular, the modified max-min fair augmentation aims
to obtain a service rate matrix that is closely related to a
scale version of the service request, and it does so by giving
priority to the streams that can be scaled the least.

Definition 3: Given the rate request matrix Φ = (φij),
we say M = (mij) is a feasible matrix if, by letting
rij = mijφij , R = (rij) is non-augmentable and sub-
stochastic, and mij ≥ 1. Furthermore, we say R is the
max-min fair augmentation of Φ if, for each non-zero val-
ued matrix element at position (p, q) in Φ, and for any other
feasible matrix M̂ = (m̂ij) for which mpq < m̂pq, there ex-
its some (p′, q′) with mpq ≥ mp′q′ and mp′q′ > m̂p′q′ .

Note that max-min fairness usually applies to multiple
node networks [1]. However, in this study, the above defini-
tion is a natural verion of max-min fairness for single node
case. The following algorithm achieves max-min fairness.

Algorithm 1:
1. Initialize R = Φ.
2. If R is non-augmentable, stop.
3. Choose a maximum possible k > 1 such that, after

setting rpq ← krpq for each augmentable matrix ele-
ment at position (p, q), R would remain substochastic.
Then, set rpq ← krpq for each augmentable element.

4. Go to Step 2.

We show that Algorithm 1 produces a service rate matrix
that satisfies the max-min fair criterion. At initialization,
there are at most N rows and N columns that can be non-
augmentable. At each iteration, the algorithm scales all
augmentable elements in the matrix in a such way that at
least one new row or column becomes non-augmentable.
Hence, the total number of non-augmentable row and col-
umn is reduced by at least one. The algorithm will termi-
nate in at most 2N steps.

We demonstrate this algorithm by the following example.

Example 1: Let Φ =




1
5 0 0
0 1

2
1
10

2
5 0 2

5



. The algorithm

first set R = Φ. In the first iteration, the algorithm mul-
tiplies each matrix element in R by 5

4 , as this causes the
last row of R to become non-augmentable. In subsequent
steps, the elements on the last row are non-augmentable,
thus they will not get multiplied further. The algorithm
proceeds as follows. Note that the last matrix is non-
augmentable.



1
4 0 0
0 5

8
1
8

1
2 0 1

2



 × 4
3

−→




1
3 0 0
0 5

6
1
6

1
2 0 1

2



 × 3
2

−→




1
2 0 0
0 5

6
1
6

1
2 0 1

2





IV. Proportional Fairness

The traditional proportional fairness as defined by Kelly
et al. [7] does not capture rate guarantee constraints. We
propose a new definition of proportional fairness in the fol-
lowing way.

Definition 4: Let R = (rij) and k be the solution to the
following optimization problem:

min
∑

i,j

|rij − kφij | , (2)

subject to
rpq = 0 if φpq = 0, (3)
rpq ≥ φpq ∀ p, q, (4)

k ≥ 0, (5)
and R is non-augmentable. Then, we say R is a propor-
tional fair solution to Φ = (φij), and k is the proportional
increase of Φ.

This optimization problem is non-linear, as the service
rate matrix must satisfy at most N 2 non-augmentability
constraints in (1). Naively, a solution can be found by con-
sidering 2N2

linear subproblems and selecting the solution
with minimal objective value, but such solution method
has a forbidding complexity.

The speed of the simplex algorithm [2] is limited primar-
ily by the number of constraint equations. Hence, we pro-
pose an alternative formulation that will reduce the number
of constraints in the optimization problem. The following
definitions are needed for the formulation.

Definition 5: A matrix M = (mij) is said to be a zero-
enforced permutation matrix of matrix B = (bij) if, letting
P = (pij) be a permutation matrix2,

mij = pij1{bij "=0}, (6)

2An N × N matrix P is said to be a permutation matrix if P ∈
{0, 1}N×N , and each row and column of P sums to one.

switched from input port p to output port q, φpq is as-
sumed to be zero.

The goal of GPS-SW is to choose an N ×N service rate
matrix R = (rij) that satisfies three criteria: i) it must
provide at least the rate requested from each stream; ii)
it allocates bandwidth to each stream fairly according to
their rate requests; and iii) it allows the server to be used
maximally by minimizing server idle time. The following
definitions are introduced to formally define R.

Definition 1: A matrix M = (mij) is said to dominate a
matrix P = (pij) if, for each matrix index (i, j), mij ≥ pij .

Definition 2: Consider a substochastic matrix M =
(mij). We say a non-zero matrix element at position (p, q)
is non-augmentable if an arbitrary increase in mpq will
cause another matrix element to decrease in value in or-
der for M to remain substochastic. A row or a column of
M is said to be non-augmentable if all non-zero valued ma-
trix elements in the row or column are non-augmentable. A
matrix is said to be non-augmentable if all non-zero valued
matrix elements in the matrix are non-augmentable.

Using these definitions, our objective is to find a non-
augmentable substochastic service rate matrix R that dom-
inates the rate request matrix Φ while satisfying some per-
formance criterion.

The following lemma characterizes the property of a non-
augmentable matrix.

Lemma 1: A substochastic matrix M = (mij) is non-
augmentable if and only if, for all mpq #= 0,




N∑

j=1

mpj − 1




(

N∑

i=1

miq − 1

)
= 0. (1)

Proof: Proof is omitted as it is easy to derive from
the definition of augmentability.

III. Max-Min Fairness

We extend the notion of max-min fairness [1] to take
into account the rate request from each traffic stream. In
particular, the modified max-min fair augmentation aims
to obtain a service rate matrix that is closely related to a
scale version of the service request, and it does so by giving
priority to the streams that can be scaled the least.

Definition 3: Given the rate request matrix Φ = (φij),
we say M = (mij) is a feasible matrix if, by letting
rij = mijφij , R = (rij) is non-augmentable and sub-
stochastic, and mij ≥ 1. Furthermore, we say R is the
max-min fair augmentation of Φ if, for each non-zero val-
ued matrix element at position (p, q) in Φ, and for any other
feasible matrix M̂ = (m̂ij) for which mpq < m̂pq, there ex-
its some (p′, q′) with mpq ≥ mp′q′ and mp′q′ > m̂p′q′ .

Note that max-min fairness usually applies to multiple
node networks [1]. However, in this study, the above defini-
tion is a natural verion of max-min fairness for single node
case. The following algorithm achieves max-min fairness.

Algorithm 1:
1. Initialize R = Φ.
2. If R is non-augmentable, stop.
3. Choose a maximum possible k > 1 such that, after

setting rpq ← krpq for each augmentable matrix ele-
ment at position (p, q), R would remain substochastic.
Then, set rpq ← krpq for each augmentable element.

4. Go to Step 2.

We show that Algorithm 1 produces a service rate matrix
that satisfies the max-min fair criterion. At initialization,
there are at most N rows and N columns that can be non-
augmentable. At each iteration, the algorithm scales all
augmentable elements in the matrix in a such way that at
least one new row or column becomes non-augmentable.
Hence, the total number of non-augmentable row and col-
umn is reduced by at least one. The algorithm will termi-
nate in at most 2N steps.

We demonstrate this algorithm by the following example.

Example 1: Let Φ =




1
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0 1
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

. The algorithm

first set R = Φ. In the first iteration, the algorithm mul-
tiplies each matrix element in R by 5

4 , as this causes the
last row of R to become non-augmentable. In subsequent
steps, the elements on the last row are non-augmentable,
thus they will not get multiplied further. The algorithm
proceeds as follows. Note that the last matrix is non-
augmentable.
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
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

IV. Proportional Fairness

The traditional proportional fairness as defined by Kelly
et al. [7] does not capture rate guarantee constraints. We
propose a new definition of proportional fairness in the fol-
lowing way.

Definition 4: Let R = (rij) and k be the solution to the
following optimization problem:

min
∑

i,j

|rij − kφij | , (2)

subject to
rpq = 0 if φpq = 0, (3)
rpq ≥ φpq ∀ p, q, (4)

k ≥ 0, (5)
and R is non-augmentable. Then, we say R is a propor-
tional fair solution to Φ = (φij), and k is the proportional
increase of Φ.

This optimization problem is non-linear, as the service
rate matrix must satisfy at most N 2 non-augmentability
constraints in (1). Naively, a solution can be found by con-
sidering 2N2

linear subproblems and selecting the solution
with minimal objective value, but such solution method
has a forbidding complexity.

The speed of the simplex algorithm [2] is limited primar-
ily by the number of constraint equations. Hence, we pro-
pose an alternative formulation that will reduce the number
of constraints in the optimization problem. The following
definitions are needed for the formulation.

Definition 5: A matrix M = (mij) is said to be a zero-
enforced permutation matrix of matrix B = (bij) if, letting
P = (pij) be a permutation matrix2,

mij = pij1{bij "=0}, (6)

2An N × N matrix P is said to be a permutation matrix if P ∈
{0, 1}N×N , and each row and column of P sums to one.

Max-min augmentation

where 1{·} is the indicator function.
Definition 6: A zero-enforced permutation matrix M of

B is said to be non-absorbable if it does not have another
zero-enforced permutation matrix M̂ of B, M̂ != M , such
that M̂ dominates M . Otheriwse, we say the zero-enforced
matrix is absorbable.

The two following lemmata allow us to transform the
non-augmentability constraints by considering the service
rate matrix R as a convex combination of non-absorbable
zero-enforced permutation matrices of Φ.

Lemma 2: Let R = (Rij) be a matrix such that rij =
0 whenever φij = 0. If a matrix R is non-augmentable,
then it can be decomposed as a convex combination of non-
absorbable zero-enforced permutation matrices of Φ.

Proof: We first show that if R is a non-augmentable
matrix, it can always be decomposed into a convex sum
of zero-enforced permutation matrices. Consider a doubly
stochastic matrix R̂ that is created by augmenting only the
zero-valued elements in R. By Birkoff decomposition [3],
R̂ can be decomposed as a convex combination of permu-
tation matrices. Now, if we set every element at position
(p, q) in each permutation matrix to zero whenever rpq = 0,
R can be decomposed as a convex combination of these
zero-enforced permutation matrices.

We now show that if some of the zero-enforced per-
mutation matrices in the decomposition are absorbable,
then matrix R is augmentable. By definition, every ab-
sorbable zero-enforced matrix can be dominated by a non-
absorbable matrix. Hence, by replacing the absorbale ma-
trices by the corresponding non-absorbable matrices in the
decomposition, the new matrix will dominate R. This im-
plies R is augmentable.

Lemma 3: Let P = {P 1, · · · , P z} be the set of all non-
absorbable zero-enforced permutation matrices of Φ, and
let pn

ij be the entries of matrix P n for n ∈ {1, · · · z}. Let
λ = (λ1, · · · ,λz) be a vector of dimension z = |P |. Suppose
λ and k are the solution to the optimization problem:

min
∑

i,j

∣∣∣∣∣∣

∑

n:pn
ij=1

λn − kφij

∣∣∣∣∣∣
, (7)

subjected to ∑

n:pn
ij=1

λn ≥ φij ∀ i, j, (8)

∑

n

λn = 1, (9)

λn ≥ 0 ∀ n, (10)

k ≥ 0, (11)

and the service rate matrix R =
∑z

n=1 λnPn satisfies the
non-augmentability constraint. Then, we say R is the pro-
portional fair solution to Φ, and k is the proportional in-
crease of Φ.

Proof: It follows by transforming the definition of
proportional fairness.

The fact that λ needs to satisfy the non-augmentability
constraint still causes the optimization problem to be non-
linear. However, this constraint is a disjunction of at most
2N terms, one for each row and column. This allows speed

improvement in obtaining the result. We apply basic algo-
rithms to achieve the solution:

Algorithm 2:
1. Use the simplex algorithm to solve the linear program-

ming problem by ignoring the non-augmentability con-
straints.

2. For each non-augmentability constraint, use the dual
simplex algorithm [2] to obtain a revised optimal λ, or
the problem becomes infeasible.

3. Choose λ that gives the minimum cost among all so-
lutions.

This algorithm is a direct application of optimization tech-
niques, and it can be shown that it will gives the propor-
tional fair solution.

We illustrate the algorithm using the following example.
Example 2: Using Φ from Example 1. We first write

the service rate matrix R as a convex combination of non-
absorbable zero-enforced permutation matrices. That is,
R = λ1

[
1 0 0
0 1 0
0 0 1

]
+ λ2

[
1 0 0
0 0 1
0 0 0

]
+ λ3

[
0 0 0
0 0 1
1 0 0

]
+

λ4

[
0 0 0
0 1 0
1 0 0

]
. The non-augmentability constraint is

λ2λ3 = 0. Solve the two linear optimization problems,
one with λ2 = 0 and one with λ3 = 0, the minimum cost
result from λ2 = 0. The resulting R =

[
0.4 0 0
0 0.85 0.15

0.6 0 0.4

]
.

V. Conclusions

We have defined two performance criteria for single node
Generalized Processor Sharing for Network Switches (GPS-
SW) in the context of N ×N network switches. These per-
formance criteria take into account the service request from
each stream while maximizing server utilization. Further-
more, we have proposed two rate augmentation algorithms
that can achieve the two criteria. As demonstrated in the
examples, the two solutions are not the same in general.
Hence, a network switch designer should choose the appro-
priate criterion that is best suited to their application.
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• Results on the capacities of channels with 
side information known at the transmitter 
assume full channel knowledge

• In realistic cognitive radio channels, we 
should not assume full channel knowledge. 
Results for cognitive radio channels use 
results from channels with known side-info 
at the transmitter



• Channel with side information at the 
transmitter

• Fading channels, where the channel state is 
unknown to the transmitter, but known to 
the receiver

• What are bounds on the capacity?
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the transmitter is bounded by CL ≤ C ≤ CU where

CL = sup
PU|X,S,W ,PX|S,W ,PW

[
inf
β∈C

[
Iβ(U ; Y |W ) − I(U ; S|W )

]]
, (3)

CU = sup
P β

U|X,S,W ,PX|S,W ,PW

[
inf
β∈C

[
Iβ(U ; Y |W ) − I(U ; S|W )

]]
, (4)

and the suprema are over all finite alphabet auxiliary random variables U and finite alphabet time-sharing

random variables W and P β
U |X,S,W denotes any family of distributions.

We remark that since the joint distribution PX,S,W in CU does not depend on β, the upper bound CU is

in general tighter than if a genie had revealed β to the transmitter. We also note the fact that compared to

the result of Gel’fand and Pinsker, a time-sharing random variable W cannot be argued away in general.

However, for the degenerate case where C is a singleton, one can easily show that an optimal choice of

the time-sharing random variable W is to set it to a constant, effectively removing W from the capacity

expression, i.e., in this case, both bounds reduce to the well known result of Gel’fand and Pinsker.

Bounds on the capacity of a two-sided side-information channel [4] may be derived as a special

case of Theorem 1. In a two-sided side-information scenario, not only does the transmitter have a side-

information sequence S1, but the receiver is presented with a correlated sequence S2 and the channel

is governed by P β
Y |X,S1,S2

. By augmenting the channel so that it yields an output Y ′ = (Y, S2) with

P β
Y ′|X,S1

= PS2|S1
P β

Y |X,S1,S2
, the problem is reformulated so that Theorem 1 applies, from which it follows

that the rate C ′
L = supPU,X|S1,W ,PW

infβ
[
Iβ(U ; Y, S2|W ) − I(U ; S1|W )

]
is achievable and likewise, an

upper bound may be determined.

When the input is standard (this includes Euclidean space), we generalize Theorem 1 (Theorem 2 in

Section IV) with the addition that the auxiliary random variable must now be allowed to be standard (but

the time-sharing random variable remains finite alphabet) and the side-information S must be quantized.

Under some suitable conditions on the compound channel and the choice of auxiliary random variable,

the quantized side-information may be replaced with the actual side-information S. This will turn out to

be the case for the proposed scheme for cognitive radio channels.

We also consider the case where the input is power constrained (Theorem 3 in Section IV). Our result

there is that except for a mild technicality, the bounds are essentially the same as in Theorem 2 except

that the suprema must now be limited to those distributions for which the average constraint is met (i.e.,

those distributions for which E|X|2 < P ).

Returning to the cognitive radio scenario, we consider the problem of encoding a message V with

knowledge of a Gaussian interfering signal S of power Q. The encoder output X is also power constrained
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to P = Q and the signal received at the decoder is Y = β1X+β2S+Z where Z is independent Gaussian

noise and the compound parameter is β := (β1, β2).

Similar to Costa’s scheme, we suggest U = X + αS, where α is now chosen as a function of the

second order statistics of β1 and β2. The scheme proposed in Section V selects

α =
µ∗

1µ2SNR

(|µ1|2 + σ2
1)SNR + 1

. (5)

We note the following three facts about this choice for Ricean fading channels where β1 and β2 have

K-factors K1 and K2 respectively:

1) If K1, K2 → ∞, then the scheme is identical to Costa’s with α = P/(P +N) and the interference

is perfectly mitigated.

2) If either K1 → 0 or K2 → 0, the scheme treats the interferer as noise.

3) The performance does not depend on the phase difference between µ1 and µ2 as this choice of α

rotates the mean channels so that their phases are aligned.

Furthermore, with this selection of α, it is numerically found that performance in terms of achievable

rates for given outage probabilities is good over a wide range of K-factors. This conclusion is drawn by

comparing to the outage capacity of an interference-free scenario and a scenario where the interference

is treated as noise.

This paper is structured as follows. In Section II, we introduce our notation more formally. In Section

III, we define the problem for the finite alphabet case and outline the proof of our first main result,

Theorem 1, which states bounds on the capacity of the finite alphabet compound channel with side

information. The proof itself may be found in Appendix II. In Section IV, we generalize this result to

standard alphabets and prove the rest of our main results, Theorems 2 and 3. In Section V, we apply these

results to derive lower bounds on the outage capacity for our cognitive radio problem. This is achieved

by proposing a distribution on U and X as a function of the second order statistics of the channel.

Numerical evaluation of this lower bound is compared to two other scenarios: treating the interference as

noise and an interference-free scenario. Our results show that for a wide range of K-factors, performance

is much better than treating the interference as noise and for low SNR such as 5 dB, performance is

close to the interference-free upper bound. In Section VI, we conclude this work. The proofs of some

technical lemmas may be found in Appendix I.

II. PRELIMINARIES AND NOTATION

In the first part of this paper, all variables are discrete random variables with finite alphabets. We

denote the realization of a random variable X by lowercase symbols such as x and the finite alphabet

February 9, 2005 DRAFT
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Fig. 6. Communications over a fading channel with a fading interferer whose signal, but not fading coefficient, is known at

the transmitter for SNR = 10 dB with P = Q = 1.

rates for given outage probabilities. We have also compared these rates to the outage capacities of two

schemes: communication over an interference-free fading channel and treating the interference as noise.

Our results indicate significant gains are possible over the latter while in the low SNR regime, performance

is near the upper bound of the interference-free scenario.
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APPENDIX I

PROOF OF LEMMAS

We will need the following Lemma which slightly extends Lemma 2.10 in [6].

Lemma 6:

1) If x ∈ T n(PX , δ) and y ∈ Tn(PY |X , δ′)(x) then (x,y) ∈ T n(PY |X × PX , δ + δ′).
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• Design and implementation of an OFDM-
based space-time collaborative system

• Our lab completed the simulations in 
Matlab/C, and Vanu Inc. will do the software 
radio platform design and implementation.



• Carrier frequencies: 902-928 MHz

• Bandwidth: < 5 MHz signal

• 64 subcarriers, spaced at 72kHz









Behaves more 
like a 2x1 

system than a 
1x1 system



• Develop an equivalent system for cognitive 
transmission

• Toughest to tackle will be developing codes 
that layer relaying and dirty-paper coding 
schemes in the same transmission

• Same synchronization issues

• 2 phase protocols seem practical



To cooperate or to select?
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• Evaluate gains of cooperation between base 
stations in an 802.16d wireless network over   
no-cooperation, as well as selection.

• System level simulations that take 
shadowing, fading, sectorization, pathloss, 
realistic channel models, and interference 
from other base-stations/users into account.



• Cooperation performs only slightly better 
than selection.

• Shadowing drastically alters all simulations. 

• Shadowing diversity exists.
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 USER 1

USER 2

Antenna array

USER 1 USER 2

Goal: Produce a 
stable system of 
queues that is 
stochastically 

smaller that any 
queue length 

process produced 
by another stable 

policy.



• Found necessary conditions on Poisson 
arrival rates of various length packets that 
ensure the stability the queue length 
process.

• Simulated various scheduling algorithms, and 
saw their throughput. 



USER 1

USER 2

Antenna array

1 bit/sec
1 bit/sec

λ12
λ13 λ21

λ23

λ22

q13q11 q12 q21 q22 q23

l23

l22

l21l11 l12 l13

Similarly, since S12 cannot aid S11, even if R12 = 0,

we see that R11 ≤ 1/2 log
(

1 + (a111

√
P11+a211

√
P21)2

Q1

)

and

analogously, R12 ≤ 1/2 log
(

1 + (a121

√
P12+a211

√
P21)2

Q1

)

. We

also restrict the diagonal elements of the covariance matrix

constraint used to evaluate the 3×2 MIMO broadcast capacity
to be P11, P12 and P21 respectively. The MIMO 3×2 broadcast
channel intersected with the bounds on R11, R12 and R21 is

plotted in Fig. ?? (right), and provides an outer bound on the

cognitive behavior.

R1 ≤ I(Y1; X1, X2)

R2 ≤ I(Y2; X2|X1)

III. CONCLUSION

We have defined inter/intra-cluster cognitive behavior, and

have derived an achievable region for the cognitive radio

multiple access channel. In the Gaussian case, this region was

compared to the achievable regions under competitive as well

as cooperative behavior. These results provide a foundation for

theoretical studies of the fundamental, information theoretic

limits of cognitive radio channels.
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σij
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• Base the decision of who to schedule on the 
current parameters and queue lengths only.

• If there exists a pair (i*, j*) with C
i*j*

=1, and 

non-empty queues, send the pair such that:

Similarly, since S12 cannot aid S11, even if R12 = 0,

we see that R11 ≤ 1/2 log
(

1 + (a111

√
P11+a211

√
P21)2

Q1

)

and

analogously, R12 ≤ 1/2 log
(

1 + (a121

√
P12+a211

√
P21)2

Q1

)

. We

also restrict the diagonal elements of the covariance matrix

constraint used to evaluate the 3×2 MIMO broadcast capacity
to be P11, P12 and P21 respectively. The MIMO 3×2 broadcast
channel intersected with the bounds on R11, R12 and R21 is

plotted in Fig. ?? (right), and provides an outer bound on the

cognitive behavior.

R1 ≤ I(Y1; X1, X2)

R2 ≤ I(Y2; X2|X1)
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We have defined inter/intra-cluster cognitive behavior, and

have derived an achievable region for the cognitive radio

multiple access channel. In the Gaussian case, this region was

compared to the achievable regions under competitive as well

as cooperative behavior. These results provide a foundation for

theoretical studies of the fundamental, information theoretic

limits of cognitive radio channels.

The system of queues with arrival rates

λ11, λ12, . . . , λ1K , λ21, λ22, . . . , λ2K is stable if ∃σij for

i, j ∈ {0, 1, . . . , K} such that

%

σij = 0 if Cij = 0

λ1i =
K

∑

j=0

σij

λ2j =
K

∑

i=0

σij

K
∑

i=0

K
∑

j=0
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Criteria 1: (i∗, j∗) = arg maxi,j(q1i, q2j)

Criteria 2: (i∗, j∗) = arg maxi,j(q1iq2j)
(

l1i+l2j

max{l1i,l2j}

)

Criteria 3: (i∗, j∗) = arg maxi,j(
q1iq2j

q1i+q2j
)
(

l1i+l2j

max{l1i,l2j}

)

Criteria 4: (i∗, j∗) = arg maxi,j(
q1iq2j

q1i+q2j
)
(

l1i+l2j

max{l1i,l2j}

)2



EBCOT Image Compression

Natasha Devroye, Fabrice Labeau
McGill University



• Year long project which consisted of reading 
D. Taubman’s ``High performance scalable 
image compression with EBCOT ‘’ IEEE 
Trans. on Image Processing, vol.9, 2000.

• Learned all background material on image 
compression techniques, and coded the 
described algorithm, which forms the basis 
of JPEG2000 in C++.



• 2-D Wavelet Transform

• Bit-plane encoding

• Adaptive Arithmetic Coding

• On each bit plane, uses Quad-tree, and 4 
more coding passes

• Post-compression rate distortion 
optimization


